模式生物在发育生物学中的应用

模式生物在发育生物学中的应用
模式生物在发育生物学中的应用

模式生物在发育生物学中的应用

一直到不久以前,多细胞生物在胚胎期复杂的发育变化和调控一直是困扰生命科学的未解之迷。个体生命诞生自精卵结合形成合子,经过细胞的不断分裂、迁移、分化并发生巨大形态变化,构建出未来身体的雏形。越是出生后形态复杂的生物,其发育中细胞间关系的变化也就越剧烈。此外,虽然所有细胞都来自于同一个受精卵,但从发育早期开始,它们就走上了不同的分化道路,越到后期,要精确的说出每个特定位置上细胞的来历就越困难。发育过程从本质上讲是一部生命发展的细胞历史。成体中每个细胞都有一段自己独特的历史,总括起来就构成了个体生命。对复杂生物发育的解读类似于对有悠久历史的古文明所进行的研究,史料千头万绪,细节纷繁,难以把握,有时甚至无从下手。显然,如何选取恰当的切入点,找出诸种复杂现象背后潜藏的共同规律就成为洞悉这部生命史的关键。

早在一百多年前人们就发现,如果把关注的焦点集中在相对简单的生物上则发育的难题可以得到部分解答。因为这些生物的细胞数量和种类更少,胚胎在体外发育,变化也较容易观察。由于进化的原因,细胞生命在发育的基本模式方面具有相当大的同一性,所以利用位于生物复杂性阶梯较低级位置上的物种来研究发育共同规律是可能的。尤其是当在有不同发育特点的生物中发现共同形态发生和变化特征时,发育的普遍原理也就得以建立。因为对这些生物的研究具有帮助我们理解生命世界一般规律的意义,所以它们被称为“模式生物”。一种模式生物应具备以下特点:1)其生理特征能够代表生物界的某一大类群;2)容易获得并易于在实验室内饲养、繁殖;3)容易进行实验操作,特别是遗传学分析。于是,长久以来在进化支流的港湾中休憩的小生命——酵母、线虫、果蝇、海胆、斑马鱼、非洲爪蟾、小鼠、拟南芥,获得了前所未有的青睐。在此,我仅针对斑马鱼进行简要的阐述。

作为模式生物,斑马鱼及其胚胎具有以下优点:①斑马鱼亲鱼体形小,易于管理,极大地减少了饲养空间和管理成本;②斑马鱼雌鱼产卵量大,每次可产约300 枚,实验用样本基数大,确保统计学意义;胚胎药物处理简单,需求量少;③胚胎体外发育,发育周期短,从受精卵到仔鱼在正常条件下只需72h,借助显微镜可清楚的观察整个发育过程;④发育初期透明,通过特定基因标记,可以直观的观察靶基因的表达;⑤应用到原位杂交技术和免疫组化技术。

斑马鱼及其胚胎的视觉及神经系统、组织器官等在基因水平上与人类具有高度的保守性,并且斑马鱼胚胎早期发育与人类极为相同,而其最大优势是繁殖迅速,快速繁殖有利于基因筛选。

1、造血系统疾病

斑马鱼发育早期透明,可直接观察血液系统的发生发展,如血液循环、心脏跳动。斑马鱼的造血系统包括红系、髓系、淋系及血小板等,其造血过程及造血区域与高等脊椎动物高度相似。鉴于这些优点,斑马鱼成为了研究造血系统疾病研究的最佳模式生物。目前对红系造血病尤其是贫血症的相关研究比较透彻,研究者们建立了相关疾病的斑马鱼模型,如可遗传的地中海贫血模型、斑马鱼Fe 幼粒红细胞性贫血模型等。白血病是青少年最常见的一种恶性肿瘤。Langenau 等最先建立了斑马鱼的白血病模型。研究者将来源于小鼠c-myc基因与斑马鱼胚胎的Rag2 基因融合,然后在此基因团的尾部连接上发绿色荧光的GFP 基因,再将c-myc-Rag2-GFP 的融合体移入到斑体细胞中,使所有接受过基因移植的斑马鱼均表达此基因,就此建立了斑马鱼白血病模型。

2、心脏疾病

斑马鱼TNNT2 基因的功能与人类相似,其突变都可导致心肌病变,据此可建立斑马鱼心肌病变模型;人类Tbx5 基因突变会造成心脏发育畸形,而斑马鱼的Tbx5 突变同样会造成胚胎发育过程中出心脏畸形,并且会使得胸鳍的发育受到影响,据此可建立斑马鱼心脏病模型[10]。崇梅[11]等人通过显微注射发现,Tbx2 基因沉默的斑马鱼胚胎在发育过程中会出现不同损伤程度的心脏发育障碍,证明Tbx2 在心脏发育过程中起

着重要的作用。

3、眼部疾病

斑马鱼发育早期,眼部占脑部的1/2,成鱼对光照敏感,且昼夜节律明显,因而斑马鱼对人类视觉疾病的相关研究具有极大的帮助。通过眼睛过小或皮肤上的色素沉积这一特点,有利于快速发现和筛选具有眼科疾病表形的斑马鱼突变体。色素性视网膜炎和年龄相关性黄斑变性(AMD)疾病都可以引起眼部疾病,斑马鱼gnn 基因突变的胚胎眼睛圆锥状细胞发育早期与AMD 引起的眼部锥形细胞由于营养供给紊乱所造成的眼部疾病相似,并且gnn 胚胎突变体眼部细胞在后续的发育与人色素性视网膜炎类似,因而斑马鱼的gnn 胚胎突变体可以应用到这两种疾病的发生发展机理的研究中。

4、神经系统疾病

帕金森氏病(PD)是脑部的黒质-纹状体的多巴胺能通路受到损伤所致。化学毒性物质MPTP (1-甲基-1-4-苯基-1,2,3,6-四氢吡啶)可以造成与PD 相似的现象。Mckinley 等研究人员通过对斑马鱼幼鱼进行MPTP 染毒造成其多巴胺能神经细胞损伤从而建立类似人类PD 的斑马鱼模型。借此模型,研究者们发现L-塞利吉林(单氨氧化酶抑制物)及诺米芬辛

(多巴胺转运蛋白抑制物)具有保护多巴胺能神经细胞的作用。此外,斑马鱼体内的Phox2b (与神经脊疾病发生相关)和Uch-L19(跟PD 相关)基因与人类具有高度保守性,因而可以通过斑马鱼及相关模型的建立来研究与此基因相关的神经系统疾病。

阿尔茨海默病(AD)是大脑神经细胞大量死亡所导致。研究发现,淀粉样蛋白尤其是样淀粉蛋白的表达过量在AD病的发生发展中起着巨大的作用。Aβ(β样淀粉蛋白)由APP(淀粉样前体蛋白)切割产生,其大小长度由γ-分泌酶决定。科研人员Canmpbel等对Aβ产生有关的基因如Pen2、Psen1 及Ph1 等进行敲除,发现Pen2对依赖于p53的神经细胞存活具有重要影响。

