局部放电检测系统

局部放电检测系统
局部放电检测系统

目录

目录 (1)

第一章简介 (1)

第二章面板及界面功能介绍 (2)

第三章 MEJF-2000系统的安装 (11)

第四章系统操作指南 (12)

第五章仪器使用注意事项 (18)

第一章简介

局部放电试验是电力设备绝缘的主要试验项目,局部放电量等参数则是评价电力设备质量的重要指标。根据国际及国内目前最新技术进展而开发的JFD-1000系列局部放电检测系统是获得成功的JFD系列局放仪中的新一代成员,是国网武汉高压研究院最新研制的多功能多通道局放检测系统。除继承上一代产品优点外,该产品还具备全程控自动校准、自动同步、自动电压记录、自动测量保存回放等功能,可测量如放电重复率n,平均放电电流I,平方率D等IEC-270所规定的各种局放参数,采用正弦、点阵等多种视图显示方式,新型数字滤波及干扰抑制功能,结合丰富的动态统计分析图谱,使现场干扰能够得到更有效的抑制,用户操作和诊断更加简便自如。随着软件的不断开发,其功能还不断拓展,如脉冲极性鉴别和平衡回路方式的局部放电测量等功能。

MEJF-2000系统就其检测方法、测量回路、技术性能参数完全符合最新的

GB7354及IEC-270“局部放电测量”标准要求。适用于各类高压电器设备的局放测量,覆盖全电压及容量等级,代表着国内数字式局放仪的最先进技术。

第二章面板及界面功能介绍

2-1 硬件面板功能

2-1-1 主机后视图

A.信号输入口Q9插头,检测阻抗检测到的信号经专用电缆由此口

输入到检测系统的放大器。

B.标准微机接口与标准微机一样的常用接口。

C.电源插座电源线连接此处和电源。此仪器使用220V电源。

D.电源开关I=ON,O=OFF,将开关置于“I”后,还需按一下前面板

系统启动/关闭键(见前视图“E”),才能启动仪器。

若要关闭电源,请先退出系统,再将此开关置于“O”。

E.系统启动/关闭开关按下可启动或关闭系统(启动系统还需将电源开关置

于“O”)

F.接地端子检测系统的保护接地,MEJF-2000系统通电前必须接

地。

G.零标信号输入口此处外接零标同步信号。(AC 10~220V)

2-2 MEJF-2000系统软件界面

MEJF-2000系统采用软件程控方式工作,操作者可根据需要或软件界面的提示进行鼠标、键盘或触摸屏操作,实现局部放电的测量。随着软件的不断开发,MEJF-2000系统功能将不断拓展。目前MEJF-2000系统软件分为测试软件和数据回放软件。

2-2-1 局部放电测试软件界面

1.主菜单区提供软件的基本功能,详见 2-2-1

2.模式及视图显示栏显示当前模式及视图页,详见 2-2-2。

3.视图区可设置单个或多个视图显示波形或三维图谱,详见

2-2-3。

4.参数设置区对增益、滤波等参数进行设置, 详见 2-2-4

5.状态显示栏显示当前工作状态,详见 2-2-5。

2-2-1-1 主菜单区

此主题简要的介绍主菜单的各项功能。

主菜单区有下列菜单:文件、运行模式、操作、帮助、退出以及4个快捷键。

功能如下表:

快捷键:菜单下面有4个横向排列的快捷键,如下图所示,分别对应上述菜单中的4个常用命令,从左至右依次是:操作――开始采集、操作――停止采

集、操作――开始采集并保存、运行模式――校验、运行模式――测量。

2-2-1-2 模式及视图显示栏

此区域显示当前的测量模式及当前视图。

2-2-1-3 视图区

此区域显示局部放电图形。对局部放电图形进行分析,是识别局部放电特征和干扰特征的重要手段,是局部放电测试人员最为关注的焦点。MEJF-2000系统采用全新的二维和三维图形显示方式,使信息量增大,对识别局部放电特征和干扰特征大有益处。它将40个周期的局部放电脉冲依顺序立体显示出来,所包含的信息量大,使局部放电脉冲和干扰脉冲等规律尽显其中,无疑对积累识别局部放电脉冲和干扰脉冲的经验大有帮助。

视图区默认设置有4个视图,按照从左到右、从上到下的顺序依次为放电波形图、放电量-相位-时间(QφT)三维分析图、放电量-相位(Qφ)二维分析图、放电次数-相位-放电量(NQφ)三维分析图。

默认的视图设置可以被灵活、方便的改变。如同操作常见的Windows窗口一样,双击单个视图的标题栏可以在全屏显示和分屏显示中切换;左键按住视图的标题栏拖放可以任意改变视图位置(限制在视图区内);鼠标移至视图边缘,待鼠标形状改变后,可通过拖放任意改变视图大小。

另外,作为分析局部放电最基本、直观的放电周波图谱,还可以对其做特定的操作。如下图所示,局放周波图谱被划分为四个部分,分别为标题栏、设置工具栏、标尺显示区域和图谱显示区域。其中标尺显示区域将放电量以百分比的形式显示,图谱显示区域可以对一个周波的放电情况详细显示,其中绿颜色的三角

形的标记是抑制水平的标识,标尺中绿色长条为局放峰值,桔色滑块为放电均值(IEC值)。工具栏从左至右的功能分别是波形设置、标尺设置、开窗选择、开窗模式、窗口选择方式、刷新视图。工具栏的具体功能如下:

