实验弯曲实验

实验弯曲实验
实验弯曲实验

材料的弯曲实验

一、实验目的

1、 采用三点弯曲对矩形横截面试件施加弯曲力,测定其弯曲力学性能;

2、 学习、掌握微机控制电子万能试验机的使用方法及工作原理。

二、实验设备

3、 微机控制电子万能试验机;

4、 游标卡尺。

三、实验试件

实验所用试件如下图1所示,试件截面为矩形,其中,b 为试件宽度,h 为试件高度,L 为试件长度。

图1 矩形截面试件

四、实验原理

1、三点弯曲试验装置

图2所示为三点弯曲试验的示意图。其中,F 为所施加的弯曲力,Ls 为跨距,f 为挠度。

F

图2 三点弯曲试验示意图

2、弯曲弹性模量b E 的测定(图解法):

通过配套软件自动记录弯曲力-挠度曲线(见图3)。在曲线上读取弹性直线段的弯曲力增量和相应的挠度增量,按式(1)计算弯曲弹性模量,其中,I 为试件截面对中性轴的惯性矩,123bh

I =。

???? ????=f F I E L s b 483

(1)

图3 图解法测定弯曲弹性模量

Ls/2 Ls/2 F f

3、最大弯曲应力bb σ的测定:

W

L F s bb bb 4=σ (2) 其中,bb σ为最大弯曲应力,bb F 为最大弯曲力,W 为试件的抗弯截面系数,6

2

bh W =。 五、实验步骤及注意事项

1、 试件准备:矩形横截面试件应在跨距的两端和中间处分别测量其高度和宽度。取用三处宽度测量值的算术平均值和三处高度测量值的算术平均值,作为试件的宽度和高度。

2、 试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。运行配套软件,根据计算机的提示,设定试验方案,试验参数。

3、 安装夹具,放置试件:根据试样情况选择弯曲夹具,安装到试验机上,检查夹具,设置好跨距,放置好试件。

4、 开始试验:点击试验部分里的新试验,选择相应的试验方案,输入试件的尺寸。按运行命令按钮,设备将按照软件设定的试验方案进行试验。

5、记录数据:每个试件试验完后屏幕右端将显示试验结果。一批试验完成后点击“生成报告”按钮将生成试验报告。

6、试验结束:试验结束后,清理好机器,关断电源。

六、实验报告要求

1、实验数据及计算结果处理:

2、绘制弯曲力-挠度曲线(F-f曲线)。

实验三 实木弯曲实验

实验三实木弯曲实验 一、实验目的 人们对木制品的要求,无论是功能需求方面,还是美学欣赏方面,在很多场合下,都需要将木材加工成各种弯曲结构,如曲木家具,运动器材等,工艺制品和拱形门窗等。但是木材是一种难以弯曲的材料,自足以来,人们一直在不断地探索将木材软化,然后弯曲成形的技术,木材成功弯曲的关键是要使木材充分地软化。而本次实验的目的则是使我们进一步地了解木材软化与弯曲成形的机理,了解和掌握木材软化和弯曲成形的工艺技术。 二、实验原理 木材弯曲时,以中性层为分界形成凹凸两面,在凸面产生拉伸应力,使凸面木材有不同程度的伸长;凹面产生压缩应力,使凹面木材有不同程度的压缩,其应力分布是由表面向中间逐渐减少,中间一层纤维(中性层)既不受拉伸,也不受压缩。当所受的拉伸和压缩应力超过该种材料的拉伸强度极限或压缩强度极限时,木材就遭到破坏。 三、实验步骤 实木弯曲成型可以分成三个阶段:塑化(软化)、弯曲和定型(在模型框架中干燥冷却)。 (1)塑化(软化)——将准备好的木材放在一定条件(压力、温度、湿度)的蒸汽中进行一段时间的软化,时间的长短与木材的初始含水率,树种和木材的厚度有关。木材弯曲最合适的含水率,是木材纤维饱和点的含水率,妈20%-30%,此时木材强度最小,可产生的变形最大。使用实木软化专用设备,可在较短的时间内以消耗较少的能量将木材转变为可以弯曲的状态。 (2)弯曲——在弯曲时,将工件自由地放在金属薄板中,以扼制弯曲过程中工件外表的拉伸,进而被弯曲成一定的形状。在弯曲过程中,弯曲构件内部将形成张力,这种张力在以后的定型阶段将完全消除。此外,还要对工件进行降温处理,并消除弯曲工艺流程中必须的水分,最好的方法是将其放在低温干燥室中进行干燥,为了使工件保持需要的形状,应将工件夹在一个干燥架上。