除此,斑马鱼的感觉器官如嗅觉、听觉等大多分布在体表,利用行为学分析方法及手段可以很容易地对嗅觉及听觉等神经功能进行相关测验。

5、血管生成

在肿瘤、糖尿病、心脏病等疾病的进程中都伴随有血管新生,利用斑马鱼血管新生模型可以筛选出血管生成促进剂或抑制剂从而在这些疾病的治疗中发挥作用。在癌症治疗领域,利用斑马鱼研究肿瘤的血管生成备受关注。已有研究表明,麦考酚酸对进行血管标记绿色荧光蛋白的转基因斑马鱼血管生长具有抑制作用,且呈现出剂量依赖性;经血管内皮生长因子VEGF 注射的斑马鱼胚胎,检测到其体内有明显的新生血管生成。肿瘤的发生发展与肿瘤内部的血管新生有密切联系,因而在肿瘤治疗领域可采用阻抑VEGF 抑制新生血管形成及原有血管生长来达到治疗肿瘤作用[17]。研究人员利用转基因斑马鱼对化合物进行斑马鱼胚胎血管生成实验,证明大黄素、芦荟大黄素及大黄酸对血管生成具有抑制作用,提示大黄的抗炎作用可能与其具有血管生长抑制作用有关。

6、肿瘤

斑马鱼可以自发的产生肿瘤,其发生发展过程与人类极为相似,具有稳定遗传性,遗传背景相对简单,斑马鱼体内与肿瘤相关的基因与人类具有高度的保守性。在肿瘤的发生及发展过程中,细胞周期调控受到阻滞,遗传物质DNA 的损伤修复功能受阻,因此在实际的治疗过程中寻找具有靶向性的细胞周期检验点抑制剂就显得颇为重要。斑马鱼及其胚胎在发育的早期过程中由于存在各种类型的细胞,因而,其在关于细胞周期的研究中具有明显的优势。抑癌基因p53 对细胞的正常生长具有副调节作用,可以引起细胞凋亡和衰老,如果其结构和功能受到损伤就会导致细胞周期进程发生改变,易引发癌症的产生。有科学研究者利用斑马鱼p53 突变体进行细胞周期相关药物的筛选,期望在肿瘤治疗领

域起到较好的疗效。

7、免疫、感染疾病模型

与人类所相似的是,先天性免疫和适应性免疫系统也都存在于斑马鱼体内,且两系统的功能与人类极为相近,因而斑马鱼及其胚胎可以应用到人类免疫系统相关的疾病研究中。据此,研究者分别建立了斑马鱼的细菌感染模型和肺结核模型。

综上所述,斑马鱼及其胚胎在人类相关的疾病研究中具有重要的应用价值。现有研究大多集中于利于相关疾病斑马鱼模型对化合物进行高通量筛选,如果再对药物在斑马鱼体内的吸收、分布及代谢等情况进行详细的跟踪研究,相信会为人类疾病在实际的临床治疗中提供更为有实用价值的信息。

发育生物学试题及答案68884

发育生物学题(余老师) 一.名次解释(20分) 1.试管婴儿:利用体外受精技术产生的婴儿称为试管婴儿,体外受精是一种特殊的技术,是把卵子和精子都拿到体外来,让它们在体外人工控制的环境中完成受精过程,然后把早期胚胎移植到女性的子宫中,在子宫中孕育成为孩子。 2.胚胎干细胞:胚胎干细胞是早期胚胎(原肠胚期之前)或原始性腺中分离出来的一类细胞,它具有体外培养无限增殖、自我更新和多向分化的特性。 3.受精:是两性生殖细胞融合并创造出具备源自双亲遗传潜能的新个体的过程。 4.孤雌生殖:有些动物种群卵子发生中减数分裂出现明显变异,以至产生二倍体的配子,不需要受精就能发育。这种方式称为孤雌生殖。 5.卵激活:经精子刺激,成熟卵从休眠状态进入活动状态,显示出的最早系列事件总称为“卵激活”,包括皮层反应、减数分裂恢复、第二极体排出、DNA复制和第一次卵裂。 6.生殖质:卵质中有一定形态结构和特殊定位的细胞质,主要由蛋白质和RNA 构成,具有生殖质的细胞将分化成为原生殖细胞。 7.IPS:将几个转录因子导入已分化的小鼠皮肤成纤维细胞,进而获得了类似于胚胎干细胞的多能性干细胞,称之为“诱导产生的多功能性干细胞”(iPS细胞)8.母源效应基因;在卵子发生中表达并在在卵子发生及早期胚胎发育中具有特定功能的基因称为母源效应基因。 9.合子基因:在受精后表达的胚胎型基因称为合子基因。 10.成体干细胞;成体干细胞是指存在于一种已经分化组织中的未分化细胞,这种细胞能够自我更新并且能够特化形成组成该类型组织的细胞。 11.精卵识别:异种精子不能与卵子融合,这是因为精子表面的结合素能与卵细胞膜上特异的受体结合,而达到同种识别的目的。有距离识别和接触识别之分,前者见于体外受精的水生生物。 12.顶体:精子头的顶端特化的小泡,叫作顶体(acrosome),它是由高尔基体小泡发育而来。实际上,顶体是一种特化的溶酶体。 13.精子细胞:是在曲细精管中产生,用于遗传生育的一类细胞。 14.胚胎诱导:是发育过程中通过细胞间的相互作用来决定细胞命运和使细胞定

发育生物学重点

一、绪论 1.1分化:细胞的多样性产生的过程(从单个全能的细胞--受精卵,产生各种类型分化细胞的发育过程。)。 形态发生:由分化而产生多样性的细胞构成组织、器官建立结构的过程。 图式形成:胚胎形成不同组织、器官和构成有序空间结构的过程 1.2大多数动物的发育要经历胚胎期、幼体期、变态发育期和成体期 1.3胚轴:胚胎前段到后端的前-后轴,背侧到腹侧的背-腹轴。对称动物还具有中侧轴或左-右轴 1.4调整型:胚胎为了保证正常发育,可以产生细胞位置的移动和重排(海胆、两栖类和鱼类等动物)。 嵌合型:合子的细胞核含有大量的特殊信息物质-决定子,卵裂过程中被平均分配到子细胞中去控制子细胞的发育命运,子细胞的发育命运由卵裂时获得的合子信息所预定,这一类型发育(青蛙、海鞘、栉水母、环节动物、线虫、软体动物)。 形态发生决定子(成形素、胞质决定子):细胞质中含有的决定细胞分化的特定物质。 二、细胞命运决定 2.11)细胞定型:细胞在分化之前,将发生一些隐蔽的变化,使细胞朝特定方向发展的过程。 2)定型分为特化和决定两个阶段 特化:当细胞或组织放在中性环境如培养皿中可以自主分化时,该细胞或组织已经特化。已特化的细胞或组织的命运是可逆的。 决定:当一个细胞或者组织放在胚胎另一部位可以自主分化时,该细胞或组织已经决定。已决定的细胞或组织的发育命运是不可逆的 3)定型有两种方式: (1)自主特化:细胞命运完全由内部细胞质决定。特点:a.通过胞质隔离实现:卵裂时,受精卵内特定的细胞质分离到特定的卵裂球中,卵裂球中所含的特定细胞质决定它发育成哪一类细胞,而与邻近细胞无关。b.镶嵌型发育:以细胞自主特化为特点的胚胎发育模式(2)有条件特化(渐进特化、依赖型特化):细胞的发育命运完全取决与其相邻的细胞或组织.特点:a通过胚胎诱导实现:胚胎发育过程中,相邻细胞或组织之间通过相互作用,决定其中一方或双方细胞的分化方向。相互作用之前,细胞具有多种分化潜能,但和邻近细胞或组织相互作用后逐渐限制了它们的发育命运,使之朝某一特定方向分化。b调整型发育:以细胞有条件特化为特点的胚胎发育模式。……… 2.21)胞质定域:形态发生子在卵细胞质中呈一定形式分布,受精后发生运动,被分隔到一定区域,并在卵裂时分配到特定的卵裂球中,决定裂球的发育命运。这一现象称为胞质定域,或胞质隔离、胞质区域化、胞质重排。 2)形态发生决定子(成形素、胞质决定子):细胞质中含有的决定细胞分化的特定物质。作用或性质:(1)激活某些基因转录的物质(2)某些m RNA 3)胚胎诱导:胚胎一部分细胞可以对邻近另一部分细胞施加影响,并决定其分化方向,这种作用称为胚胎诱导。 2.3命运渐进特化实验系列: 1)Roux 缺损实验-蛙(镶嵌型发育缺损实验奠定实验胚胎学) 2)Driesch分离组合实验-海胆 3)Horstadius 分离实验-海胆(既镶嵌型发育, 又调整型发育) 2.4双梯度模型(P48 图1.19) 三、细胞分化的分子机制 3.11)细胞分化的本质:基因的差异性表达。