波形设置:默认为椭圆波形,通过下拉菜单可选择点阵、直线、正弦波形显示。

标尺设置:默认均值标尺,通过下拉菜单可选择标尺以均值方式显示还是对数方式显示。

开窗选择:可点击选择是否开时间窗。

窗口类型:可在下拉菜单中选择任意位置开单窗或对称位置开双窗。

窗口选择方式:可点击选择窗口范围选择方式。非反选方式下,鼠标框选范围即窗口范围;反选方式下,鼠标框选范围以外皆是窗口范围。

刷新视图:对视图进行刷新。

2-2-1-4 参数设置区

MEJF-2000系统校准或测量运行模式下均能进行参数设置。参数设置界面可对7个功能模块进行设置,依次是校验电量设置、抑制水平设置、分压比设置、滤波设置、增益档设置、扫描频率设置、时基旋转设置。

通道选择:选择要设置参数的通道。

完成校准:此按钮仅在校准模式的停止采集状态下有效,必须先点击此按钮才能切换到测量模式,否则校准参数没有保存。

校验电量(pC):系统校准时,要求操作者设定的校准参数值,仅在校验模式中可设置。

抑制水平(%):选择信号抑制的阀值(0%~100%),即将此阀值以下的信号滤除。

滤波:滤波功能设置分数字滤波选择和程控滤波的频带设置2部分。点击“数字滤波:”后面的“口”可以选择是否进行数字滤波。“口”呈绿色状态表示当前已选择进行数字滤波。程控滤波的频带设置是通过在下拉菜单中选择高通、低通截止频率进行的。其中高通滤波截止频率有10kHz、20kHz、40kHz、OFF(5Hz)4个选项;低通滤波截止频率有100kHz、200kHz、300kHz、OFF(800kHz)4个选项。

增益档:信号输入通道放大器频带窗口的增益可通过此处下拉菜单进行选择设置,上面为粗调增益,1~5共5档,下面为程控微调增益,1~16共16档。

电源频率:设置视图中显示的数据所代表的频率。例如,若设置50Hz,则代表视图中显示的一个周波的数据为20毫秒的数据。设置同步扫描频率将会自动的将视图的显示频率与试验电压的频率同步。

时基旋转:即椭圆波形旋转。

2-2-1-5 状态显示栏

此处显示当前状态,包括工作模式、工作状态、提示信息及系统时间。

工作模式:当前工作模式,包括校验模式和测量模式。

工作状态:当前工作状态,包括测量状态和停止采样状态。

提示信息:当改变了校准参数或使用数字滤波后,此处会提示测量值仅供参考。

时刻标记个数:在采集并保存模式中可在任意做标记,以记录特殊事件,此处显示标记个数。用户可通过此处观察标记是否成功。

系统时间:当前系统时间。

2-2-2 局放测试数据回放界面

MEJF-2000系统测试数据回放软件界面如下图:

与测试软件界面布局类似,分为五个区域:

1.主菜单区及工具栏提供软件的基本操作,详见2-2-2-1

2.回放进度显示栏显示回放进度,详见2-2-2-2。

3.视图区以四种图谱回放放电测试情况,详见2-2-2-3。

4.参数设置界面区对测量时试参数的设置情况进行回放, 详见

2-2-2-4

5.状态显示栏显示当前软件工作运行状态

2-2-2-1 主菜单

此主题简要的介绍主菜单的各项功能。

主菜单有下列菜单:文件、操作、帮助以及5个快捷键。功能如下表:

工具栏:菜单下面有5个横向排列的工具栏快捷按钮,如下图所示,分别

对应上述菜单中的5个常用命令,从左至右依次是:文件——打开测试数据、操作――单步回放、操作――连续回放、操作――暂停回放、操作――停止回放。

6-2-2-2 测量结果显示栏

此区域显示回放的进度,包括开始时间、结束时间、当前时间,标记时刻。其中

开始时间:显示此录波文件开始记录的时刻。

结束时间:显示此录波文件结束记录的时刻。

当前时间:显示此录波文件当前回放时刻。

标记时刻:在滑块上用小红旗的方式显示标记的特殊时刻。

6-2-2-3 视图区

与局放测试软件相同,视图区默认设置有4个视图,如每个视图标题所示,按照从左到右、从上到下的顺序依次为放电周波图谱、放电量-相位-时间(Q-φ-T)三维分析图、放电量-相位(Q-φ)和放电次数-相位(N-φ)二维分析图、放电次数-相位-放电量(N-Q-φ)三维分析图。可以在回放过程中对回放的数据进行与测试时相同的所有操作,例如开窗等。

回放的进度会在状态栏中显示。

6-2-2-4 参数显示区

显示测试数据测试过程中的参数设置情况,是不可操作的。

第三章 MEJF-2000系统的安装

3-1 MEJF-2000系统各硬件的连接

1.将主机接地端( 2-1-1后视图F)接地。

2.将220V电源线插入主机后面的电源插座( 2-1-1后视图C)。

3.按第四章 4-1叙述的几种测量回路,选择其中一种,进行测量回路的连接并接入检测阻抗。

4.把专用屏蔽电缆将检测阻抗信号输出口与主机信号输入口( 2-1-1后视图A)连接起来。

5.如有外接零标信号,将其接入零标信号输入口( 2-1-1后视图G)。

完成上述5步过程,MEJF-2000系统回路接线已完成。接通220V电源后,将电源开关( 2-1-1后视图“D”)置于“I”后,还需按一下后面板系统启动/关闭键( 2-1-1后视图“E”),才能启动仪器进入工作状态。

3-2 MEJF-2000系统软件的安装

MEJF-2000系统所有各种软件程序都是基于Windows XP操作系统平台的,且均已安装在硬盘中。用户进入操作系统后,可直接双击桌面快捷方式运行软件。

当软件程序在意外中丢失或损坏,可用ghost软件还原系统,如仍然不能恢复正常测量,请与我公司技术人员联系。

第四章系统操作指南

局部放电的测量一般分成下列几个步骤:

1.测量回路的选定及连接。

2.MEJF-2000检测系统的连接。

3.局部放电量的测量:(1)校准;(2)确定试验电压的零标;(3)测量。

在试验前应了解并掌握局部放电测量的理论知识、标准及方法。熟悉MEJF-2000系统常用功能操作。

4-1 测量回路的连接及选定

1.按照标准中的检测回路选定一种并进行连接。

2.计算测量回路检测阻抗两端调谐电容C t 。

3.检测阻抗选择:选择阻抗,即选择调谐电容范围中心值与C t 相近的

阻抗接入检测回路。同时必须注意试验时流经检测阻抗的电流不得超过规定的通流容量。

4-2 MEJF-2000检测系统的连接

1.按照 3内容条款将MEJF-2000系统安装起来。

2.接通220V 电源,将电源开关置于“I ”后,按一下后面板系统启动/关闭键(见后视图“E ”)启动仪器。

4-3 局部放电量的测量

4-3-1 选择试验电源频率

参见 2-2-4内容。

4-3-2 检测系统的校准

点击主菜单中的运行模式――校验或下面的快捷键进入系统校准工作模式。 校准步骤:

(1)将校准脉冲发生器两输出端用尽可能短的导线与试品两端连接起来,并注入校准脉冲000C U q =。如图7-1(a)、(b)示,校准电容C 0必须不大于

???

? ??++k m m k x C C C C C 1.0,并且不小于10pF 。C m 为检测阻抗的电容,因为很小可忽略。

图7-1(a) 校准示意图

图7-1(b) 校准示意图

(2)根据要求注入的校准脉冲值000C U q =,调节MEJF-2000校准脉冲发生器的

U 0和C 0至相应的档位,并且工作红灯亮。校准脉冲(000C U q =)便注入试品两端。

(3) 点击主菜单中的操作――开始采集或下面的快捷键,系统开始校准,观察视图区椭园或直线图形中是否出现校准脉冲,如果没有或者很小或者放电量表色柱高度超过95°格时,需要在参数设置区中调整测量通道的粗调增益档和微调增益档,直至校准脉冲出现并有合适的高度,即使波形左边的放电量表色柱指示在70~90格范围内。

(4) 在参数设置区中设置脉冲发生器中输入的校准电量。

(5) 点击主菜单中的操作――停止采集或下面的快捷键,系统将停止采样。此时必须点击通道选择下方的完成校准按钮方可进行保存校准参数和切换工作模式的操作。操作者可将校准参数以自命名文件的形式存储在硬盘中,以便在测量过程中选择载入。点击主菜单中的工作模式――测量或下面的快捷键,系统将切换到测量工作模式,如果操作者不从硬盘中载入校准参数,系统将以切换工作模式前的最后一次校验参数设置进行测量。

校准参数保存与载入的操作命令见 2-2-1。

注:应用软件退出后,会将退出前最后一次校准参数以“Default.CAL ”的文件保存。每次运行软件,会默认载入“Default.CAL ”文件的设置。

(6如果校准脉冲值较小,易受到干扰影响,甚至于干扰脉冲高度高于校准

脉冲,此时可在参数设置区设置滤波方式或开启时间窗,使窗口内仅显示出校准脉冲。重复上述步骤,完成测量系统的校准。时间窗的功能及操作详见 2-2-3。

4-3-3 测量系统的校准说明

1.校准的目的是确定测量回路的信号传输比例(也称刻度因数),和校验回路是否能测量有关试品标准中规定的最小可测放电量。

校准的实质内容是,在测量回路确定后,调整并最终确定检测系统放大器增益和测量频带的过程。校准完成后检测系统的放大器增益和测量频带即被固定,也即检测回路的信号传输比被确定。并在试品局放测量中保持不变。这是进行视在放电电荷量定量测量的基础。

2.由于MEJF-2000检测系统的测量频带、增益档位有若干组合,选哪个测量频带及增益档位进行测量都是有可能的,因此操作者必须遵从这一原则:在哪一测量频带及增益档位进行局部放电测量,那么这一测量频带及档位必须进行校准。否则由于校准模块频带及增益档位与局部放电测量模块的频带、档位的不同,而引起测量误差。

4-3-4 确定试验电压的零标

试品的局部放电一般发生在试验电压0~90°、180°~270°的相位区域内,与试验电压相位有着密切联系。测试人员在局部放电测量时知晓试验电压的零相位即零标。对识别局部放电和干扰大有益处。因此,确定试验电压的零标在局部放电测量中是一重要环节。因此每次进行局部放电测量时,都应确定零标。下面就如何确定试验电源零标的方法、步骤叙述如下。

首先使MEJF-2000系统进入局部放电测量工作模式。

1.在试品的高电位端,悬挂一细金属导线。给试品施加试验电压,直至在椭圆视图上观察到电晕放电图图形为止。

2.当电晕放电图形出现在椭园270°相位时,如图7-3示,表明检测系统电

源电压与试验电压是同相同极性。也即正零标线是检测系统电源电压与试验电压共同的零相位。负零标线是共同的180°相位。

图7-2 试验电源零标示意图

图7-3 零标及电晕示意图

3.当电晕放电图形出现在椭园90°相位时,表明检测系统电源电压与试验电压是同一相,反极性的(即相位互差180°),此时在参数设置区时基旋转模块中使椭园旋转180°,电晕放电图形显示在270°相位,检测系统电源电压与试验电压同相、同极性。此时椭园左端点正零标红线是试验电压的零相位。椭园右端点负零标红线是试验电压的180°相位。