第一节 矩形截面梁的纯弯曲实验

第一节矩形截面梁的纯弯曲实验 一、实验目的 1.学习电测法的基本原理和静态电阻应变仪的使用方法。 2.学习电测法中的1/4桥、1/2桥和全桥的测量方法。 3.测量矩形截面梁在纯弯曲段中测点沿轴线方向的线应变,画出该线应变沿梁高度方向的变化规律,验证平面截面假设。 4.根据上述测量结果计算测点的正应力,并与理论计算值进行比较。 二、实验设备和仪器 1.多用电测实验台。 2.DH-3818型静态电阻应变仪。 3.SDX-I型载荷显示仪。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成,其弹性模量,E,210 GPa梁的尺寸为,,。在发生纯弯曲变形的梁段上,沿a,100 mmb,20 mmh,40 mm 梁的沿轴线方向粘贴有5个应变片(其中应变片1位于梁的上表面,应变片2 位于梁的上表面与中性层的中间,应变片3位于梁的中性层上,应变片4位于梁的中性层与下表面的中间,应变片5位于梁的下表面),另外在梁的支撑点以外粘贴有一个应变片作为温度补偿片。应变片的灵敏系数K,2.08。 1.应变测量 3种测量桥路的接线方法如下: F 温度补偿片 b

123hz45y aa工作片 图2-1 矩形截面梁的纯弯曲 (1) 1/4桥测量方法 将5个工作片和温度补偿片按1/4桥形式分别接入电阻应变仪的5个通道中,组成5个电桥。具体接法:工作片的引线接在每个电桥的、端,温度补偿片接AB ?19 ? 在电桥的、端。当梁在载荷作用下发生弯曲变形时,工作片的电阻值将随着梁CB 的变形而发生变化,电阻应变仪相应通道的输出应变为,于是测点的应变为 ,仪 ,,,仪实 (2) 1/2桥测量方法 由于测点5与测点1的应变之间存在关系 ,,,,实5实1 测点4与测点2的应变之间存在关系 ,,,,实4实2 于是可将工作片5和1、4和2分别按1/2桥形式接入电阻应变仪的2个通道中,组 成2个电桥。具体接法:工作片5接到一个电桥的、端,工作片1接到该电桥AB的、端;工作片4接到另一个电桥的、端,工作片2接到相应电桥的、CBABB 端。当梁在载荷作用下发生弯曲变形时,电阻应变仪相应通道的输出应变为,C,仪 于是测点5和测点4的应变为

弯曲扭转实验

弯曲实验 一.实验目的: 1.了解应变片、应变仪的基本工作原理。 2.学习电测法测定应力的基本原理和方法。 3.确定弯曲梁横截面上的正应力大小,并与理论值进行比较。 4.学习实验数据处理及作图方法,确定弯曲梁横截面上的应力分布规律。 5.测量简支梁的挠度,并与理论值进行比较。 二.实验设备: 1.XL3418型多功能实验台一套 2.XL2101型程控静态电阻应变仪一台 3.XL2116A型测力仪一台,XL1155-1t型应变式传感器一只。 4.挠度计、百分表 三.试验原理: 1)参阅材料力学、工程力学课程的教材及其他相关材料。 2)弯曲梁实验装置如图: 图示AB梁为两端铰支的四点弯曲矩形截面钢梁,在距两端支座为a处,分别作用等量 的力。梁的AB段为纯弯曲,其弯矩为。为了实测正应力,在梁的AB段内分别沿横截面表面均匀粘贴5~7个电阻应变片。当梁受到载荷F作用时,可从电阻片的变形测得各点的应变值ε。在比例极限范围内,应力与应变之间存在着正比关系,即σ=E·ε。因而通过测得应变值便可计算出该点正应力的数值。 CD梁为两端铰支的三点弯曲矩形截面钢梁,在距两端支座为a1处,作用有载荷F。在距支撑点X距离远处分别沿横截面表面均匀粘贴5~7个电阻应变片,其弯矩为 。为了实测正应力,当梁受到载荷F作用时,可从电阻片的

变形测得各点的应变值ε。在比例极限范围内,应力与应变之间存在着正比关系,即σ=E·ε。因而通过测得应变值便可计算出该点正应力的数值。 关于应变片和应变测量电路的原理,参见静态电阻应变仪。(请自己编写) 四.实验步骤 1.量尺寸 根据实验需要(三点弯曲、四点弯曲或纯弯曲实验),量取弯曲梁的相关尺寸,以及加力点、支撑点的距离。 2.将挠度仪和百分表安装被测梁上,调整百分表零点。 3.将应变片导线分别接到应变仪的桥路上(注意应变片编号与应变仪通道编号的关系)。 4.打开应变仪电源开关,当程序结束后,按下“自动平衡”键使应变仪各通道清零。 5.打开测力计电源开关,确定档位(SCLY-2数字测力计选20KN档,XL2116A测力仪选N档)。在确认没有给弯曲梁加力的情况下,按下“清零”键。 6.逐级加载,每增加0.5KN记录一次应变仪各测点的读数以及百分表读数。载荷加至4KN后,卸载。 7.根据应变仪读数和百分表读数分别计算出各点读数差与算术平均值,然后计算应力值和挠度值。 8.根据实验数据处理要求,绘制弯曲梁横截面上的应力分布图。 五.实验记录 1.梁的有关数据: 梁的宽度 b= 高度 h= 梁的有效长度 L S= 挠度的有效长度L e= 加力点到支撑点A的距离a= 加力点到支撑点B的距离a= 加力点到支点C的距离 a1= 支点C到应变片的距离 X= 弹性模量 E=

