欧拉公式

欧拉公式
欧拉公式

编辑词条

欧拉公式

[编辑本段]

欧拉公式

(Euler公式)

在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做

欧拉公式,它们分散在各个数学分支之中。

(1)分式里的欧拉公式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

(2)复变函数论里的欧拉公式:

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

将公式里的x换成-x,得到:

e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.

这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:

e^i∏+1=0.

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:

虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

(3)三角形中的欧拉公式:

设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:

d^2=R^2-2Rr

(4)拓扑学里的欧拉公式:

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P 的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。

(5)初等数论里的欧拉公式:

欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。

欧拉证明了下面这个式子:

如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……, m)都是素数,而且两两不等。则有

φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

利用容斥原理可以证明它。

此外还有很多著名定理都以欧拉的名字命名。

欧拉方程

[编辑本段]

欧拉方程Euler’s equation

对无粘性流体微团应用牛顿第二定律得到的运动微

分方程。欧拉方程是无粘性流体动力学中最重要的基本

方程,应用十分广泛。1755年,瑞士数学家L.欧拉在《流

体运动的一般原理》一书中首先提出这个方程。

在研究一些物理问题,如热的传导、圆膜的振动、电磁波的传播等问题时,常常碰到如下形式的方程:

(ax^2D^2+bxD+c)y=f(x),

其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D^2y的系数是二次函数ax^2,一阶导数Dy的系数是一次函数bx,y的系数是常数。这样的方程称为欧拉方程。

例如:(x^2D^2-xD+1)y=0,(x^2D^2-2xD+2)y=2x^3-x等都是欧拉方程。

化学中足球烯即C-60和此方程有关

证明过程:

利用级数。

exp(x)=1+x+(x^2)/2!+(x^3)/3!+(x^4)/4!+……

sin(x)=x-(x^3)/3!+(x^5)/5!-(x^7)/7!+……

cos(x)=1-(x^2)/2!+(x^4)/4!-(x^6)/6!+……

其中exp(x)=e^x

于是exp(ix)=1+ix-(x^2)/2!-i(x^3)/3!+(x^4)/4!+i(x^5)/5!+……

比较以上3式,就得出欧拉公式了

[编辑本段]

泛函的欧拉方程(by zhengpin1390)

(二)、泛函的欧拉方程

欧拉方程是泛函极值条件的微分表达式,求解泛函的欧拉方程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题。

(1)最简单的欧拉方程:

设函数F(x,y,y') 是三个变量的连续函数,且点(x,y)位于有界闭区域B内,则对形如

的变分,若其满足以下条件:

c) 在有界闭区域B内存在某条特定曲线y。(x) ,使泛函取极值,且此曲线具有二阶连续导数。

则函数y。(x) 满足微分方程:

上式即为泛函Q[y]的欧拉方程。

(2)含有自变函数高阶倒数的泛函的欧拉方程

一般来说,对于下述泛函:

在类似条件下,可以得到对应的欧拉方程为:

(3)含有多个自变函数的泛函的欧拉方程

对于下述泛函:

其欧拉方程组为:

(4)多元函数的泛函及其欧拉方程

此处仅考虑二元函数的情况,对如下所示多元函数的泛函:

其欧拉方程为:

编辑词条

欧拉定理

目录

欧拉定理

欧拉公式

认识欧拉

欧拉定理的意义

欧拉定理的证明

欧拉定理的运用方法

使用欧拉定理计算足球五边形和六边形数

欧拉公式

[编辑本段]

欧拉定理

对于互质的整数a和n,有aφ(n) ≡ 1 mod n

证明:

首先证明下面这个命题:

对于集合Zn={x1,x2,...,xφ(n)},考虑集合

S = {ax1 mod n,ax2mod n,...,axφ(n)mod n}

则S = Zn

1) 由于a,n互质,xi也与n互质,则axi也一定于p互质,因此

任意xi,axi mod n 必然是Zn的一个元素

2) 对于Zn中两个元素xi和xj,如果xi ≠ xj

则axi mod n ≠ axi mod n,这个由a、p互质和消去律可以得出。

所以,很明显,S=Zn

既然这样,那么

(ax1 × ax2×...×axφ(n))mod n

= (ax1 mod n × ax2mod n × ... × axφ(n)mod n)mod n

= (x1 × x2 × ... × xφ(n))mod n

考虑上面等式左边和右边

左边等于(aφ(n) × (x1 × x2 × ... × xφ(n))mod n) mod n

右边等于x1 × x2 × ... × xφ(n))mod n

而x1 × x2 × ... × xφ(n))mod n和p互质

根据消去律,可以从等式两边约去,就得到:

aφ(n) ≡ 1 mod n

推论:对于互质的数a、n,满足aφ(n)+1 ≡ a mod n

费马定理

a是不能被质数p整除的正整数,则有ap-1 ≡ 1 mod p

证明这个定理非常简单,由于φ(p) = p-1,代入欧拉定理即可证明。

同样有推论:对于不能被质数p整除的正整数a,有ap ≡ a mod p

[编辑本段]

欧拉公式

简单多面体的顶点数V、面数F及棱数E间有关系

V+F-E=2

这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。[编辑本段]

认识欧拉

欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。

欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。

欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等,至今沿用。

欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......

[编辑本段]

欧拉定理的意义

(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。

定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。

(4)提出多面体分类方法:

在欧拉公式中, f (p)=V+F-E 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。

除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。

(5)利用欧拉定理可解决一些实际问题

如:为什么正多面体只有5种?足球与C60的关系?否有棱数为7的正多面体?等

[编辑本段]

欧拉定理的证明

方法1:(利用几何画板)

逐步减少多面体的棱数,分析V+F-E

先以简单的四面体ABCD为例分析证法。

去掉一个面,使它变为平面图形,四面体顶点数E、棱数V与剩下的面数F1变形后都没有变。因此,要研究V、E和F关系,只需去掉一个面变为平面图形,证V +F1-E=1

(1)去掉一条棱,就减少一个面,V+F1-E不变。依次去掉所有的面,变为“树枝形”。

(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,V+F1-E不变,直至只剩下一条棱。

以上过程V+F1-E不变,V+F1-E=1,所以加上去掉的一个面,V+F-E =2。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和

设多面体顶点数V,面数F,棱数E。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和Σα

一方面,在原图中利用各面求内角总和。

设有F个面,各面的边数为n1,n2,…,nF,各面内角总和为:

Σα = [(n1-2)·180度+(n2-2)·180度+…+(nF-2) ·180度]

= (n1+n2+…+nF -2F) ·180度

=(2E-2F) ·180度= (E-F) ·360度(1)

另一方面,在拉开图中利用顶点求内角总和。

设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有V个顶点中,有n个顶点在边上,V-n个顶点在中间。中间V-n个顶点处的内角和为(V-n)·360度,边上的n个顶点处的内角和(n-2)·180度。

所以,多面体各面的内角总和:

Σα = (V-n)·360度+(n-2)·180度+(n-2)·180度

=(V-2)·360度(2)

由(1)(2)得:(E-F) ·360度=(V-2)·360度

所以V+F-E=2.

方法3 用拓朴学方法证明欧拉公式

尝试一下用拓朴学方法证明关于多面体的面、棱、顶点数的欧拉公式。

欧拉公式:对于任意多面体(即各面都是平面多边形并且没有洞的立体),假设F,E和V分别表示面,棱(或边),角(或顶)的个数,那末

F-E+V=2。

证明如图(图是立方体,但证明是一般的,是“拓朴”的):

(1)把多面体(图中①)看成表面是薄橡皮的中空立体。

(2)去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。

(3)对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。

(4)如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。

(5)如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′

减去2,V′减去1,因此F′-E′+V′仍没有变。

(6)这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。

(7)因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。

(8)如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。

即F′-E′+V′=1

成立,于是欧拉公式:

F-E+V=2

得证。

[编辑本段]