4.当电晕放电图形出现在椭园其它相位时,表明检测系统电源电压与试验电压不是同一相电源。此时,采取3中方式旋转椭圆,使电晕放电图形显示在270°相位,也使检测系统电源电压移相,与试验电压同相,同极性。那么,椭园左端点正零标红线便是试验电压零相位,椭园右端点负零标红线便是试验电压

180°相位。

4-3-5 视在放电量的测量

1.点击主菜单中的运行模式――测量或下面的快捷键进入系统测量工作模式,MEJF-2000系统将默认载入测量前最后一次校准时设定的通道、增益档位,测量频带和校准基准值等参数进行测量,操作者应注意参数设置区显示的这些参数。操作者也可根据需要载入之前保存的校准参数设置进行测量。

2.点击主菜单中的操作――开始采集或下面的快捷键,MEJF-2000系统进行连续的局部放电测量,局部放电波形及二维、三维图谱将连续不断地显示在视图区。

3.每次运行软件,系统会恢复默认的视图设置。在软件运行过程中,操作者可根据需要灵活设置视图(具体操作方式见 2-2-3),而退出软件后,这些设置将不会被保存。

4.操作者应注意零标的位置。

5.视在放电量及试验回路一次电压的读数在测量结果显示栏直接显示出来。 操作者也可通过放电量表计色柱的高度刻度k 1计算出放电量的大小。这个刻

度值显示在放电量表计色柱的下方。

公式为:

010/k k q q (pC )

q ——视在放电量;

q 0——校准脉冲值;

k 1——测量时色柱高度;

k 0——校准值q 0的色柱高度。

6.局部放电现象的产生机理相当复杂,其视在放电量的值具有统计性,表现为一定程度的摆动性是很常见的。

7.操作者根据需要可将局部放电测量数据或视图以文件的形式存贮起来;

当系统处于停止采样状态下时,可载入之前保存的测量数据或视图。外接打印机后,视图可以被打印出来。本条目内容相关操作方式见 2-2-1

4-3-6 局部放电测量干扰的排除

1.测量时往往会遇到外来干扰脉冲,操作者务必区分干扰脉冲与局部放电脉冲。如何区分请操作者阅读有关专门书籍和文献资料和摸索、积累经验。

2.操作者可采用开时间窗的办法排除干扰。

3.操作者可变换滤波器档位,改变测量频带将一些干扰排除,此时应注意,此测量频带是否已校准,以免带来测量误差。

4.操作者应充分发挥局部放电图形分析的功能。利用其反映的信息量大的特点,进行二维、三维图形观察分析局部放电脉冲以及干扰脉冲的各自特点,找出规律,排除干扰。

第五章仪器使用注意事项

——在进行任何连接操作前,首先将仪器的接地端接地。

——在每次试验前,仪器连接好后,仪器应有不小于5分钟的预热时间,仪器应良好保护,防止腐蚀,避免阳光直射,测试时远离强磁场源。仪器应避免强烈震动,运输时应有防震措施。

——键盘接口为RJ-45接口,类似于一般的网线接口,可直接插入,需按住塑料弹片拔出。

——零标输入接口:为仪器提供外零标信号,方法为:将试验电源电压经分压器降至10V~240V,此电压输入至零标输入端,注意:零标单元的输入电压不得超出10V~240V。在试验电源和仪器电源同相或试验电源和工频严格同步时,可使用仪器内零标,注意校准其相位。

——在有条件的情况下,试品放在屏蔽室中,加压设备和仪器放在屏蔽室外,可有效的防止干扰。

——应将仪器远离试品不少于7米,当遇到基线干扰比较大时,可在仪器与

试品间加金属网状防护栏。

——严禁带电插拨接口,在任何插拨接口时,严禁仪器处于开机状态,应关掉开关再进行插拨接口的操作。

——检测阻抗的接地端应良好接地,以免引入高压。为了避免干扰的影响,检测阻抗与试品的连线应尽量短。检测阻抗则应根据试品电容量选择,具体方法参考使用说明书。

——校准方波在校准后,一定要摘下连线,以免在测试时被高压击穿,而且在撤下后关上电源开关。校准方波是充电电池供电,在无电时,指示红灯熄灭,方波会不准确,此时应对方波校准器进行充电。注意:每次充电,应在方波校准器无电时进行(即打开时红灯指示熄灭),有电时不要充电,充电时间不要过长,一般为10~12小时且绿色指示灯熄灭。有时为了保证充电充满,可有意打开方波进行放电,然后再进行充电。