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

ANSYS三点弯曲计算报告书

三点弯曲计算报告书 2011.3.20

1.算例说明: 三点弯曲实验是材料性能测试中常采用的一种方法,通过该方法可以方便的获得材料的弯曲强度和弯曲模量。 算例试样尺寸参考了实际实验采用的尺寸,试样的支撑及加载方式如图1所示,图2给出了试样的尺寸信息。 图1 三点弯曲示意图 图2 试样尺寸信息

2. 问题分析: 材料特性为各向同性的简支梁,其弯曲应力存在理论解,根据材料力学相关理论[1]。对于三点弯曲,各截面的应力可以通过公式(*)算出,最大拉压应力出现在集中力作用截面处 。 z I My =σ (*) 式中M 表示弯矩,y 表示截面上点到杆件中性面的距离, z I 表示截面对中性轴的惯性矩。 根据公式(*)可以方便的计算出最大应力值: MPa I y M m m I m m h y m m N FL M z z 76.1188022/4.47504 max max max 4 max max =====?==σ 3. 问题求解 从图1中可以看出试样的支撑形式属于简支梁,载荷为单点集中力,据此得到计算用模型及约束和载荷方式。图4 给出了有限元网格划分。 关材料属性信息:

弹性模量 Elastic Modulus=3.3Gpa 泊松比Poisson ratio=0.3 图3 试样的有限元模型 4.结果分析: 应力分布见图4所示,从图中可以看出,计算结果与理论分析一致,最大应力发生在集中力作用的截面处,有限元计算结果与理论解完全相同。

图4 三点弯曲应力分布图(上图为等轴视图下图为前视图)

参考文献 [1]范钦珊,殷雅俊,虞建伟 . 材料力学(第2版), 清华大学出版社, 2008, P109

实验3弯曲实验

材料的弯曲实验 一、实验目的 1、采用三点弯曲对矩形横截面试件施加弯曲力,测定其弯曲力学性能; 2、学习、掌握微机控制电子万能试验机的使用方法及工作原理。 二、实验设备 3、微机控制电子万能试验机; 4、游标卡尺。 三、实验试件 实验所用试件如下图1所示,试件截面为矩形,其中,b 为试件宽度,h 为试件高度,L 为试件长度。 图1 矩形截面试件 四、实验原理 1、三点弯曲试验装置 图2所示为三点弯曲试验的示意图。其中,F 为所施加的弯曲力,Ls 为跨距,f 为挠度。 图2 三点弯曲试验示意图

2、弯曲弹性模量b E 的测定(图解法): 通过配套软件自动记录弯曲力-挠度曲线(见图3)。在曲线上读取弹性直线段的弯曲力增量和相应的挠度增量,按式(1)计算弯曲弹性模量,其中,I 为试件截面对中性轴的惯性矩,12 3bh I =。 ??? ? ????= f F I E L s b 483 (1) 图3 图解法测定弯曲弹性模量 3、最大弯曲应力bb σ的测定: W L F s bb bb 4= σ (2) 其中,bb σ为最大弯曲应力,bb F 为最大弯曲力,W 为试件的抗弯截面系数,6 2bh W = 。 五、实验步骤及注意事项 1、试件准备:矩形横截面试件应在跨距的两端和中间处分别测量其高度和 宽度。取用三处宽度测量值的算术平均值和三处高度测量值的算术平均值,作为试件的宽度和高度。 2、试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十 分钟才可使用。运行配套软件,根据计算机的提示,设定试验方案,试验参数。 3、安装夹具,放置试件:根据试样情况选择弯曲夹具,安装到试验机上,

弯曲试验方法

金属弯曲试验方法 GB232–2010 本标准参照采用国际标准lSO 7438–1985《金属材料–弯曲试验》。 1 主题内容与适用范围 本标准规定了金属材料弯曲试验方法的适用范围、试验原理、试样、试验设备、试验程序及试验结果评定。 本标准适用于检验金属材料承受规定弯曲角度的弯曲变形性能。 2 引用标准 GB 2975钢材力学及工艺性能试验取样规定 3 试验原理 将一定形状和尺寸的试样放置于弯曲装置上,以规定直径的弯心将试样弯曲到所要求的角度后,卸除试验力检查试样承受变形性能。 4 符号和名称 弯曲试验中使用的符号和名称如下表和图1、图2所示。