欧拉定理的运用方法

(1)分式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

(2)复数

由e^iθ=cosθ+isinθ,得到:

sinθ=(e^iθ-e^-iθ)/2i

cosθ=(e^iθ+e^-iθ)/2

(3)三角形

设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:

d^2=R^2-2Rr

(4)多面体

设v为顶点数,e为棱数,f是面数,则

v-e+f=2-2p

p为欧拉示性数,例如

p=0 的多面体叫第零类多面体

p=1 的多面体叫第一类多面体

(5) 多边形

设一个二维几何图形的顶点数为V,划分区域数为Ar,一笔画笔数为B,则有:V+Ar-B=1

(如:矩形加上两条对角线所组成的图形,V=5,Ar=4,B=8)

(6). 欧拉定理

在同一个三角形中,它的外心Circumcenter、重心Gravity、九点圆圆心Nine-p oint-center、垂心Orthocenter共线。

其实欧拉公式是有很多的,上面仅是几个常用的。

[编辑本段]

使用欧拉定理计算足球五边形和六边形数

问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?

答:足球是多面体,满足欧拉公式F-E+V=2,其中F,E,V分别表示面,棱,顶点的个数

设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么

面数F=x+y

棱数E=(5x+6y)/2(每条棱由一块黑皮子和一块白皮子共用)

顶点数V=(5x+6y)/3(每个顶点由三块皮子共用)

由欧拉公式,x+y-(5x+6y)/2+(5x+6y)/3=2,

解得x=12。所以,共有12块黑皮子

所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的

对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。

所以白皮子所有边的一半是与黑皮子缝合在一起的

那么白皮子就应该一共有60×2=120条边,120÷6=20

所以共有20块白皮子

(或者,每一个六边形的六条边都与其它的三个六边形的三条边和三个五边形的三条边连接;每一个五边形的五条边都与其它的五个六边形的五条边连接所以,五边形的个数x=3y/5。

之前求得x=12,所以y=20)

经济学中的“欧拉定理”

在西方经济学里,产量和生产要素L、K的关系表述为Q=Q(L,K),如果具体的函数形式是一次齐次的,那么就有:Q=L(ðQ/ðL)+K(ðQ/ðK),换句话说,产品分配净尽取决于Q能否表示为一个一次齐次函数形式。

因为ðQ/ðL=MPL=w/P被视为劳动对产量的贡献,ðQ/ðK=MP K=r/P被视为资本对产量的贡献,因此,此式被解释为“产品分配净尽定理”,也就是所有产品都被所有的要素恰好分配完而没有剩余。因为形式上符合数学欧拉定理,所以称为欧拉定理。

【同余理论中的"欧拉定理"】

设a,m∈N,(a,m)=1,则a^(f(m))≡1(mod m)

(注:f(m)指模m的简系个数)

[编辑本段]

欧拉公式

在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。

1、复变函数论里的欧拉公式:

e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。

它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

将公式里的x换成-x,得到:

e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.

这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:

e^i∏+1=0.

这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

2、拓扑学里的欧拉公式:

V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P 的棱的条数,X(P)是多面体P的欧拉示性数。

如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P) =2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

X(P)叫做P的拓扑不变量,是拓扑学研究的范围。

3、初等数论里的欧拉公式:

欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。

欧拉证明了下面这个式子:

如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……, m)都是素数,而且两两不等。则有

φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

利用容斥原理可以证明它。

定理:正整数a与n互质,则a^φ(n)除以n余1

证明:设集合{A1,A2,...,Am}为模n的一个缩系(若整数A1,A2,...,Am模n分别对应0,1,2,...,n-1中所有m个与n互素的自然数,则称集合{A1,A2,...,Am}为模n的一个缩系)

则{a A1,a A2,...,a Am}也是模n的一个缩系(如果a Ax与a Ay (x不等于y)除以n余数相同,则a(Ax-Ay)是n的倍数,这显然不可能)

即A1*A2*A3*……Am≡aA1*aA2*……aAm(mod n) (这里m=φ(n))