发育生物学题库

发育生物学题库FCY打印版 1、发育与发育生物学概念? 答:发育——指一个有机体从其生命开始到成熟的变化过程,是生物有机体的自我构建和自我组织的过程。 发育生物学——是以传统的胚胎学为基础,渗透了分子生物学、遗传学和细胞生物学等学科的原理和方法,研究生物个体发育过程及其调节机制,即研究生物体从精子和卵子的发生、受精、胚胎发育、生长到衰老、死亡的规律的科学。 2、什么是原肠胚? 答:胚胎由囊胚继续发育,由原始的单胚层细胞发展成具有双层或三层胚层结构的胚胎,称为原肠胚。 3、神经板概念、形成过程及作用?(P77) 答:神经板概念——早期胚胎背侧表面的一条增厚的纵行外胚层条带。可发育成神经系统。 形成过程——主要是脊索动物发生初期原肠形成终了后于外胚层背侧正中产生的,呈球拍形,后部狭窄肥厚,以后其主要部分形成中枢神经系统和眼原基。神经外胚层细胞分布于神经板两侧,位于脊索的背方,该区域较平坦,呈平板状,它将发育成神经管。 作用——随着发生的进展,神经板周围的外胚层隆起变为神经褶,不久因两侧的神经褶在背侧正中闭合而变成神经管。 4、初级性别决定的概念?(P132) 答:指生殖腺发育为睾丸或卵巢的选择。胚胎生殖腺的发育命运决定于其染色体组成,Y染色体的存在使生殖腺的体细胞发育为testis而非ovary。 5、什么是胚孔?什么是原条?在胚胎发育中作用?(P64、68) 答:胚孔——两栖类和海胆囊胚表面产生的圆形内陷小口。在原肠期内胚层和中胚层细胞经此口内卷进入胚胎内部。(是动物早期胚胎原肠的开口。原肠形成时,内胚层细胞迁移到胚体内部形成原肠腔,留有与外界相通的孔。)作用:通过胚孔背唇进入胚内的细胞将形成脊索及头部中胚层,其余大部分中胚层细胞经胚孔侧唇进入胚内。原口动物的口起源于胚孔,如大多数无脊椎动物;而后口动物的胚孔则发育为成体的肛门,与胚孔相对的一端另行开口,发育为成体的口。如脊椎动物及棘皮动物等。 原条——在鸟类、爬行类和哺乳类胚胎原肠作用时,胚胎后区加厚,并向头区延伸所形成的细胞条。作用:其出现确定了胚胎前后轴。功能上相当于两栖类的胚孔,引导上胚层细胞的迁移运动,形成中胚层组织和部分内胚层组织。 6、什么是脊索?在胚胎发育中作用? 答:脊索——脊索动物体内的一种条状结构。也存在于脊椎动物胚胎时期,在脊椎动物成体中部分或全部被脊椎所代替。 作用——脊索的出现构成了支撑躯体的主梁,这个主梁使体重有了更好的受力者,体内内脏器官得到有力的支持和保护,运动肌肉获得坚强的支点,在运动时不致由于肌肉的收缩而使躯体缩短或变形。脊索动物身体更灵活,体形有可能向“大型化”发展。 7、精子发生与卵子发生概念及其异同点?

发育生物学

发育生物学 发育生物学(developmentalbiology)是生物科学重要的基础分支学科之一,研究内容是和许多其他学科内容相互渗透、错综联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体从精子和卵的发生、受精、发育、生长直至衰老死亡的过程及其机理。 简介 发育生物学(developmentalbiology)是一门研究生物体从精子和卵子发生、受精、发育、生长到衰老、死亡规律的科学。是生物科学重要的基础分支学科之一,研究内容是和许多其他学科内容相互渗透、错综联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体的过程及其机理。用分子生物学、细胞生物学的方法研究个体发育机制的学科。是由实验胚胎学发展起来的。实验胚胎学是研究发育中的胚胎各部分间的相互关系及其性质,如何相互影响,发育生物学则是追究这种相互关系的实质是什么,是什么物质(或哪些物质)在起作用,起作用的物质怎样使胚胎细胞向一定方向分化,分化中的细胞如何构成组织或器官,以保证组织和器官的发育,正常发育的胚胎怎样生长、成熟、成为成长的个体,后者在发育到一定阶段后为什么逐步走向衰老,如何在规定的时间和空间的顺序下完成个体的全部发育。 范围 从学科范围讲,发育生物学比实验胚胎学大,后者基本上是研究卵子的受精和受精后的发育,虽然也包括 正在发育的生命 再生及变态等问题,但主要是胚胎期的发育。发育生物学研究的则是有机体的全部生命过程。从雌雄性生殖细胞的发生、形成、直到个体的衰老。它是生物学领域中最具挑战性的学科之一。从上个世纪八九十年代迄今,生物学领域的重大进展都与发育生物学有着密切的关系,或者就是发育生物学的进展。发育生物学成为了近年来世界上生命科学最活跃和最激动人心的研究领域。发育生物学又是一门应用前景非常广泛的学科,有关生殖细胞发生、受精等过程的研究是动、植物人工繁殖、遗传育种、动物胚胎与生殖工程等生产应用技术发展的理论基础。有关细胞分化机理、基因表达调控与形态模式形成及生物功能的关系研究,是解决人类面临的许多医学难题(如癌症的防治)以及器官与组织培养等新兴的医学产业工程发展的基础,也是基因工程发展为成熟的实用技术的基础。 研究对象

发育生物学8—17章课后习题答案

第八章神经系统发育 1、神经胚形成 答:神经胚形成:胚胎由原肠胚预定外胚层细胞形成神经管的过程。神经胚:正在进行神经管形成的胚胎。 2、初级神经胚形成和次级神经胚形成 答:初级神经胚形成:由脊索中胚层诱导上面覆盖的外胚层细胞分裂,内陷并与表皮质脱离形成中空的神经管。 次级神经胚形成:外胚层细胞下陷进入胚胎形成实心细胞索,接着在细胞索中心产生空洞形成中空的神经管。 3、什么叫神经板,神经褶,神经沟 答:神经板:外胚层中线处细胞形状发生改变,细胞纵向变长加厚,形成神经板。 神经褶:神经板形成后不久,边缘加厚,并向上翘起形成神经褶。 神经沟:神经褶形成后在神经板中央出现的U型沟。 4、无脑畸形和脊髓裂与哪些基因有关,如何避免 答:无脑畸形和脊髓裂均为人类胚胎的神经管闭合缺陷症。人的后端神经管区域在27天时如不能合拢,则产生脊髓裂;若前端神经管区域不能合成,则胚儿前脑发育被停止,产生致死的无脑畸形。 它们与pax3、sonic hedghog和openbrain等基因有关。 约50%神经管缺陷可由孕妇补充叶酸加以避免。 5、斑马鱼的神经管如何形成 答:斑马鱼的神经管如何形成:鸟类,哺乳类,两栖类动物胚胎的后端神经管及鱼类的全部神经管形成均采用次级神经胚形成的方式,所以斑马鱼的神经管形成也如此。 6、三个原始脑泡的发育命运 答:前脑发育成为前端的端脑和后面的间脑,端脑最终形成大脑两半球,间脑形成丘脑和下丘脑区域及视觉感受区。中脑腔最终形成大脑导水管。菱脑再发育成前面的后脑和后面的髓脑,后脑形成小脑,髓脑形成延髓。 7、菱脑节