5 试验设备 5.1弯曲试验可在压力机或万能试验机上进行。试验机应具备下列装置。 5.1.1应有足够硬度的支承辊,其长度应大于试样的宽度或直径。支辊间的距离可以调节。 5.1.2具有不同直径的弯心,弯心直径由有关标准规定,其宽度应大于试样的宽度或直径,弯心应有足够的硬度。 5.2厚度不大于4mm的试样,可在虎钳上进行弯曲试验,弯心直径按有关标准规定。 6 试样 6.1试验时用圆形、方形、长方形或多边形横截面的试样。弯曲外表面不得有划痕。方形和长方形试样的棱边应锉圆,其半径不应大于2mm。 6.2试样加工时,应去除剪切或火焰切割等形成的影响区域。 6.3圆形或多边形横截面的材料作弯曲试验时,如果圆形横截面直径或多边形横截面的内切圆直径不大于35mm,试样与材料的横截面相同。若试验机能量允许时,直径不大于50mm的材料亦可用全截面的试样进行试验。当材料的直径大于35mm,则加工成直径为25mm的试样,或如图3加工成试样。并保留一侧原表面。弯曲试验时,原表面应位于弯曲的外侧。 6.4当有关标准未作具体规定时,板材厚度不大于3mm,试样宽度为20±5mm。 6.5板(带)材、型材和方形横截面材料的厚度不大于25mm时,试样厚度与材料厚度相同,试样宽度为试样厚度的2倍,但不得小于10mm;当材料厚度大于25mm时,试样厚度应加工成25mm,并保留一个原表面,其宽度应加工成30mm。当试验机能量允许时,厚度大于25mm的材料,可以全厚度的试样进行试验,其宽度为试样厚度的2倍。仲裁时,按厚度减薄加工的试样进行试验。弯曲时,原表面位于弯曲的外侧。 6.6弯曲试样长度根据试样厚度和弯曲试验装置而定,通常按下式确定试样长度: L≈5a+150mm 6.7凡经加工的试样,其宽度、厚度或直径的尺寸偏差均为±1mm。 6.8试样的端部应打印或用其他方法标记试样的代号。 6.9试样的形状和尺寸如有关标准有特殊规定,则按规定执行。 7 试验程序 7.1半导向弯曲

金属弯曲试验

金属弯曲实验 计划学时:2学时 本实验按照国标《金属弯曲力学性能试验方法》(GB/T 14452--93),用INSTRON5582万能试验机测矩形试样三点弯曲的弹性模量和最大弯曲应力。 【实验目的】 (1)采用三点弯曲对矩形横截面试件施加弯曲力,测定其弯曲力学性能; (2)学习、掌握INSTRON5582万能试验机的使用方法及工作原理; (3)掌握弯曲弹性模量E b和最大弯曲应力σbb的测量方法。 【实验原理】 当一个矩形截面的金属承受弯曲载荷,其截面就出现应力。该应力可以分解为垂直于截面的正应力和平行于截面的切应力。如果梁上的载荷都处于同一平面内且垂直于梁的中轴,则截面各个点的正应力合成为一个力偶,其力矩即所谓的弯矩M,已知截面上任一点的正应力与该点至中截面的垂距以及截面上的弯矩成正比,与截面的惯矩成反比。若截面上的弯矩为正,则中截面以上各点受压应力,中截面以下各点受张应力;若截面上的弯矩为负,情况正好相反。 1. 三点弯曲试验装置 图1所示为三点弯曲试验的示意图。其中,F为所施加的弯曲力,Ls为跨距,f为挠度。 图1 三点弯曲试验示意图 2.弯曲弹性模量E b的测定(图解法):

通过配套软件自动记录弯曲力-挠度曲线(见图2)。在曲线上读取弹性直线段的弯曲力增量和相应的挠度增量,按式(1)计算弯曲弹性模量。 ??? ? ????= f F I E L s b 483 (1) 其中,I 为试件截面对中性轴的惯性矩, 123 bh I = 。 图2 图解法测定弯曲弹性模量 3.最大弯曲应力σbb 的测定: W L F s bb bb 4= σ (2) 其中,bb σ为最大弯曲应力,bb F 为最大弯曲力,W 为试件的抗弯截面系数, 62 bh W = 【实验仪器设备及材料】 INSTRON5582万能材料实验机、游标卡尺,矩形金属片(宽×厚=5mm×5mm )。 试样表面要经过磨平,棱角应作倒角,长度应保证试样伸出两个支座之外均不少于3mm 。 【实验步骤及方法】 1. 试样的制备:按照国标《金属弯曲力学性能试验方法》(GB/T 14452--93),制备试样。 2. 试样尺寸测量 矩形横截面试样应在跨距的两端和中间处分别测量其宽度和厚度。计算弯曲弹性模量时,取用三处高度测量值的算术平均值;计算弯曲应力时,取用中间处测量的厚度和宽度。