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

《假如我是欧拉……多面体欧拉定理的发现》教案及说明

假如我是欧拉…… ——多面体欧拉定理的发现 一、教学目的 1、了解欧拉公式,并体现公式的发现过程。 2、进一步让学生体会多面体的三种基本量:点、线、面是立体几何的主要研究对象; 3、通过体验欧拉公式的发现过程,培养学生自主学习的能力; 4、让学生再次体验几何体的美; 5、在情感上培养学生换位思考方式及理解伟人的坚韧不拔的精神。 二、教学重点 1、体验欧拉公式的发现过程及再次认识组成多面体的基本量:点、线、面; 2、让学生在体验过程中培养学生自主学习的能力。 三、教学难点:学生在发现过程中体验到数学思想和方法。 四、教学过程

t

教案设计说明 本节课设计为“研究性学习课题”。以介绍伟人欧拉的生平作为引入,激发学生学习欧拉公式的兴趣;利用换位思考的形式,让学生假设自己是欧拉,通过一系列问题设计:怎样产生问题——怎样研究问题——怎样完善结论——应用,引导学生进行探究,在探究过程中,亲身体验欧拉公式的发现过程;最后对整个过程进行反思,让知识在反思中得到升华。 本节课这样设计的目的是在知识上,让学生了解欧拉公式,体会欧拉公式给出的是等量关系,这个等量关系刻划的是多面体的拓扑不变性,初步了解拓扑学;并在探究的过程中让学生不断体会到欧拉公式给出的是多面体的顶点数、面数、棱数这三者的数量关系,从而进一步让学生明确多面体的三个基本量:点、线、面。 在情感上,本节课以介绍伟人欧拉的生平作为引入,目的在于让学生了解欧拉,体会欧拉坚韧不拔的精神。并且让学生假设自己是欧拉,重走欧拉公式的发现历程,进一步激发学生探究的兴趣,同时培养学生换位思考的方式。 在能力上,采用换位思考的方式,让学生假设自己是欧拉,引导学生进行探究,让学生在每一个问题的探究中获取更多的思想和方法。其中问题一:怎样产生这一想法的解决,让学生通过独立思考、交流讨论和发表见解等形式,领悟到提出问题的重要性,培养学生要问——好问——善问的良好习惯,并从中体会到数学中类比和归纳的思想。通过前面三大问题的设置:怎样产生问题——怎样研究问题——怎样完善结论,让学生体会得出研究问题的方式方法:提出问题——归纳——猜想——论证,并且培养学生严谨的治学态度。最后问题四的解决,使学生对整个过程进行一个回顾,进行反思和总结,老师对学生的反思总结进行整理和升华,让学生意识到学习中反思和总结的重要性,并最终体会到自主学习的重要性。

欧拉函数公式及其证明

欧拉函数公式及其证明 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合:定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质:对于素数p,φ(p)=p-1。对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理:对于互质的正整数a和n,有aφ(n)≡1m o d n。 证明:(1)令Zn={x1,x2,...,xφ(n)},S={a*x1mo d n,a*x2m o dn,...,a*xφ(n)m od n},则Z n=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i m o d n≠a*x j m o d n(消去律)。

(2)aφ(n)*x1*x2*...*xφ(n)m o d n ≡(a*x1)*(a*x2)*...*(a*xφ(n))m o d n ≡(a*x1m o d n)*(a*x2m o d n)*...*(a*xφ(n)m o d n)m o d n ≡x1*x2*...*xφ(n)m o d n 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注:消去律:如果g c d(c,p)=1,则a c≡b c m o d p?a≡b m o d p。 费马定理:若正整数a与素数p互质,则有a p-1≡1m o d p。证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ******************************************************************** ********* 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