答:菱脑节:在神经管闭合后,后脑前后轴逐渐被划分为8节,成为菱脑节,每个菱脑节是一个发育单位,节内细胞可交换而节间不能交换(其是临时性结构,到发育后期逐渐消失,但部分由后脑产生的结构如颜面神经节仍保持分节性结构)。 8、脊髓背腹区域细胞的发育命运各与哪些因子有关 答:脊髓背部区域依次产生6种中间神经元(dI1-dI6),腹部则形成运动神经元和4种腹侧神经元(V0-V3)。 BMP和Shh信号在脊髓的背腹轴划分过程中起着重要作用:BMP活性沿脊髓背-腹轴形成一个浓度梯度,Shh活性沿脊髓腹-背轴形成一个浓度梯度,与BMP相反。同时,Hedgehog和Wnt 信号分别在腹部和背部细胞分化起作用。另外,许多转录因子在脊髓不同背腹轴位置表达,将其分为不同区域,它们受BMP和Hedgehog信号控制。 9、原神经基因的功能 答:a.抑制其周围细胞向神经元的分化 b.促进细胞向神经元方向分化而抑制其分化为神经胶质细胞 c.调节细胞周期 10、中枢神经系统的分层 答:中枢神经系统的分层:在不同时间点的神经元的最终停留位置不同。最靠近管腔的一层为室管膜层,其内的细胞维持了分裂能力;由于停止有丝分裂的细胞不断向外迁移,形成另外两层,外套层和边缘层.外套层:来自管膜层的细胞分化为神经元和神经胶质细胞;边缘层主要为神经轴索和胶质细胞. 11、室管膜区细胞的分裂方式与特点 答:室管膜层区细胞的分裂方式与特点:垂直分裂(verticol dision):分裂面与表皮细胞长轴平行,产生2个有继续分裂能力的子细胞;水平分(horizontal division):分裂面与表皮长轴垂直,只产生一个有继续分裂能力的子细胞。原因:notch和numb层的不均匀分布。 12、神经轴突生长的引导机制 答:轴突生长的引导机制:神经轴突的生长首先决定于其自身表达的基因产物;神经轴突的生长也决定于其所处的环境,某些因素具有吸引作用,而有些具有排斥作用。 这些环境因素包括:其伸展途径中的组织结构,胞外基质成分,相领细胞的表面特性。长距离引导:利用可扩散的分子对神经有吸引或是排斥的作用来导引神经细胞去的位置,有化学性引导和化学性排斥两种。化学性排斥:体节生骨区中的netrin 对motor neuron的生长起排斥作用。化学性引导:神经管中的netrin分层只对中间神经神经元轴突的生长具有吸引作用。

发育生物学复习资料重点总结

绪论 1、发育生物学:是应用现代生物学的技术研究生物发育机制的科学。它主要研究多细胞生物体从生殖细胞的发生、受精、胚胎发育、生长到衰老和死亡,即生物个体发育中生命现象发展的机制。 2、(填空)发育生物学模式动物:果蝇、线虫、非洲爪蟾、斑马鱼、鸡和小鼠。 第一篇发育生物学基本原理 第一章细胞命运的决定 1、细胞分化:从单个的全能细胞受精卵开始产生各种分化类型细胞的发育过程称细胞分化。 2、细胞定型可分为“特化”和“决定”两个阶段:当一个细胞或者组织放在中性环境如培养皿中培养可以自主分化时,可以说这个细胞或组织发育命运已经特化;当一个细胞或组织放在胚胎另一个部位培养可以自主分化时,可以说这个细胞或组织发育命运已经决定。(特化的发育命运是可逆的,决定的发育命运是不可逆的。把已特化细胞或组织移植到胚胎不同部位,会分化成不同组织,把已决定细胞或组织移植到胚胎不同部位,只会分化成同一种组织。) 3、(简答)胚胎细胞发育命运的定型主要有两种作用方式:第一种通过胞质隔离实现,第二种通过胚胎诱导实现。(1)通过胞质隔离指定细胞发育命运是指卵裂时,受精卵内特定的细胞质分离到特定的裂球中,裂球中所含有的特定胞质可以决定它发育成哪一类细胞,而与邻近细胞没有关系。细胞发育命运的这种定型方式称为“自主特化”,细胞发育命运完全由内部细胞质组分决定。这种以细胞自主特化为特点的胚胎发育模式称为“镶嵌型发育”,因为整体胚胎好像是由能自我分化的各部分组合而成,也称自主型发育。(2)通过胚胎诱导指定细胞发育命运是指胚胎发育过程中,相邻细胞或组织之间通过互相作用,决定其中一方或双方细胞的分化方向。相互作用开始前,细胞可能具有不止一种分化潜能,但是和邻近细胞或组织的相互作用逐渐限制它们的发育命运,使之只能朝一定的方向分化。细胞发育命运的这种定型方式成为“有条件特化”或“渐进特化”或“依赖型特化”,因为细胞发育命运取决于与其邻近的细胞或组织。这种以细胞有条件特化为特点的胚胎发育模式称为“调整型发育”,也称有条件发育或依赖型发育。 4、(名词)形态发生决定因子:也称成形素或胞质决定子,其概念的形成源于对细胞谱系的研究。形态发生决定子广泛存在于各种动物卵细胞质中,能够指定细胞朝一定方向分化,形成特定组织结构。 5、胞质定域:形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分隔到一定区域,并在卵裂时,分配到特定的裂球中,决定裂球的发育命运,这一现象称为胞质定域。也称为胞质隔离、胞质区域化、胞质重排。 第二章细胞分化的分子机制——转录和转录前的调控 1、根据细胞表型可将细胞分为3类:全能细胞、多潜能细胞和分化细胞。(1)全能细胞:指它能够产生有机体的全部细胞表型,或者说可以产生一个完整的有机体,它的全套基因信息都可以表达。(2)多潜能细胞表现出发育潜能的一定局限性,仅能分化成为特定范围内的细胞。(3)分化细胞是由多潜能细胞通过一系列分裂和分化发育成的特殊细胞表型。 2、(简答)差异基因表达的调控机制主要是在以下几个水平完成:(1)差异基因转录:调节哪些核基因转录成RNA。(2)核RNA的选择性加工:调节哪些核RNA进入细胞质并加工成为mRNA,构成特殊的转录子组。(3)mRNA的选择性翻译:调节哪些mRNA翻译成蛋白质。(4)差别蛋白质加工:选择哪些蛋白质加工成为功能性蛋白质,即基因功能的实施者。不同基因表达的调控可以发生在不同的水平。 3、克隆和嵌合技术的区别画图P59 第三章细胞分化的分子机制——转录后的调控 第四章发育中的信号转导

发育生物学教学大纲(新、选)