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

弯曲试验

弯曲实验 一.实验目的 测定纯弯曲梁的正应力,并与理论计算结果进行比较,以验证弯曲正应力公式。 二.实验仪器 组合实验台弯曲梁实验装置,电阻应变仪,预调平衡箱,数字测力仪。 三.实验原理 示意图请参见两端铰支的矩形截面钢梁,在距两端支座为处,分别作用相 同大小的力。梁的AB段为纯弯曲,其弯矩为。为了实测正应力,可在梁的AB段内沿横截面表面均匀粘贴7个电阻应变片(7个测点)。 当梁受到荷载作用时,可从电阻片的变形测得各点的应变值。在比例极限范围内,应力与应变之间存在着正比关系,即。因而通过测得应变值便可计算出该点正应力的数值。 关于电阻应变片和应变测量电路的原理参见电阻应变仪。 四.实验步骤 1.观察预调平衡箱后面板的接线,将测点与通道的对应关系记录下来。 2.数字测力仪的量程设为20KN,初始调零。 3.将电阻应变仪的“基零、测量”开关置在“基零”位置,调节“基零平衡”,使显示为零。 4.将电阻应变仪的“基零、测量”开关置在“测量”位置,旋转“换点开关”,调节相应的通道,使其电桥平衡(显示为零)。将所用的7个通道同时调零。

5.逐级加载,每增加0.5KN记录7个通道的应变仪读数。 6.加载到4KN后,卸载。 7.根据应变仪读数求出各测点应变差值的算术平均值,然后计算应力值。五.实验记录 宽度 高度 加力点到支座的距离Array 弹性模量

注:先求出各测点应变差值的算术平均值,然后计算应力值。 六.预习思考题 1) 分析在纯弯曲状态下,梁截面的应力分布情况。 2) 如果将电阻应变片的灵敏系数由2.0改为2.1,则测出的应变值会有什么影响? 3) 电阻应变片由金属电阻丝制成,测量应变时电阻丝是有电流的;弯曲实验中的钢梁也是金属,由于电阻应变片是直接粘贴在钢梁表面的,所以实验时钢梁中也会有电流通过,这是正常现象,不会影响测量结果。你是否同意这种看法?为什么? 4) 一位同学在操作中有这样一个过程:将电阻应变仪的“基零、测量”开关置在“基零”位置,调节“基零平衡”,使显示为零,然后旋转“换点开关”,调节所有通道,使其电桥平衡,接着就开始加载测量应变。请问,这位同学的操作正确吗?为什么?

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

材料物理性能 实验一材料弯曲强度测试

实验一 复合材料弯曲强度测定 一、实验目的 了解复合材料弯曲强度的意义和测试方法,掌握用电子万能试验机测试聚合物材料弯曲性能的实验技术。 二、实验原理 弯曲是试样在弯曲应力作用下的形变行为。弯曲负载所产生的盈利是压缩应力和拉伸应力的组合,其作用情况见图1所示。表征弯曲形变行为的指标有弯曲应力、弯曲强度、弯曲模量及挠度等。 弯曲强度f σ,也称挠曲强度(单位MPa ),是试样在弯曲负荷下破裂或达到规定挠度时能承受的最大应力。挠度s 是指试样弯曲过程中,试样跨距中心的顶面或底面偏离原始位置的距离(㎜)。弯曲应变f ε是试样跨度中心外表面上单元长度的微量变化,用无量纲的比值或百分数表示。挠度和应变的关系为:h L s f 62ε=(L 为试样跨度,h 为试样厚度)。 当试样弯曲形变产生断裂时,材料的极限弯曲强度就是弯曲强度,但是,有些聚合物在发生很大的形变时也不发生破坏或断裂,这样就不能测定其极限弯曲强度,这时,通常是以试样外层纤维的最大应变达到5%时的应力作为弯曲屈服强度。 与拉伸试验相比,弯曲试验有以下优点。假如有一种用做梁的材料可能在弯曲时破坏,那么对于设计或确定技术特性来说,弯曲试验要比拉伸试验更适用。制备没有残余应变的弯曲试样是比较容易的,但在拉伸试样中试样的校直就比较困难。弯曲试验的另一优点是在小应变下,实际的形变测量大的足以精确进行。 弯曲性能测试有以下主要影响因素。 ① 试样尺寸和加工。试样的厚度和宽度都与弯曲强度和挠度有关。 ② 加载压头半径和支座表面半径。如果加载压头半径很小,对试样容易引起较大的剪切力而影响弯曲强度。支座表面半径会影响试样跨度的准确性。 ③ 应变速率。弯曲强度与应变速率有关,应变速率较低时,其弯曲强度也偏低。 ④ 试验跨度。当跨厚比增大时,各种材料均显示剪切力的降低,可见用增大跨厚比可减少剪切应力,使三点弯曲更接近纯弯曲。 ⑤ 温度。就同一种材料来说,屈服强度受温度的影响比脆性强度大。 三、实验仪器 WDW1020型电子万能试验机 图1 支梁受到力的作用而弯曲的情况