安全

在使用本系统前,操作人员应熟悉此节内容,确保人员和设备的安全。

说明

本系统是根据“电子测量装置”的安全要求设计制造的,并提供了安全操作的条件,有关进一步的安全操作将取决于是否严格遵守本手册中的说明和警告。

本系统主要在户内条件下使用,偶尔在+5℃~+40℃的环境下使用,不会影响其安全性和可靠性。

在本手册中所述的局放测量系统应由胜任的专业人员来使用、维护、修理和调试。

安全预防措施

在联结任何电缆前,应先联结一条接地线至测试系统的测量阻抗的接地端。

在测量处于高电压时,所有操作人员和助手应严格遵守所有安全预防措施,以防不小心触及带电部分,所有直接从事测量的人员应了解测量回路中所有带电

车流量检测.pdf

道路车辆检测技术概述 近年来,随着我国交通运输事业的蓬勃发展,智能交通系统(ITS)的研究和应用越来越得到重视,交通运输部于2011年4月颁布了《公路水路交通运输信息化“十二五”发展规划》,提出“必须把推进交通运输信息化建设摆在‘十二五’规划中的突出位置”。准确、实时、完整的交通信息采集是ITS的基础,而车辆检测器则是对动态交通信息进行实时采集的基础设施。 随着电子技术、通信技术和计算机技术的不断发展,车辆检测器也由过去比较单一的种类发展为采用不同技术手段,具有多类型、多品种、多系列的交通车辆参数检测器家族。按信息采集方式的不同,可分为固定型检测技术和移动型检测技术。固定型检测技术可分为磁频采集、波频采集和视频采集3类,主要有感应线圈检测器、磁力检测器、微波检测器、超声波检测器、红外线检测器和视频检测器等,目前我国道路监控系统中,使用最多的是感应线圈车辆检测器、视频车辆检测器和微波车辆检测器3种。移动型检测技术目前主要有浮动车法、车辆识别法和探测车法等,运用的技术主要有基于GPS的定位采集技术、基于汽车牌照自动判别的采集技术、基于电子标签(Beacon)的定位采集技术和基于手机探测车的采集技术。 1磁频类车辆检测器 磁频类车辆检测器是基于电磁感应原理的车辆检测器,主要有感应线圈检测器、磁性检测器和地磁检测器等,其中感应线圈检测器是目前使用最广泛的交通流量检测装置。 1.1感应线圈检测器 感应线圈检测器是地埋型检测器,其传感器为一组通有一定工作电流的环形感应线圈。当车辆进入环形感应线圈所形成的磁场时,引起电路中调谐电流的频率或相位变化,检测处理单元通过对频率或相位变化的响应,得出一个检测到车辆的输出信号。感应线圈检测器可直接提供车辆出现、车辆通过、车辆计数及车道占有率等交通流信息。调查表明,用2m×2m的标准感应线圈对交通流量进行检测,其精度可达到98%~99%。通常在同一车道内埋设2个感应线圈,根据测定车辆

振动信号检测系统的设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

车流量检测方法纵览

车流量检测技术综述 胡明亮1,李飞飞 2 ,钟德浩3 (1、江西方兴科技有限公司,江西南昌330003) (2、江西省高等级公路管理局泰井管理处,江西南昌330003) (3、江西省高等级公路管理局瑞赣养护中心,江西南昌330003) 摘要:车流量检测是交通管理与控制的基础。在综述了车流量检测的传统方法、技术特点和 存在的问题后,重点分析了基于视频图像的车流量检测技术,并对其发展趋势进行了展望。 关键词:信息工程;视频图像;车流量检测;数字图像处理 0 前言 城市智能交通已逐步得到社会各界的广泛关注,如何通过智能交通系统建设来缓解日益严重的交通问题已成为交通领域的研究热点。车流量检测系统是智能交通(ITS)的基础部分,在城市道路建设、国道高速公路建设、隧道桥梁建设以及交通流的基础理论研究中占有很重要的地位。近年来,逐渐发展起来了以空气管道检测技术、磁感应检测技术、波频检测技术和视频检测技术等[1~2]为代表的多种交通检测技术[3]。车流量检测主要是通过各种传感设备对路面行驶车辆进行探测,获取相关交通参数,以达到对公路各路段交通状况及异常事件的自动检测、监控、报警等目的。 较其它方法而言,基于视频图像的检测技术涉及到视频采集、通信传输、图像处理、人工智能以及计算机视觉等多个学科,具有安装维修灵活、成本低、应用范围广、可拓展性强和交通管理信息全面等优点,并已经在国内外高速公路和公路的交通监控系统中得到应用。常用的基于视频图像的车辆检测算法有:灰度法、背景差法、相邻帧差法、边缘检测法[4]等。随着图像处理技术、计算机视觉、人工智能的发展和硬件处理速度的提高,基于视频图像的车流量检测技术得到了广泛的应用。本文对各种车流量检测方法进行了综述,并对基于视频图像的车流量检测研究工作进行了展望。 1 传统车流量检测方法 按照车辆信息获取方式的不同,实际应用当中已经产生了空气管道检测技术、磁感应检测技术和波频检测技术。 1.1 空气管道检测技术 空气管道检测是接触式的检测方法,在高速公路主线的检测点拉一条空心的塑料管道并作固定,一端封闭,另一端连接计数器,当车辆经过塑料管道时,车轮压到空气管道,管内空气被挤压而触动计数器进行计算车流量的方法。 显然,该方法只能获取单一的车辆信息,且方法繁琐,寿命短,已经被磁感应检测等技术所取代。 1.2 磁感应检测技术 磁感应检测器可分为线圈和磁阻传感器两种。环形线圈检测器是目前世界上应用最广泛的一种检测设备,由埋设在路表下的线圈和能够测量该线圈电感的电子设备组成。车辆通过线圈,引起线圈磁场的变化,检测器据此计算出车辆的流量、速度、时间占有率和长度等交通参数。图1利用一个LC振荡器和一个通用单片机即构成了感应线圈检测系统。当感应线圈的电感L发生变化时,LC振荡器的振荡频率也随之变化,由单片机获取其振荡频率并通过频率变化给出高/低电平信号来判断是否有车辆通过[5~6]。磁阻传感器的基本原理是在铁磁材料中会发生磁阻的非均质现像(AMR)。当沿着一条长且薄的铁磁合金带的长度方向施加一个电流,在垂直于电流的方向施