《发育生物学》教学大纲 (供生物科学专业四年制本科使用) 一、课程性质、目的和任务 发育生物学被公认为是当今生命科学的前沿分支学科,是研究生物体发育过程及其调控机制的一门学科。发育生物学不同于传统的胚胎学,它是生物化学、分子生物学、细胞生物学、遗传学等学科与胚胎学相互渗透的基础上发展形成的一门新兴的学科,是胚胎学的继承和发扬。发育生物学是生物学各专业的限选课程,是在学习一定的专业基础课的基础上进一步学习的高级专业课程。根据本科教学加强基础、注重素质、整体优化的原则,使学生将所学习的专业基础课和专业课形成一个完整的知识体系。过本课程的学习,应对各种生物体的胚胎发育过程、发育规律、发育生物学的基本研究技术,以及发育生物学的研究进展有一定的了解。 二、课程基本要求 本课程分为掌握、熟悉、了解三种层次要求。掌握的内容要求理解透彻,能在本学科和相关学科的学习工作中熟练、灵活运用其基本理论和基本概念。熟悉的内容要求能熟知其相关内容的概念及有关理论,并能适当应用。了解的内容要求对其中的概念和相关内容有所了解。 通过本课程的学习,使学生掌握生物个体发育中生命过程发展的机制。在学习和掌握发育生物学知识的过程中,要求将所学过的其他相关学科,如分子生物学、细胞生物学、遗传学、生物化学、生理学、免疫学和进化生物学等的知识融会贯通,串联整合形成完整的知识体系,并结合当今的研究进展开拓学生的眼界。 考试内容中掌握的内容约占70%,熟悉、了解的内容约占25%,5%左右的大纲外内容。 本大纲的参考教材是面向21世纪教材《发育生物学》第二版(张红卫主编,北京,高等教育出版社,2006年)。 三、课程基本内容及学时分配 发育生物学教学总时数为72学时,其中理论为54学时,实验为18学时,共22章。本课程共分四篇,第一篇从第一到四章,主要内容为发育生物学基本原理,第二篇从第五章到第十一章,主要内容为动物胚胎的早期发育,第三篇从第十二章到第十八章,主要内容为动物胚胎的晚期发育,第四篇从第十九章到第二十二章,主要内容为发育生物学的新研究领域。 绪论(3学时) 【掌握】 1.发育生物学的概念。 2.发育生物学研究的内容与研究范围。 【熟悉】 1.发育生物学的发展与其他学科的关系。 2.发育生物学的展望与应用。 3.发育生物学的模式生物。 【了解】

发育生物学简介

1简介 发育生物学(developmentalbiology)是一门研究生物体从精子和卵子发生、受精、发育、生长到衰老、死亡规律的科学。 发育生物学是生物科学重要的基础分支学科之一,研究内容和许多学科内容相互渗透、相互联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体的过程及其机理。 用分子生物学、细胞生物学的方法研究个体发育机制的学科。是由实验胚胎学发展起来的。实验胚胎学是研究发育中的胚胎各部分间的相互关系及其性质,如何相互影响,发育生物学则是追究这种相互关系的实质是什么,是什么物质(或哪些物质)在起作用,起作用的物质怎样使胚胎细胞向一定方向分化,分化中的细胞如何构成组织或器官,以保证组织和器官的发育,正常发育的胚胎怎样生长、成熟、成为成长的个体,后者在发育到一定阶段后为什么逐步走向衰老,如何在规定的时间和空间的顺序下完成个体的全部发育。 2研究范围 从学科范围讲,发育生物学比实验胚胎学大,后者基本上是研究卵子的受精和受精后的发育,虽然也包括 正在发育的生命 再生及变态等问题,但主要是胚胎期的发育。发育生物学研究的则是有机体的全部生命过程。从雌雄性生殖细胞的发生、形成、直到个体的衰老。

它是生物学领域中最具挑战性的学科之一。从上个世纪八九十年代迄今,生物学领域的重大进展都与发育生物学有着密切的关系,或者就是发育生物学的进展。发育生物学成为了近年来世界上生命科学最活跃和最激动人心的研究领域。 发育生物学又是一门应用前景非常广泛的学科,有关生殖细胞发生、受精等过程的研究是动、植物人工繁殖、遗传育种、动物胚胎与生殖工程等生产应用技术发展的理论基础。有关细胞分化机理、基因表达调控与形态模式形成及生物功能的关系研究,是解决人类面临的许多医学难题(如癌症的防治)以及器官与组织培养等新兴的医学产业工程发展的基础,也是基因工程发展为成熟的实用技术的基础。 3研究对象 从研究对象看,实验胚胎学一般专指动物实验胚胎学。由于历史的原因,尤其是材料的不同,像动物实验胚胎学那样的植物实验胚胎学未曾发展起来。但动植物的发育原理,尤其是从分子生物学的角度考虑,有许多共同之处,所以发育生物学既研究动物的也研究植物的个体发育。 4研究内容 从胚胎学的角度,个体发育从受精开始,因为卵子受精之后才能发育,但发育生物学则应把个体发育追溯 宝宝感官的发育

发育生物学期末考试复习资料

发育生物学期末复习资料 一、发育的主要功能:产生细胞的多样性(细胞分化);保证世代的连续(繁殖)。 二、发育的基本阶段:①胚前期:配子发生、成熟、排放的时期—生殖生物学()。②胚胎期:受精、卵裂、囊胚、原肠胚、神经胚、器官发生、新个体(幼虫、幼体,变态)。③胚后期:性成熟前期、性成熟期、衰老期(老年学)、死亡。 三、发育的主要特征和普遍规律: 细胞增殖():伴随发育的整个过程中,不同时期、不同结构增殖速度不同 细胞分化():从受精卵产生各种类型细胞的发育过程称为细胞分化。或者说,细胞的形态、结构和功能上的差异性产生的过程为细胞分化。 图式形成:胚胎细胞形成不同组织、器官和构成有序空间结构的过程。 形态发生():不同表型的细胞构成组织、器官,建立结构的过程。 卵裂:细胞分裂快、没有(或短)细胞生长的间歇期,因而新生细胞的体积比母细胞小。 胚胎在基本的形成之后,其体积会显著增长,原因在于细胞数量增加、细胞体积增加、胞外物质的积累。不同组织器官的生长速度也各异。 :指细胞特性发生了不可逆的改变,发育潜力已经单一化。 :指一组细胞在中性环境下离体培养,它们仍按其正常命运图谱发育。 诱导信号在细胞之间传递的三种方式:扩散性信号分子、跨膜蛋白的直接互作、间隙连接 信号传导特点:传递距离有限;并非所有细胞都能对某种信号发生反应;不同类型细胞可对同一信号发生不同反应, ., 乙酰胆碱使心肌收缩频率下降,但促使唾液腺分泌唾液。 模式生物的主要特征:取材方便;胚胎具有较强的可操作性;可进行遗传学研究 脊椎动物模式生物:两栖类:非洲爪蟾;鱼类:斑马鱼;鸟类:鸡;哺乳动物:小鼠。