金属管 弯曲试验方法及程序

金属管弯曲试验方法及程序 编制: 审核: 批准: 生效日期:2016-10-8

受控标识处: 分发号: 发布日期:2016年9月30日实施日期:2016年10月8日 制/修订记录

1.0 目的和范围 1.1本文件规定了测定圆形横截面的金属管弯曲塑性变形能力的试验方法。 1.2本文件适用于外径≤65mm的钢管。 1.3外径≤60mm的直缝电焊钢管,可用弯曲试验代替压扁试验。 1.4金属管横向条状试样的弯曲试样方法应根据GB/T 232来进行,以增加试样的原始弯曲率。 2.0 符号,名称和单位 本文件使用的符号,名称和单位在表1和图1中规定。 3.0 规范性应用文件 下列文件对于本文件的作用是必不可少的。凡是注日期的应用文件,仅注日期的版本适用于本文件。凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。 3.1 GB/T 2975 钢及钢产品力学性能试验取样位置和试样制备 3.2 GB/T 244 金属管弯曲试验方法 3.3 GB/T 232 金属材料弯曲试验方法 3.4 GB/T 13793 直缝电焊钢管 4.0 原理 将一根全截面的金属直管绕着一个规定半径和带槽的弯心弯曲,直至弯曲角度达到相关产品标准所规定的值。 5.0 试验设备

5.1弯曲试样设备应在弯管试验机上进行,试验时试验机应能防止管的横截面产生椭圆变形。 5.2弯管试验机的弯心应具有与管外轮廓相适应的沟槽。弯心半径由相关产品标准规定。 注:弯心半径的偏差,沟槽的深度和椭圆度均对实验结果有影响。 5.3 直缝电焊钢管 弯曲半径为钢管外径的6倍,弯曲角度为90o,试验后焊缝处不得出现裂纹和裂口。 6.0 试样 试样应是金属直管的一部分,并能在弯管试验机上进行试验。 7.0试验程序 7.1试验一般应在10℃∽35℃的室温范围内进行。对要求在控制条件下进行的试验,试验温度应为23℃±5℃。 7.2通过弯管试验机将不带填充物的管试样弯曲,试验时应确保试样弯曲变形段与金属管弯心紧密接触,直至达到规定的弯曲角度。 7.3在进行焊接管的弯曲试验时,焊缝位于弯曲方向的外侧,与弯曲平面呈90o||(|即弯曲中性线)的位置。 7.4对弯曲试样结果的说明应依据相关产品标准的要求。当产品标准中未做规定时,在不使用放大镜的情况下,试样后焊缝处如果无可见裂纹和裂口,应评定为合格。

梁纯弯曲实验

纯弯曲梁的正应力测定实验 一、实验目的 1. 测定梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 1. 组合实验台中纯弯曲梁实验装置 2. XL2118A 系列静态电阻应变仪 3. 游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力,计算公式为 σ=M·y/I z 式中:M ——为弯矩;M=P·a/2; I z ——为横截面对中性轴的惯性矩; y ——为所求应力点至中性轴的距离。 铰支梁受力变形原理分析简图如图1所示。 图1 纯弯曲梁受力分析简化图 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片(如图2)。 实验可采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷ΔP ,测出各点的应变增量Δεi 实,然后分别取各点应变增量的平均 值ε,依次求出各点的应力增量 Δσi 实=EΔεi 实 ( i=1,2,3,4,5) 纯弯曲实验装置简图 弯矩: M=F a F=P/2 F Q M c) 构件AB 力学简化模型

将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 图 2应变片在梁中的位置 实验接线方法 实验接桥采用1/4桥(半桥单臂)方式,应变片与应变仪组桥接线方法如图3所示。使用弯曲梁上的应变片Ri(R1,R2,R3,R4,R5即工作应变片)分别连接到应变仪测点的A/B上,测点上的B和B1用短路片短接;温度补偿应变片Rt连接到桥路选择端的A/D上,桥路选择短接线将D1/D2短接,并将所有螺钉旋紧。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应 变片到中性层的距离y i。见附表1 3.拟订加载方案。可先选取适当的初载荷P0=200N,估算P max(该实验载 荷范围P max≤2000N),分4级加载(300N,600N,900N,1200N)。 4.根据加载方案,调整好实验加载装置。 5.按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作 状态。 6.先测量3#测点的应变以确定实验梁的安装是否符合实验要求,使梁处 于完全不受载状态并平衡3#测点对应通道电桥。缓慢加载到1500N左 右,此时4#测点通道的应变绝对值应该≤1,若该值不符合要求,应分 别调整加实验梁的左右前后位置,同时观察应变值的变化情况,使应变 值接近于0。然后卸载至0,应变值应回到0,若不是0,应再重复调 整,直至符合要求。