同济大学钢结构演示实验H型柱

H型截面轴心受压构件试验 1、试验目的 (1)认识和了解H型截面轴心受压钢构件的整体稳定实验方法,包括试件设计、实验装置设计、测点布置、加载方式、试验结果整理与分析等。 (2)观察记录H型截面轴心受压柱的失稳过程和失稳模式,进而加深对其整体稳定概念的理解。 (3)将柱子理论承载力和实测承载力进行比较,加深对H型截面轴心受压构件整体稳定系数及其计算公式的理解。 (4)利用理论知识,实测出实验对应的H型钢轴心受压的稳定系数。 2、实验原理 根据钢结构基本原理可知,轴心受压钢构件的主要破坏形式是整体失稳破坏。 轴心受压构件在轴心压力较小时处于稳定平衡状态,随着轴心压力的增加,轴心受压构件会由稳定平衡状态逐步过渡到随遇平衡状态,这时如有微小干扰力使其偏离平衡位置,则在干扰力除去后,将停留在新的位置而不能回复到原先的平衡位置。当轴心压力超过临界压力后,构件就不能维持平衡而失稳破坏。实际轴心压杆与理想轴心压杆有很大区别。实际轴心压杆都带有多种初始缺陷,如杆件的初弯曲、初扭曲、荷载作用的初偏心、制作引起的残余应力,材性的不均匀等等。这些初始缺陷使轴心压杆在受力一开始就会出现弯曲变形,压杆的失稳属于极值型失稳。

2.1 弹性微分方程 钢结构受压杆件一般都是开口薄壁杆件。根据开口薄壁理论,具有初始缺陷的轴心压杆的弹性微分方程为 ()0 00x EI v v Nv Nx θ''''-+-= (1) ()0 00y EI u u Nu Ny θ''''-++= (2) ()()20 t 00000EI GI Nx v Ny u r N R ωθθθθθθ''''----++-= (3) y,v x,u 图1 H 型截面受压柱 根据以上的式子,我们可以看出,双轴对称截面轴心压杆在弹性阶段工作时,三个微分方程是互相独立的,可以分别单独研究。 在弹塑性阶段,当研究第一个式子时,只要截面上的残余应力对称于y 轴,同时又有00u =和00θ=,则该式将始终与其他两式无关,可以单独研究。这样,压杆将只发生y 方向的位移,整体失稳呈弯曲变形状态,成为弯曲失稳。同样,第二个式子也是弯曲失稳,只是弯曲失稳的方向不同而已。对于第三个式子,如果残余应力对称于x 轴和y 轴分布,同时假定,u 0=0,v 0=0,则此时压杆只发生绕z 轴的转动,失稳时杆件呈扭转变形状态,称为扭转失稳。 故存在三种失稳情形,即绕x 轴弯曲或绕y 轴弯曲或绕杆轴的扭转失稳。三

欧拉函数公式及其证明

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodp?a≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个 所以φ(n)=p k-1-(p k-1-1)=p k-p k-1。 (2)p*q的欧拉函数 假设p,q是两个互质的正整数,则p*q的欧拉函数为 φ(p*q)=φ(p)*φ(q),gcd(p,q)=1。 证明: 令n=p*q,gcd(p,q)=1

高数实践课题目

高等数学(2)实践课题目 一.理论问题 1.变量替换在不等式证明中的应用 2.高数中常见的不等式及应用 3.多重积分的方法总结 4.空间解析几何中的各种距离及夹角 (点、线、面间的各种距离(6种),夹角(3种)证明及举例) 5..微积分学中的各种关系 (一、二、三元函数有界、极限、连续、导数、积分间的各种关系证明或举例)6.积分学中各种对称性问题 (一、二、三元函数各种对称性定义、证明及举例) 7.函数极值及最值问题及应用 (一、二、三元函数极值及最值问题证明及举实例) 8.变量代换在微分方程中的应用 9.常微分方程在函数项级数求和中的应用 10.关于非线性微分方程问题的求解 11.利用级数求极限 12.如何确定立体和曲面在坐标面上的投影 13.等值线及其应用。 14.数项级数敛散性判别法。(总结) 15.最小二乘法的理论思想及应用。 16.巧用对称性求二、三重积分、曲线、曲面积分 17.变量代换方法在微积分中的体现 18.数形结合在解题中的应用 19.数学化归方法——数学解题的一般方法 20.反证法(原理、逻辑基础、应用举例) 21.反例法(含义、作用、构造方法) 22.二阶常系数线性非齐次方程新解法探讨 23.多元复合函数微分之难点及其注意的问题 24.重积分计算方法探讨 25.总结第二类曲面积分的若干种求法(4种以上) 26.幂级数求和函数法(7种以上) 27.一元函数微积分与多元函数微积分的对比(定义,极限,连续,微分) 28.空间解析几何的产生与数形结合的思想 29.泰勒公式及其应用 30.《几何画板》与高等数学 31.函数幂级数的展开和应用 32.函数项级数的收敛判别法的推广和应用 33.用高等数学知识解初等数学问题 34.中学数学和高等数学衔接问题研究 35.极限方法总结 36.凸函数性质及在证明不等式中的应用 37.高数中辅助函数的构造与应用 38.如何判断非正常积分的敛散性