1. 非洲爪蟾主要优点:1. 取卵方便,不受季节限制; 2. 卵1.4、胚胎体积大,易于操作; 3. 发育速度快,抗感染力强,易于培养。4、卵母细胞减数分裂。 主要缺点:异源四倍体,突变难。 2. 斑马鱼主要优点:1. 易于饲养,性成熟短,3个月;产卵力强;2.体外受精和发育,胚胎透明,易于观察; 3. 易于遗传操作:如杂交、诱变; 4. 基因组测序已完成;5、胚胎发育机理和基因组研究。 3. 鸡主要优点:1. 体外发育,易于实验;2. 器官(肢、体节)发育的重要模型;3. 基因组测序已完成。 4. 小鼠主要优点:1. 世代周期短2个月;2. 人类疾病的动物模型;3. 基因组测序已完成,遗传背景清楚,实验手段完善。 无脊椎动物模式生物:果蝇;线虫;其他:海胆;海鞘;文昌鱼;水螅;涡虫;拟南芥 1. 黑腹果蝇主要优点:1. 个体小,生命周期短,易于繁殖,产卵力强,操作简便,成本低; 2.染色体巨大,易于基因定位。其胚胎和成体表型特征丰富。胚胎发育图式; 3. 基因组测序已完成,遗传背景清楚,实验手段完善。 2、线虫主要优点:1. 成虫体长1,结构简单,细胞数目少,谱系清楚;2. 性成熟短2.5-3d 易于培养,便于突变筛选,两种成虫;3. 基因组测序已完成。 3、海胆主要优点:1. 最早的发育生物学模式动物;2、早期发育的模型,受精;3、已完成紫海胆基因组的破译、分析工作。 希腊哲学家在公元前第4世纪在对鸡胚和一些无脊椎动物胚胎观察后提出胚胎发育的两种假设:后成论() 与先成论()。 细胞的命运早在卵裂时,由细胞所获得的合子核信息决定——镶嵌型发育 发育生物学五大未解难题(中心问题):①分化难题:相同的基因组怎样产生不同类型的细胞?②形态发生难题:细胞是如何组建自己又如何形成恰当的排序?③生长难题:生物体内的细胞如何知道它何时该长,何时该停?④生殖难题:生殖细胞是如何发出指令形成下一代的?细胞核和细胞质中允许它们完成这一使命的指令又是什么?⑤进化难题:在发育中的变化怎样创造新体型呢?哪些变化能够起到进化的作用? 第一章细胞命运的决定

发育生物学复习重点

文春根发育生物学复习重点 名词解释 1、形态发生决定子:也称形成素或胞质决定子,存在于卵细胞质中的特殊物质,能够制定细胞朝一定方向分化,形成特定组织结构。 2、顶体反应:是指受精前精子在同卵子接触时精子顶体产生的一系列变化。顶体反应释放的水解酶溶解和精子结合的卵黄膜或透明带,并在该位置进行精卵细胞膜的融合。 3、初级神经胚形成:原肠胚的脊索中胚层诱导其上方的外胚层形成神经系统这个关键的诱导作用,传统地被称为初级胚胎诱导。 4、卵裂:从受精卵到囊胚阶段的细胞分裂,是一系列的有丝分裂,在卵裂过程中,细胞质没有增加,受精卵的细胞质被分配到越来越小的卵裂球之中,卵裂过程中,并没有生长的时期,相邻的两次卵裂之间的间隔时间很短,从而使细胞质与细胞核的比率越来越小。 5、ZP3:称为透明带蛋白,它与ZP1、ZP2以网状的骨架结构存在于透明带中,ZP3能结合精子,并引发顶体反应。 6、多线染色体:分裂间期形成的染色体,由于复制多次而没有分离其复制产物, 许多染色线集合在一个染色体中,同时由于染色线折叠形成带与间带很明显区别的结构(2分)。 7、拟常染色体:含有与X染色体共有的DNA序列(1分),这使它能在有丝分 裂期间与X染色体配对(1分)。 8、乌尔夫氏再生:将成体蝾螈晶状体除去后(1分),可以从虹膜背缘再生出 新的晶状体。 9、阈值:变态过程中涉及的主要问题是发育事件的相互协调,协调变态的工具 好象是产生不同的特异影响需要不同数量的激素(2分)。 10、Bohr 效应:多数脊椎动物的血红蛋白显示出与氧的结合随pH的升高而增加 11、原肠作用:胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。 12、精子获能:是指精子获得穿透卵子透明带能力的生理过程,是精子在受精前必须经历的一个重要阶段。 13、胚胎诱导:在有机体的发育过程中,一个区域的组织与另一个区域的组织相互作用,引起后一种组织分化方向上的变化的过程称为胚胎诱导。 14、原条:鸟类和哺乳类原肠胚形成中的结构,由上胚层中预定中胚层和内胚层细胞组成,这些细胞通过原条进入胚胎内部,胚胎形成了三胚层,原条最终消失。 15、组织者:能够诱导外胚层形成神经系统,并能和其他组织形成次级胚胎的胚孔背唇称为组织者。 16、类坏死:指细胞处于活的和死亡之间(1分),有着一整套原生质的临界状态(1分),这种变化是可逆的。 17、转分化:虹膜背缘或神经视网膜上皮分化(1分)为晶状体或类晶状体。(1分) 18、全能细胞:能产生有机体的全部细胞表型,或可以产生一个完整的有机体, (1分)它的全套基因信息都可以表达,如合子或早期的分裂球等。(1分)

现代生物学进展资料

现代生物学进展资料 近代生物学发展的三个阶段: 一)、描述性生物学阶段: 19世纪30年代,德国植物学家施莱登和动物学家施旺提出细胞学说,指出细胞是一切动植物结构的基本单位,为研究生物的结构、生理、生殖和发育等奠定了基础。1859年,英国生物学家达尔文,出版了《物种起源》一书,科学地阐述了以自然选择学说为中心的生物进化理论,这是人类对生物界认识的伟大成就,给神创论和物种不变论以沉重的打击,在推动现代生物学的发展方面起了巨大作用。 二)、实验生物学阶段。 19世纪中后期,自然科学在物理学的带动下取得了较大的成就。物理和化学的实验方法和研究成果也逐渐引进到生物科学的研究领域。到1900年,随着孟德尔发现的遗传定律被重新提出,生物学迈进到第二阶段—实验生物学阶段。在这个阶段中,生物学家更多地用实验手段和理化技术来考察生命过程,由于生物化学、细胞遗传学等分支学科不断涌现,使生物科学研究逐渐集中到分析生命活动的基本规律上来。 三)、分子生物学阶段: 20世纪30年代以来,生物科学研究的主要目标是生物大分子——蛋白质和核酸上。 1944年,美国生物学家艾弗里用细菌作实验,第一次证明了DNA是遗传物质。 1953年,美国科学家沃森和英国科学家克里克共同提出了DNA分子双螺旋结构模型,这是20世纪生物科学最伟大的成就,标志着生物科学的发展进入了一个新阶段——-分子生物学阶段。 21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球

最新发育生物学复习题(最终版)