实验3弯曲实验

实验三 弯曲实验 一、实验目的和要求 1.学习使用试验机进行弯曲实验的基本原理和方法。 2.观察试样在弯曲过程中的各种现象,由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。测定试样材料的弹性模量E 。 3. 绘制力-挠度的曲线,观察平面假设的实用性,验证纯弯曲梁的挠度计算公式。 二.实验设备、仪器和试件 1.万能材料实验机,划线台,游标卡尺,钢直尺,划针。 2.矩形截面低碳钢试样 三、实验原理和方法 (1)理论公式: 本实验的测试对象为低碳钢制矩形截面简支梁,加载方式如图3-1所示。 由材料力学可知,AB 梁将产生弯曲变形,中点C 的挠度w 最大,计算式为 Z EI Fl w 483 = (1) 其中,跨距 a l 2=,截面惯性矩12 3 bh I Z =,这里,b 和h 分别是横截面的宽和高。 于是材料的弹性模量E 可计算得到 Z wI Fl E 483 = (2) 横截面上各点正应力沿截面高度按线性规律变化,沿截面宽度均匀分布,中性轴上各点的正应力为零。截面的上、下边缘上各点正应力为最大。危险截面C 的正应力最大值为 Z W M = max σ (3)

其中,M 是危险截面C 上的弯矩,Z W 是截面抗弯系数 6 2 bh W Z = (4) (2)实测方法: 实验采用手动加载方法,荷载F 大小可在计算机软件界面下的"负荷"窗口读出;挠度可在软件界面下的"变形"窗口读出。 在弹性范围内,如果测得载荷与变形数据由上式可求出要求的实验值。将实验值进行处理后可以得到材料的弹性模量E ,与理论计算值进行比较,就可以验证弯曲变形公式。 实验采用增量法。每增加等量载荷ΔF ,测得变形一次。因每次ΔF 相同,故变形应是基本上按比例增加。 四.实验步骤 1.测量矩形截面梁试样的宽度b 和高度h , 测量荷载作用点到梁支点距离a 2.在试样的侧面沿中性层划一条纵向线, 再在中性层纵向线两侧等距离各划一条纵向线; 在试样中点划一条横向线, 在中点横向线两侧等距离各划一条横向线 (上述划线用于观察变形情况和平面假设) 在试样支点各划一条横向线(用于安放试样) 3.实验时的取变形量5.00=?l mm ,7.01=?l mm , 9.02=?l mm 1.13=?l mm 左右(最好稍大些),相当于分四次加载。实验时逐级加载,并记录下各级荷载读数和变形读数。 4.手动加载结束后,卸载。然后用连续加载方式(在软件界面中点“运行”)进行实验,以便得到实验曲线。 5.进行数据处理,填写实验报告。注意,计算变形用教材或手册的弹性模量E 五.注意事项 1.认真观察、调整实验装置,确保两侧横力弯曲段长度相等。 2.注意安全!在加载时注意正确运用“快下”(快速接近试样)、“慢下”(已经接近试样)和“微下”(加载装置与试样接触,加载时)按钮 3.观察“平面假设”时,禁止加载! 六、思考题 1.尺寸、加载方式完全相同的钢梁和木梁,如果与中性层等距离处纤维的应变相等,问两梁相应位置的应力是否相等,载荷是否相等? 2.采用等增量加载法的目的是什么? 3.沿梁截面高度,应变怎样分布?随载荷逐级增加,应变分布按什么规律变化?中性轴

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

三点抗弯强度

第18讲教学方案——弯曲切应力、弯曲强度条件

§7-3 弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有剪应力 τ。但一般情况下,剪应力对 梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力 Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (a )

纯弯梁弯曲的应力分析实验报告

一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺 三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:i i E 实实εσ?=? 计算各点的理论应力增量公式:z i i I My ?= ?σ 2.测定泊松比 计算泊松比数值:ε εμ' = 四、实验步骤 1.测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:[]σa bh 3F 2 max ≤ ,然后确定量程,分级载荷和载荷重量; 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F ;

5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 梁试件的弹性模量11101.2?=E Pa 梁试件的横截面尺寸h = 40.20 ㎜,b = 20.70 ㎜ 支座到集中力作用点的距离d = 90 ㎜ 各测点到中性层的位置:1y = 20.1 ㎜ 2y = 10.05 ㎜ 3y = 0 ㎜ 4y = 10.05 ㎜ 5y = 20.1 ㎜

六、应力分布图(理论和实验的应力分布图画在同一图上) 七、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。 2.影响实验结果的主要因素是什么? 答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