智能环境监测系统的设计说明

智能环境监测系统的设计 Design on the intelligent system of monitoring environment

摘要 系统主要由数据采集端和移动监控终端两部分组成。采用16位单片机SPCE061A为处理核心,在数据采集端,利用两片CD4067BE分别挂接16只DHT11温湿度传感器和16只光照强度传感器;采用10位ADC实现对环境声音的实时录制,加入OV7670摄像头进行实时拍照监控,最后把所采集到的数据帧通过NRF905无线传输模块传送到移动监控终端。在移动监控终端,通过NRF905接收数据,将处理后的环境参数数据进行显示,接收到的语音压缩编码通过10位DAC进行解码播放,通过按键切换进入全屏环境参数显示模式或全屏监控照片显示模式,并将接受到的环境参数、声音、照片存储到SD卡中。本文以SPCE061A超低功耗单片机为核心,设计了通用智能终端和智能温湿度传感器,重点介绍了该终端和传感器的任务、硬件、软件以及控制算法的设计与实现。硬件方面,介绍了系统各个部分的设计思想、原理电路以及,并给出了系统总硬件原理图;另外,为了实现系统的低成本和低功耗,在满足设计要求的前提下,尽可能选用了价格低廉和低功耗的元器件。软件方面,采用了时间触发的混合调度器模式设计,对系统各个任务进行了设计,并给出了系统软件低功耗设计方法。 关键词:SPCE061A;多节点;无线传输;HMI Abstract The system is designed for two parts of data acquisition terminal and mobile monitoring terminal. Its processing core is SPCE061A which is a 16 bits mcu. In the data acquisition terminal, 16 DHT11 of single bus temperature, humidity sensor and 16 light intensity sensor are hung on two CD4067BE. The environmental sound is recorded to coding and compression with 10 bits ADC which is built in the mcu at any time. Add OV7670 which is a camera module to monitor at anytime. ALL collected data is transmitted to the mobile monitoring terminal through NRF905 of wireless transmission module. In the mobile monitoring terminal, the data is received through NRF905.The environmental parameter data is displayed after dealing with and the compression coding of speech is decoded to play with 10 bits DAC.We can switch to full-screen environment parameter display mode or full-screen picture display mode with the keys. At last, the environmental parameter, sound and photos are stored to the SD card.Based on the SPCE061A ultra low power microcontroller as the core, a general intelligent terminal and intelligent temperature and

传感器测量系统的设计

课题名称:传感器测量系统的设计指导教师:秦建中 班级:自动化1301 姓名:刘洒 学号: 2013001575 日期:2016年1月20日

《模拟电子技术》课程设计报告 传感器测量系统的设计 摘要 传感器检测系统这一概念是传感技术发展到一定阶段的产物。检测系统是传感器与测量仪表、变换装置等的有机组合。在工程实际中,需要有传感器与多台测量仪表有机地组合起来,构成一个整体,才能完成信号的检测,这样便形成了检测系统。随着计算机技术及信息处理技术的不断发展,检测系统所涉及的内容也不断得以充实。在现代化的生产过程中,过程参数的检测都是自动进行的,即检测任务是由检测系统自动完成的,因此研究和掌握检测系统的构成及原理十分必要。本次论文需要设计一个放大器系统,当电阻值变化±1%时,放大电路能够产生±10V的输出电压。要求偏差为0时输出为0,偏差为1%时输出为10V,偏差为-1%时输出为-10V,误差不超过±5%。 关键词:放大器,传感器,检测 The design about sensor measuring system Abstract Sensor system, the concept is sensing technology has developed to a certain stage of the product. Detection system is the sensor and the measuring instrument, the organic combination of the conversion device. In practical engineering, sensor and measurement instrument of organic combination, constitute a whole, to complete signal detection, thus forming the detection system. With the development of computer technology and information processing technology, detection system involves content also continues to enrich. In modern production process, the process parameters of detection is done automatically, the detection task is done automatically detected by the system. Therefore, the study and master the detection The constitute and principle of the system is very necessary. This paper needs to design an amplifier system, when the resistance value change + 1%, amplifying circuit to generate the output voltage of the + 10V. Requirement deviation is 0 when the output is 0, the deviation is 1% output of 10V, the deviation is 1% output to - 10V, the error is more than + 5%. Key words: amplifier, sensor, detection

水质在线监测系统

水质在线监测系统,通过建立无人值守实时监控的水质自动监测站,可以及时获得连续在线的水质监测数据( 常规五参数、COD、氨氮、重金属、生物毒性等),利用现代信息技术进行数据采集并将有关水质数据传送至环保信息中心,实现环保信息中心对自动监测站的远程监控,有利于全面、科学、真实地反映各监测点的水质情况,及时、准确地掌握水质状况和动态变化趋势。水质在线监测系统由水质在线分析仪、采样系统、辅助参数监测系统等组成。 其中水质在线分析仪是基于紫外全光谱技术的连续在线式水中有机物浓度分析仪,在水质的在线监测方面与传统的COD化学法和现有的紫外单/双波长法相比均具有非常明显的技术优势,同时给用户的使用带来了明显的经济效益,具体表现如下: 与传统的COD化学法在线监测设备想比,在技术上具有结构简单、可靠性高、响应速度快(1秒钟一个数据)实时性高、不存在二次污染等特点,从经济效益上讲水质在线分析仪具有运行费用低、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。 与现有的紫外单/双波长法(利用污水在254nm处的吸光度与污水中COD之间的线性关系测定COD浓度)相比具有测试准确度高、检测范围宽、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。这是因为单波长法仅能对有机污染物组分较为单一的污水或者污水中所含有机污染物组分相对固定的污水进行COD的测定,而对于污染物组分复杂多变的样品由于吸光度与COD之间的相关性较差直接导致测试结果的误差增大。紫外全谱扫描技术则通过污水的紫外光谱数据与有机污染物浓度之间所建立的数学模型来预测水中有机污染物的浓度,由于模型本身的外推能力会使测试准确度随着用户的使用时间增长而愈来愈高。在检测范围上采用专利型在线稀释装置,可以满足在不更换或调整比色皿的