发育生物学复习题 一、名词解释 1 图式形成:胚胎细胞形成不同组织、器官和构成有序空间结构的过程 2胞质定域:是指卵裂时,受精卵内特定的细胞质分离到特定的分裂球中,裂球中所含有的特定胞质决定它发育成哪一类细胞,细胞命运的决定与临近的细胞无关。 3形态发生素:携带决定细胞分化方向相关信息的可扩散的物质。形态发生素是决定细胞发育的基因表达产物,如果蝇中的合子基因。 4 自主特化:细胞发育命运完全由内部细胞质组分决定的细胞定型方式。通过胞质隔离实现. 5渐进特化:细胞的定型分化依赖于周围的细胞或组织。同一种细胞可能因在不同的细胞或组织环境中,命运不同;通过胚胎诱导实现. 6紧密化:紧密化是哺乳动物与其它类型卵裂之间最关键的区别。8细胞之前,分裂球之间结合比较松散,从8个卵裂球起,卵裂球开始重新排列。8细胞之后突然紧密化,通过细胞连接形成致密的球体。紧密化是哺乳动物发育中第一次分化(滋养层与内细胞团的分离)的外部条件。 7卵裂:指受精卵开始有丝分裂并产生由较小的细胞构成的囊胚(blastula)的过程。 8原肠作用:是胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。原肠形成期间,囊胚细胞彼此之间的位置发生变动,重新占有新的位置,并形成由三胚层细胞构成的胚胎结构。 9原条:来自上胚层的中胚层细胞内移进入囊胚腔以及来自上胚层后端两侧细胞向中央迁移所导致胚胎的后端上胚层细胞的加厚处,随着加厚部分不断变窄,它不断向前运动,并收缩形成清晰的原条。 10 secondary sex determination:次级性别决定:是指性腺之外的身体表型的决定,即第二性征。雄性的阴茎、精囊、前列腺;雌性的阴道、子宫颈、子宫、输卵管、乳腺和常有性别特异的个体大小、声带软骨和肌肉系统。 11 Primary sex determination:初级性别决定。指生殖腺发育为睾丸或卵巢的选择。胚胎生殖腺的发育命运决定于其染色体组成,Y染色体的存在使生殖腺的体细胞发育为睾丸而非卵巢。 12神经诱导:脊索诱导背部外胚层形成神经外胚层并进一步分化 13 embryonic induction:在有机体发育过程中,一个区域的组织与另一个区域的组织相互作用,引起后一组织分化方向上变化的过程称为胚胎诱导。 14 Nieuwkoop中心:在两栖类囊胚中最靠近背侧的一群植物半球细胞,对组织者具有特殊的诱导能力,Nieuwkoop中心是兼具动物极和植物极细胞质的特殊区域,含有背部中胚层诱导信号 15组织者:能够诱导外胚层形成神经系统,并能和其他组织一起调整成为中轴器官的胚孔背唇部分。 二、选择题. 1在发育过程中,胚胎细胞分化的最根本原因是胚胎细胞中(A)。 A.基因差异的表达 B.基因差异的转录 C.RNA差异的加工 D.蛋白质差异的合成 2.哺乳动物的精子在受精之前要发生一个重要的变化。这个变化发生的地点是(C )

103发育生物学论文题目汇总

10生本3班发育生物学论文题目汇总 301 梅娟中枢神经系统的发育机制 花花孕妇血清微量元素与胎儿宫内发育迟缓关系的探讨 惠愉人体胚胎发育概况与新进展——人精子和卵子的发生、成熟及受精李捷睾丸支持细胞对精原干细胞发育的调节 姚君昆虫滞育 邱玥微量元素锌在儿童生长发育中的作用 302 梁红:早产儿宫外发育迟缓研究近展 林珂珂:人工受精 吕小云:端粒酶与机体衰老 李瓒:胚胎卵裂速度异常对囊胚形成的影响 汉娇吸烟对胚胎的发育 晓燕胎膜与胎盘 303 小敏《铅对儿童发育行为的影响》 文静《女性生殖器官的发育异常》 秋虹《儿童生长发育及其障碍》 陈丹《先天性畸形与优生》 媛媛《动物生长发育规律》 秀杏《甲状腺素对大脑发育的影响》 304 吴橙丽:孤雌生殖 莫晓映:鱼类雌核发育的机制 朱嘉云:兔唇发育机理 麦妃丽:婴幼儿睡眠与认知发育 符汨:原肠作用及原理 彭瑞仪:发育生物学与我们的生活 305 谢海娃骨细胞的形成 翠玲维生素A对胚胎发育各器官发育的影响 美绮熊猫的繁殖与发育 丽娟羊水对胎儿的作用 丽敏人的循环系统内分泌系统 文君小鼠胚胎的极性形成

405 许月红瘦素对妊娠及胎儿发育的影响 莫小红探讨血小板源性生长因子与神经系统的发育李晓燕调控因子在胚胎发育中的研究进展 梁丽华脊椎动物的胚胎发育 王秋月男孩和女孩大脑发育的区别 小郭神经发育中基因调控研究进展 406 甘婵:动物细胞和细胞核的全能性及发展前景 韵红:试管婴儿 赖娜:瘦肉精猪的发育 翠娟:维生素E与人的生长发育 琪琪:孕妇营养对胎儿生长发育探释 余洁:茶多酚对神经干细胞保护作用 思思胚胎发育与大脑的起源 男生 华聪蛇的发育与生殖 泽渊体表毛发来源 正发甲醛对胎儿发育的影响 超雄家兔繁育技术 六一秀丽隐杆线虫的发育史 锦青哺乳动物早期胚胎体外发育因素探究 陈晓丰:早期胚胎发育与调控因子 钟颖影响卵泡发育的因素及信号传导 康富 贵昌 俊良 尚雅B705 钟巧萍:浅谈滋养层细胞在胚胎植入中的作用 廖丽华:泌尿生殖系统的发育过程及其先天畸形的相关基因蒋妙嫚:咖啡因致胎儿宫内发育迟缓机制的研究进展 陈康兰:男女人脑发育的比较 巧敏胚胎干细胞的研究与应用

(完整版)发育生物学试题及答案

发育生物学题(余老师) 一.名次解释(20分) 1. 试管婴丿儿:利用体外受精技术产生的婴儿称为试管婴儿,体外受精是一种特殊的技术, 是把卵子和精子都拿到体外来,让它们在体外人工控制的环境中完成受精过程,然后把早期 胚胎移植到女性的子宫中,在子宫中孕育成为孩子。 2. 胚胎干细胞:胚胎干细胞是早期胚胎(原肠胚期之前)或原始性腺中分离出来的一类细 胞,它具有体外培养无限增殖、自我更新和多向分化的特性。 3. 受精 :是两性生殖细胞融合并创造出具备源自双亲遗传潜能的新个体的过程。 4. 孤雌生殖:有些动物种群卵子发生中减数分裂出现明显变异,以至产生二倍体 的配子,不需要受精就能发育。这种方式称为孤雌生殖。 5. 卵激活:经精子刺激,成熟卵从休眠状态进入活动状态,显示出的最早系列事 件总称为“卵激活”,包括皮层反应、减数分裂恢复、第二极体排出、DNA复制 和第一次卵裂。 6. 生殖质:卵质中有一定形态结构和特殊定位的细胞质,主要由蛋白质和RNA 构成,具有生殖质的细胞将分化成为原生殖细胞。 7. IPS:将几个转录因子导入已分化的小鼠皮肤成纤维细胞,进而获得了类似于 胚胎干细胞的多能性干细胞,称之为“诱导产生的多功能性干细胞”(iPS细胞)8. 母源效应基因;在卵子发生中表达并在在卵子发生及早期胚胎发育中具有特定功能的基因称为母源效应基因。 9. 合子基因:在受精后表达的胚胎型基因称为合子基因。 10. 成体干细胞;成体干细胞是指存在于一种已经分化组织中的未分化细胞,这种细胞能够自我更新并且能够特化形成组成该类型组织的细胞。 11. 精卵识别:异种精子不能与卵子融合,这是因为精子表面的结合素能与卵细胞膜上特 异的受体结合,而达到同种识别的目的。有距离识别和接触识别之分,前者见于体外受精的 水生生物。 12. 顶体:精子头的顶端特化的小泡,叫作顶体(acrosome),它是由高尔基体小泡发育而—| 来。实际上,顶体是一种特化的溶酶体。 13. 精子细胞:是在曲细精管中产生,用于遗传生育的一类细胞。 14. 胚胎诱导:是发育过程中通过细胞间的相互作用来决定细胞命运和使细胞定向分化