梁的弯曲变形实验-实验四 弯曲变形试验

实验四 弯曲变形试验 一、目的 1、 测定简支梁弯曲时的挠度f 和转角θ 2、 验证理论公式的正确性。 3、 学习测量位移的简单方法。 二、设备 1、 简支梁试验台 2、 百分表、游标卡尺、卷尺。 三、试件 矩形等截面钢梁一根。 四、原理 简支梁中点受集中力作用时,由理论计算知道,其中点挠度为: EI PL f 483 = 两端支座处截面的转角为: EI PL 162 =θ 其中 -P 为集中力的大小 -L 为梁的跨度 EI 为梁的截面抗弯刚度 砝码加载,用百分表测量梁端的竖向位移以计算梁端转角,其读数用B 表示,用百分表测量梁中点的挠度f ,其读数用C 表示,本次试验在弹性范围内进行,采用增量法分段加载。 五、实验方法及步骤 1、 实验准备 (1) 用卡尺测量梁的截面尺寸。 (2) 将量好尺寸的试件安装在试验台上,调整好支座间的距离,将支架固定紧。 (3) 用卷尺测量梁的跨度L 及力作用电的位置于2 L 处,并将百分表垂直地置于临近处。 (4) 将另一百份表置于梁上距支座10cm 处。 2、 进行试验 (1) 均匀缓慢加初荷0P ,记下两个百分表读数。 (2) 逐级加荷载P ?,加5次。分别记下两个百分表的相应的读数。 3、 结束试验 卸掉荷载,将所有工具放回原处。 六、实验报告 梁的弯曲变形试验 专业: 姓名: 实验日期: (一)、实验目的 (二)、实验设备 (三)、实验数据 1、梁的尺寸 宽度: =b mm 梁高:=h mm 跨度: =L mm

2、百分表位置 =1S mm =2S mm 4、 变形记录 (1) 转角θ ==100tan B θ ==)100 arctan(B θ (2) 理论值与实践值进行比较,以理论值为准,求出它们的偏差的百分数,误差应不超过 七、问题讨论 1、分析产生误差(理论与实验值)的原因。 2、实验时未考虑自重是否会引起误差。

测试题-弯曲变形(答案)

班级:学号:姓名: 《工程力学》弯曲变形测试题 一、判断题(每小题2分,共20分) 1、梁弯曲变形后,最大转角和最大挠度是同一截面。(×) 2、不同材料制成的梁,若截面尺寸和形状完全相同,长度及受力情况也相同,那么这两 根梁弯曲变形时,最大挠度值相同。(×) 3、EI是梁的抗弯刚度,提高它的最有效、最合理的方法是改用更好的材料。(×) 4、梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,则梁的挠曲线仍然 是一条光滑、连续的曲线。(√) 5、梁弯曲后,梁某点的曲率半径和该点所在横截面位置无关。(×) 6、梁上有两个载荷,梁的变形与两个载荷加载次序无关。(√ ) 7、一般情况下,梁的挠度和转角都要求不超过许用值。(√ ) 8、在铰支座处,挠度和转角均等于零。(×) 9、绘制挠曲线的大致形状,既要根据梁的弯矩图,也要考虑梁的支撑条件。(√ ) 10、弯矩突变的截面转角也有突变。(×) 二、单项选择题(每小题2分,共20分) 1、梁的挠度是(B )。 A. 横截面上任一点沿梁轴方向的位移 B. 横截面形心沿垂直梁轴方向的位移 C. 横截面形心沿梁轴方向的线位移 D. 横截面形心的位移 2、在下列关于挠度、转角正负号的概念中,(C)是正确的。 A. 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B. 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C. 转角和挠度的正负号均与坐标系有关 D. 转角和挠度的正负号均与坐标系无关 3、挠曲线近似微分方程在(D )条件下成立。 A. 梁的变形属于小变形 B .材料服从胡克定律 C. 挠曲线在xoy平面内 D. 同时满足A、B、C 4、等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D )处。 A. 挠度最大 B. 转角最大 C. 剪力最大 D. 弯矩最大 5、应用叠加原理求梁横截面的挠度、转角时,需要满足的条件有(C ) A. 梁必须是等截面的 B. 梁必须是静定的 C. 变形必须是小变形; D. 梁的弯曲必须是平面弯曲 6、两简支梁,一根为钢、一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F, 二者的(B )不同。 A. 支反力 B. 最大正应力 C. 最大挠度 D. 最大转角 7、已知等截面直梁在某一段上的挠曲线方程为:错误!未找到引用源。,则该段梁上(B )。 A. 无分布载荷作用 B. 有均匀载荷作用 C. 分布载荷是x的一次函数 D. 分布载荷是x的二次函数 8、在下列关于梁转角的说法中,( D )是错误的。 A. 转角是横截面绕中性轴转过的角位移 B. 转角是变形前后同一截面间的夹角 C. 转角是挠曲线的切线与轴向坐标轴间的夹角

相关文档
最新文档