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

欧拉函数

欧拉函数 百科名片 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。例如φ(8)= 4,因为1,3,5,7均和8互质。从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。 简介 φ函数的值 φ(1)=1(唯一和1互质的数就是1本身)。 若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。 欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。 特殊性质:当n为奇数时,φ(2n)=φ(n), 证明于上述类似。 证明 设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理,A*B和C可建立一一对应的关系。因此φ(n)的值使用算术基本定理便知, 若 n= ∏p^(α(下标p)) p|n 则φ(n)=∏(p-1)p^(α(下标p)-1)=n∏(1-1/p) p|n p|n 例如φ(72)=φ(2^3×3^2)=(2-1)2^(3-1)×(3-1)3^(2-1)=24 与欧拉定理、费马小定理的关系 对任何两个互质的正整数a, m, m>=2有 a^φ(m)≡1(mod m) 即欧拉定理 当m是质数p时,此式则为: a^(p-1)≡1(mod m) 即费马小定理。 欧拉函数的编程实现 利用欧拉函数和它本身不同质因数的关系,用筛法计算出某个范围内所有数的欧拉函数值。 欧拉函数和它本身不同质因数的关系:欧拉函数ψ(N)=N{∏p|N}(1-1/p)。(P是数N的质因数) 如:

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

欧拉公式的证明和应用

欧拉公式的证明和应用https://www.360docs.net/doc/d3172171.html,work Information Technology Company.2020YEAR

数学文化课程报告 欧拉公式的证明与应用 一 .序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 1.1 极限法 --------------------------------------3 1.2 指数函数定义法-------------------------------4 1.3 分离变量积分法-------------------------------4 1.4 复数幂级数展开法-----------------------------4 1.5 变上限积分法---------------------------------5

1.6 类比求导法-----------------------------------7 三.欧拉公式的应用 2.1 求高阶导数-----------------------------------7 2.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言 欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名 字命名的公式。本文关注的欧拉公式x i x e ix sin cos +=,在复数域中它把指数函数 联系在一起。特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特 色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。i 源于代数,

欧拉函数公式及其证明

欧拉函数公式及其证明 Prepared on 22 November 2020

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodpa≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个

欧拉公式教案黎宁

研究性课题:多面体欧拉定理的发现授课教师:北京市陈经纶中学黎宁 授课地点:北京市陈经纶中学多功能厅 授课班级:北京市陈经纶中学高二(5)班 授课时间:2005年4月6日