车流量检测技术综述

车流量检测技术综述 胡明亮1,李飞飞2 ,钟德浩3 (1、江西方兴科技有限公司,江西南昌330003) (2、江西省高等级公路管理局泰井管理处,江西南昌330003) (3、江西省高等级公路管理局瑞赣养护中心,江西南昌330003) 摘要:车流量检测是交通管理与控制的基础。在综述了车流量检测的传统方法、技术特点和 存在的问题后,重点分析了基于视频图像的车流量检测技术,并对其发展趋势进行了展望。 关键词:信息工程;视频图像;车流量检测;数字图像处理 0 前言 城市智能交通已逐步得到社会各界的广泛关注,如何通过智能交通系统建设来缓解日益严重的交通问题已成为交通领域的研究热点。车流量检测系统是智能交通(ITS)的基础部分,在城市道路建设、国道高速公路建设、隧道桥梁建设以及交通流的基础理论研究中占有很重要的地位。近年来,逐渐发展起来了以空气管道检测技术、磁感应检测技术、波频检测技术和视频检测技术等[1~2]为代表的多种交通检测技术[3]。车流量检测主要是通过各种传感设备对路面行驶车辆进行探测,获取相关交通参数,以达到对公路各路段交通状况及异常事件的自动检测、监控、报警等目的。 较其它方法而言,基于视频图像的检测技术涉及到视频采集、通信传输、图像处理、人工智能以及计算机视觉等多个学科,具有安装维修灵活、成本低、应用范围广、可拓展性强和交通管理信息全面等优点,并已经在国内外高速公路和公路的交通监控系统中得到应用。常用的基于视频图像的车辆检测算法有:灰度法、背景差法、相邻帧差法、边缘检测法[4]等。随着图像处理技术、计算机视觉、人工智能的发展和硬件处理速度的提高,基于视频图像的车流量检测技术得到了广泛的应用。本文对各种车流量检测方法进行了综述,并对基于视频图像的车流量检测研究工作进行了展望。 1 传统车流量检测方法 按照车辆信息获取方式的不同,实际应用当中已经产生了空气管道检测技术、磁感应检测技术和波频检测技术。 1.1 空气管道检测技术

基于惯性传感器的机器人姿态监测系统设计

基于惯性传感器的机器人姿态监测系统设计一、设计背景 空间飞行器的惯性测量系统、机器人的平衡姿态检测、机械臂伸展确定等许多方面都需要测量物体的倾斜和方向等姿态参数。机器人的运动过程中要不断的检测机器人的运动状态,以实现对机器人的精确控制。.本文研究的基于MEMS 惯性传感器姿态检测系统用于检测自平衡机器人运动时姿态,以控制机器人的平衡。 随着微机电系统(MEMS)技术的发展,采用传感器应用到姿态检测系统上的条件变得成熟。基于MEMS 技术的加速度传感器和陀螺仪具有抗冲击能力强、可靠性高、寿命长、成本低等优点,是适用于构建姿态检测系统的惯性传感器。利用MEMS 陀螺仪和加速度传感器等惯性传感器组成的姿态检测系统,能够通过对重力矢量夹角和系统转动角速度进行测量,从而实时、准确地检测系统的偏转角度。 由于惯性传感器随着时间、温度的外界变化,会产生不同程度的漂移。通过对陀螺仪和加速度计的采集数据进行数据融合,测量的角度与实际的角度相吻合,取得了良好的控制效果。同时该系统具有独立,易用的特点,其应用前景广泛。 二、基本原理 在地球上任何位置的物体都受到重力的作用而产生一个加速度,加速度传感器可以用来测定变化或恒定的加速度。把三轴加速度传感器固定在物体上,在相对静止状态下,当物体姿态改变时,加速度传感器的敏感轴相对于重力场发生变

化,加速度传感器的三个敏感轴分别输出重力在其相应方向产生的分量信号。 当系统处于变速运动状态时,由于加速度传感器同时受到重力加速度和系统自身加速度的影响,其返回值是重力加速度同系统自身加速度的矢量和。对加速度传感器温度漂移及系统振动和机械噪声等方面的考虑,加速度传感器不能独立运用测量系统的姿态。陀螺仪能够提供瞬间的动态角度变化,由于其本身的固有特性、温度及积分过程的影响,它会随着工作时间的延长产生漂移误差。因此对于姿态检测系统而言,单独使用陀螺仪或加速度计,都不能提供系统姿态的可靠估计。为了克服这些问题,数据融合算法需使用加速度传感器的测量值并使用陀螺仪测得的角速度数据对加速度传感器数据进行融合和矫正。 图1加速度传感器 系统依据上一时刻的重力矢量方向的估计值,结合陀螺仪测得的角度值计算出当前时刻的重力矢量方向,再与当前时刻加速度传感器返回的矢量方向进行加权平均,得到当前矢量方向的最优估计值。 三、系统框架 姿态平衡检测系统中,控制单元采用单片机来完成控制,数据采集与处理,数据通讯等功能。根据对资料的分析,同时对性能价格比的衡量,惯性测量单元

自动检测系统的构成、在控制系统的使用情况

太阳能光电工程学院 《材料加工设备概论》 课程设计报告书 题目:自动检测系统的构成、在控制系统的使用情况 姓名:邵奎 专业:太阳能光伏材料加工与应用技术 班级:助考(1)班 准考证号: 设计成绩: 指导教师:刘小梅

摘要 介绍了自动检测技术的发展现状及其在性能检测和故障诊断方面应用的必要性和良好前景;讨论了现代自动检测系统组建时,用到的关键技术;详细论述了基于PC的虚拟仪器技术的特点,软、硬件的构成和设计时关键技术分析。提出了目前在虚拟仪器系统中较为常用的几种总线方式和应用特点。 关键词:自动检测系统;故障诊断;关键技术