南昌大学发育生物学复习重点

南昌大学发育生物学复习重点 一、名词解释 1.母体效应基因:又称母体因子,在卵母中呈极性分布,受精后被翻译为在胚胎发育中起重要作用的转录因子和翻译调节蛋白的mRNA分子,他们在胚胎发育的决定中起重要作用。 2.顶体:精子头的顶端特化的小泡,叫作顶体(acrosome),它是由高尔基体小泡发育而来。 3.缺口基因:沿果蝇前后轴最早表达的合子基因,它们均编码转录因子,参与果蝇胚胎前后轴早期模式的形成。 4.灰色新月区:精子入卵后,皮层向精子进入的方向旋转大约30°,在动物极皮层含大量色素而内层含有少量色素的物种中,这一胞质不同层次的相对运动形成了一个在精子进入点对面的新月形的灰色区域,称为灰色新月。 5.体节:随着原条退化和神经褶开始在胚胎中央合拢,轴旁中胚层分隔成细胞团块,称为体节。 6.生长锥:生长锥为轴突或树突的末端,其生长点往往呈锥形,故又称生长锥。 7.菱脑节:神经管闭合后,后脑前后轴逐渐被划分为8节,成为菱脑节,每个菱脑节是一个发育单位。 8.诱导多能干细胞:是通过基因转染技术将某些转录因子导入人或动物体细胞,使体细胞直接重构为胚胎干细胞样的多潜能细胞。 9.分子简约性:又称小型工具盒,是由相同类型的分子发育成不同的动物体的性质叫分子简约性。 10.非遗传多样性:不可遗传的、由环境诱发的非连续表型 11.ZP3:透明带中的化学组分,是一种糖蛋白。能结合精子,引起顶体反应。 12.胚后发育:在动物个体发育过程中,经过幼虫或幼体至成虫、或成体达到性成熟时的发育过程,称为胚后发育。 13.生殖质:有些动物的卵细胞质中存在着具有一定形态结构、可识别的特殊细胞质。生殖质由蛋白质和RNA 组成,定位于卵质的特殊区域。 14.盘状卵裂:盘状卵裂是鱼类、爬行类、鸟类及部分头足类的卵裂方式。属于不完全卵裂。鱼类、爬行类和鸟类的卵子是端黄卵,卵子中的细胞质集中于动物极的一个很小的区域,该区域称胚盘。卵裂只在胚盘中进行,卵黄不参与卵裂。 15.皮质反应:精子进入后,这些皮质颗粒便与卵质膜融合,使内容物释放于卵周隙中(成分可能为蛋白酶类),形成受精膜,称之为皮质反应。 16. 初级神经管形成:在脊索中胚层的诱导下,外胚层细胞增殖、内陷、对折、顶端封闭、

发育生物学课程论文

行为 as the was given. was 1908年

贝尔奖获得者。在近代发育生物学研究领域中,果蝇的发生遗传学独领风骚。1995年,诺贝尔奖再次授予三位在果蝇研究中辛勤耕耘的科学家。果蝇为进一步阐明基因-神经(脑)-行为之间关系的研究提供了理想的动物模型。 专家认为,近一个世纪以来,果蝇遗传学在各个层次的研究中积累了十分丰富的资料。人们对它的遗传背景有着比其他生物更全面更深入的了解。作为经典的模式生物,果蝇在21世纪的遗传学研究中将发挥更加巨大而不可替代的作用。 2 以果蝇为实验模型所具有的诸多优势 基因、脑与行为的关系是脑与认知科学面临的重大战略性科学问题。不同物种的脑虽然在形态上迥然不同,但是在基因水平上却有很高的同源性,从而使脑具有相似的基本功能。在脑与认知科学中选择何种模式生物对于科研非常重要,有助于理解、预防和治疗相关性神经和精神疾病。诺贝尔奖得主坎德尔教授就曾选择海兔作为模式生物,成功地将各种行为包括将来的学习行为与突触的可塑性结合起来进行研究,确定了短时和长时记忆是如何储存在神经系统中的。而对于研究学习记忆所选择的主要模式生物就是本文要介绍的果蝇。这是为什么呢?作为一个重要的模式生物,果蝇是探索生命奥秘的万能钥匙,以果蝇为模型有诸多的优势。 第一,果蝇的生命周期短,繁殖力强。第二,果蝇具有清晰的遗传背景,在2000年果蝇测序工作已基本完成,果蝇基因组有13000~15000个基因,所有果蝇的遗传密码已经清楚。根据果蝇的遗传密码以及相关的信息,研究人员已经在互联网上建立了各种各样果蝇的相关数据库,而其相对简单的神经系统也很有助于对其进行研究。第三,果蝇也具有多种多样的行为,果蝇可以进行学习,有的非常“聪明”,当然也有“傻瓜”。果蝇也可以发生老年痴呆,还会饮“酒”、吸“毒”并表现出相应的行为。重要的是果蝇可以睡眠,甚至做梦,还可以唱情歌。因此,以果蝇为模型,通过基因突变和行为筛选可以确定与学习记忆相关的候选基因,进一步通过反向遗传学方法,可能在不同物种中确定候选基因的调控机制及其学习记忆等行为中的功能。 最近,实验研究发现果蝇中心脑区的扇形体结构参与了调节视觉图形识别过程,并证实视觉模式的记忆定位在中央复合体中扇形体的平行分层细胞结构。这是首次对果蝇视觉学习记忆功能区的精确描述,说明了果蝇的记忆痕迹并不存储在某一通用的记忆中心。科学家已经发现果蝇能够进行嗅觉的联想记忆,那么视觉记忆是储存在脑中什么样的地方呢?果蝇脑中有两个非常重要的结构。一个叫做蘑菇体,一个是中央复合体。后者包括脑桥、扇形体、小体等结构,周围是中央复合体的突触体,实验要看一下这些是不是对果蝇的视觉记忆产生影响。 通过研究发现,中央复合体可能与果蝇的视觉记忆的储存有密切关系,可在中央复合体的几个亚结构中究竟是哪个与此密切相关呢?经过大量的实验以及对果蝇进行大量的筛选,终于把视觉记忆功能部位确定为扇形体。我们知道,人类分辨不同的图形是根据图像之间的不同参数进行分辨,而果蝇进行图形的分辨同样也可以根据不同的参数,比如可以根据图像的高度、大小、颜色来分析不同的图形。果蝇的扇形体结构共分6层,每一层均由几十个神经元组成,并均赋予了非常特定的功能。比如有的层的神经元负责处理不同图形的高度区别,并且形成记忆,而另外层的神经元则对于大小、朝向等其他参数进行处理并负责记忆。这样,扇形体不同的结构分工负责不同的参数,最终形成视觉记忆。 3 果蝇的基因特征 果蝇具有二倍体的染色体组,并且只有四对染色体。第一对是性染色体,其它三对为常染色体。其中,第二、三两对常染色体,包含了近80 %的遗传信息。第四对常染色体很小,只包含近2 %的遗传信息。这样一套“小”而“全”的染色体组使实验更容易操作。果蝇具有大量影响神经系统和行为的单基因突变体。神经系统功能是由基因的调控和蛋白质的合成来实现的。大多数果蝇突变体是用物理、化学和分子生物学方法改变果蝇的基因结构获得的,由于基因的改变造成其调节失控或蛋白质产物的改变或缺失,进一步影响了特定的生理功能或行为。可以通过研究蛋白质在神经元及组织中的时空表达模式,来发现基因

相关文档
最新文档