研究性课题:多面体欧拉定理的发现 北京市陈经纶中学黎宁 教学活动目标: 1.了解欧拉公式的发现过程,掌握欧拉公式的证明方法和公式内容。2.初步了解数学概念和结论的产生过程,提高发现、提出、解决数学问题的能力;发展学生的创新意识和创新能力;进一步培养学生的空间想象能力和逻辑思维能力,协作交流能力。 3.以多面体欧拉公式的探索为载体,体验数学研究的过程和创造的激情;建立严谨的科学态度和不怕困难的顽强精神;体验数学的简洁美。 教学活动的重点:欧拉公式的发现和证明 教学活动的难点: 1.欧拉公式的发现过程 2.拓扑变换的想象和欧拉公式的证明 3.学生探究的主动性 教学活动的方法: 完全开放式、自主探究式 教学活动手段: 多媒体、实物投影 教学活动过程: 一.课前准备 1.布置指导: 教师布置课题,简要介绍科学的研究方法,全班分成8个小组(各选一名组长,各确定一名主讲人),课题内容有4个问题,各小组可以从中任选一个或多个进行研究,具体任务有: (1)欧拉生平及欧拉主要研究成果(数学方面)。 (2)模型制作:五种正多面体的模型。 (3)证明公式:自主证明欧拉公式或查找关于欧拉公式的证明,其中两个小组研究课本上提供的两种证明方法,另外两个小组寻找其他证明方法)。(4)资料搜索及研究相关问题:可以上网或通过图书馆等方式搜索有关的内容、资料,研究以下问题: 分子中,正五边形和①欧拉定理在研究化学分子结构中的应用(一个C 60 正六边形各有多少个?) ②为什么只有五种正多面体? ③有没有棱数为 7的简单多面体? 2.讲解本次活动的评价标准: ①小组成员是否全员参加; ②学生自主探究、合作学习的能力; ③课堂展示的水平、课堂交流与研讨的程度; ④学生的创新意识。 具体评价表:

欧拉公式的证明(整理)

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqr t(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;

课程名称材料力学Ⅱ

课程名称:材料力学Ⅱ 课程编码:7009701 课程学分:5学分 课程学时:80学时 适用专业:土木工程、城市地下空间工程 《材料力学Ⅱ》 MECHANICS OF MATERIALS 教学大纲 1.课程性质与任务 材料力学是土木工程等专业的必修课。它是一门理论性较强的技术基础课,是力学课的基础课,并在许多工程技术领域中有着广泛的应用。通过材料力学部分的学习,培养学生掌握杆件的力学理论计算和方法。它既为后继课程提供理论和基本方法,又在工程设计中起着重要的作用,它为构件的计算提供了简便实用的方法,既保证了杆件在各种情况下能够正常地工作,又能合理地使用材料。使学生初步学会运用理论力学的理论和方法分析、解决一些简单的工程实际问题。 2.课程教学基本内容及要求 第一章绪论及基本概念 材料力学发展概述,理解材料力学的研究对象、任务和基本方法,可变形固体的性质及基本假设。掌握材料力学主要研究对象(杆件)的几何特征。杆件变形基本形式。 第二章轴向拉伸和压缩 掌握轴向拉(压)的概念、内力·截面法·轴力及轴力图,理解应力·拉(压)杆内的应力。应力概念、应变概念、单轴应力状态。理解圣维南原理。掌握拉(压)杆的变形。胡克定律。了解拉(压)杆内的应变能。掌握材料在拉伸和压缩时的力学性能。了解强度条件.安全因数。许用应力及其应用。了解应力集中、静强度可靠性设计概念。 第三章扭转 了解薄壁圆筒的扭转,掌握传动轴的外力偶矩.扭矩及扭矩图。理解薄壁圆筒的应力。掌握等直圆杆扭转时的应力,强度条件,等直圆杆扭转时的变形·刚度条件。等直圆杆扭转时的应变能,理解杆件在扭转时的力学性能。了解等直非圆杆自由扭转时的应力和变形,开口和闭口薄壁截面杆自由扭转时的应力和变形。 第四章弯曲内力 了解对称弯曲的概念及梁的计算简图。掌握梁的剪力和弯矩·剪力图和弯矩图,了解平面刚架和曲杆的内力图,掌握梁横截面上的正应力·梁的正应力强度

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

常用数论公式

数论公式 费马小定理:a^p mod p=a (p为素数,且a不是p的倍数) 卡特兰数前几项为(OEIS中的数列A000108): 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452 令h(1)=1,h(0)=1,catalan数满足递归式: h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2) 另类递归式: h(n)=((4*n-2)/(n+1))*h(n-1); 该递推关系的解为: h(n)=C(2n,n)/(n+1) (n=1,2,3,...) Catalan数通项公式:Cn=C(2n-2,n-1)/n 递归式:Cn=∑Ci*C(n-i) (i=1..n-1,C1=C2=1) 特征数字 int main() { int i,j; memset(ans,0,sizeof(ans)); ans[0] = 1; for (i=2;i<=500;i++) { for (j=i;j<=500;j++) {

ans[j] += ans[j-i]; ans[j]%= M; } } scanf("%d",&T); while (T--) { scanf("%d",&n); printf("%d\n",ans[n]); } } 1 0 1 1 2 2 4 4 7 8 12 14 21 24 34 41 55 66 88 105 137 以下等式或者不等式均可以用数学归纳法予以证明! 1 + 3 + 5 + ... + (2n - 1) = n^2 1*2 + 2*3 + 3*4 + ... + n*(n + 1) = n*(n + 1)*(n + 2) / 3 1*1! + 2*2! + 3*3! + ... + n*n! = (n + 1)! - 1 1^2 + 2^2 + 3^2 + ... + n^2 = n*(n + 1)*(2n + 1) / 6 1^2 - 2^2 + 3^2 -... + (-1)^n * n^2 = (-1)^(n + 1) * n * (n + 1) / 2 2^2 + 4^2 + ... + (2n)^2 = 2n*(n+1)*(2n+1) / 3 1/2! + 2/3! + ... + n/(n+1)! = 1 - 1/(n+1)! 2^(n + 1) < 1 + (n + 1)2^n 1^3 + 2^3 + 3^3 + ... + n^3 = (n*(n + 1) / 2)^2 1/(2*4)+1*3/(2*4*6)+1*3*5/(2*4*6*8)+...+(1*3*5*...*(2n-1))/(2*4*6*... *(2n+2)) = 1/2 - (1*3*5*...*(2n+1))/

用 MATLAB 程序生动地演示欧拉公式

下面的MA TLAB 程序生动地演示欧拉公式 Exp(t) = cos(t) + j sin(t) % Henry-104 % 本程序演示欧拉公式 % Jan.25th,2012 % h_fig1 = figure; set(h_fig1, 'unit', 'normalized', 'position', [0.1, 0.1, 0.9, 0.9]); set(h_fig1, 'defaultuicontrolunits', 'normalized'); h_text1 = uicontrol(h_fig1, 'Style', 'text', 'Position', [0.71, 0.73, 0.25, 0.05],... % 创建文本框 'String', '▲是cos 曲线的起点', 'ForegroundColor', 'r', 'FontName', '黑体',... 'FontSize', 12, 'FontWeight', 'Bold', 'BackgroundColor', [1, 1, 1]); h_text2 = uicontrol(h_fig1, 'Style', 'text', 'Position', [0.71, 0.78, 0.25, 0.05],... % 创建文本框 'String', 'Δ是sin 和exp 曲线的起点', 'ForegroundColor', 'r', 'FontName', '黑体',... 'FontSize', 12, 'FontWeight', 'Bold', 'BackgroundColor', [1, 1, 1]); h_pushbutton1 = uicontrol(h_fig1, 'Style', 'PushButton', 'Position', [0.82, 0.12, 0.07, 0.06],... 'string', '退出', 'BackgroundColor', [0.8 0.9 0.8], 'ForegroundColor', 'r', 'FontSize', 14, 'FontWeight', 'Bold',... 'callback', 'delete(h_fig1),') h_axes0 = axes('Box', 'on', 'Position', [0.15, 0.18, 0.56, 0.68], 'FontSize', 8) set(gcf,'color','w'); w = 0.1*pi t = 0:40; % 在前进方向绕了2 圈 % a = -ones(1,length(t)); plot3(cos(w*t),t,sin(w*t),'b', 'LineWidth', 2); grid on; hold on; hc = plot3(cos(w*t),t,a,'k--'); hold on; set(hc, 'Color', 'r', 'LineWidth', 2); a=-a;

相关文档
最新文档