目录 绪言 (3) 1.引言 (3) 2.自动检测系统的基本原理 (3) 1.控制器 (4) 2 . 激励信号源 (5) 3. 测量器 (6) 4.开关系统 (7) 5.适配器 (7) 6.检测程序 (7) 一、程控接口技术 (8) 虚拟仪器技术 (8) 三.专家系统 (8) 5结束语. (9) 参考文献 (9)

绪言 所谓自动检测,是指由计算机进行控制对系统、设备和部件进行性能检测和故障诊断,是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、信息论、控制论、测量技术、传感技术等学科发展的产物,是这些学科在解决系统、设备、部件性能检测和故障诊断的技术问题中相结合的产物。凡是需要进行性能测试和故障诊断的系统、设备、部件,均可以采用自动检测技术,它既适用于电系统也适用于非电系统。电子设备的自动检测与机械设备的自动检测在基本原理上是一样的,均采用计算机/微处理器作控制器通过测试软件完成对性能数据的采集、变换、处理、显示/告警等操作程序,而达到对系统性能的测试和故障诊断的目的。

车流量检测雷达

佰誉达 车流量检测雷达 (本产品已通过国家道路交通安全产品质量监督检验中心公安部交通安全产品质量监督检测中心认证) 用户手册 佰誉达科技 深圳

目录 一、微波车流量检测雷达概述 (1) 1.1用途 (1) 1.2描述 (1) 1.3技术指标 (2) 1.3.1微波指标 (2) 1.3.2检测指标 (2) 1.3.3通信指标 (2) 1.3.4环境与可靠性指标 (2) 1.3.5电源指标 (2) 1.3.6物理指标 (3) 1.4应用领域 (3) 1.4.1路口模式(城市交通) (3) 1.4.2高速公路(城市交通、高速公路) (3) 1.5典型应用 (3) 1.5.1路口模式(城市交通) (3) 1.5.2路段模式(城市交通、高速公路) (4) 二、微波车流量检测雷达的安装 (6) 2.1设备组成 (6) 2.2设备安装 (6) 2.3工程安装 (7) 2.4雷达接口 (7) 三、微波车流量检测雷达的调试及使用 (7) 3.1软件运行环境 (7) 3.2软件安装 (8) 3.3软件使用说明 (8) 3.3.1主界面 (8) 3.3.2 设备参数 (8) 3.3.3雷达参数 (9) 3.3.4 安装参数 (9) 3.3.5 连接雷达 (10) 3.3.6按钮功能说明 (10) 3.3.7 车道计数 (11) 3.3.8 车道流量统计直方图 (11) 四、微波车流量检测雷达数据传输 (11) 4.1雷达数据传输模式 (11) 五、微波车流量检测雷达故障排除 (12) 附录1 (12)

一、微波车流量检测雷达概述 1.1用途 车流量检测雷达是拥有完全自主知识产权的新型微波车辆检测器,利用雷达线性调频技术原理,对路面发射微波,通过对回波信号进行高速实时的数字化处理分析,检测车流量、速度、车道占有率和车型等交通流基本信息的非接触式交通检测器。检测器主要应用于高速公路、城市快速路、普通公路交通流量调查站和桥梁的交通参数采集,为交通管理提供准确、可靠、实时的交通情报,为实现交通智能化提供技术支持。 1.2描述 车流量检测雷达是一种工作在微波频段的雷达探测器。雷达向路面连续发射线性调频微波波束,车辆通过微波波束时反射信号,根据反射信号检测目标是否存在并计算其交通参数。每隔一定时间(1s-1000s)将各种交通流参数信息通过数据通道传输到指挥控制中心。它能可靠的检测与区分公路上的任何车辆,包括从摩托车到多轴、高车身的车辆以及拖车等,检测路上每一车道所通过的车流量、车辆速度、车道占有率、车型分类等参数。 检测器雷达采用的是中心频率为24GHz的微波信号,因此具有高频微波的所有特性,自主开发的雷达信号分析处理算法检测精度高,检测范围宽,可以跨越道路中央隔离带的防眩板、树丛及金属护栏等障碍物检测到驶过的车辆,大大降低了隔离带对检测精度的影响。同时,由于微波对环境干扰不敏感,使得其在各种天气气候条件下都保持准确的检测。 检测器采用了创新的软件设计理念,将车道的静态划分和动态划分结合起来,在使用前静态划分车道,并在使用中根据车流的实际情况调整车道的划分,对跨车道行驶的车辆可通过模糊判断,合理的将该车划分到最近的一个车道,而不会检测为两辆车,解决了城市复杂交通情况下的应用问题。 综合来说主要有以下特点: 1)自主研发,可根据需求更改数据输出接口和协议,且支持远程软件控制; 2)安装方便,维护简单。 3)高适应性,在恶劣气候条下稳定工作,不受风、雨、雾、冰雹等影响。 4)自动车道识别功能,实现0后置距离的安装。

汽车车速传感器检测系统设计

目录 摘要与关键词............................................................. I I 引言. (1) 1 工作原理 (1) 1.1 汽车车速传感器的工作原理 (1) 1.2 车速传感器 (1) 1.2.1 霍尔式车速传感器 (1) 1.2.2 磁电式车速传感器 (3) 1.2.3 加速度传感器 (3) 1.3 控制装置的工作原理 (4) 1.3.1 ABS控制原理 (4) 1.3.2 ECU控制原理 (5) 2 车辆限速装置的设计 (5) 2.1 控制装置系统的设计 (5) 2.2 数据采集系统的设计 (6) 2.3 系统总体设计 (7) 3 车辆限速装置的性能测试 (8) 3.1 性能指标 (8) 3.2 测试方法与结果 (9) 3.3 干扰问题 (9) 4 车辆限速装置的应用 (9) 5结语 (10) 参考文献 (10) 致谢 (11)

汽车车速传感器检测系统设计 摘要 汽车车速传感器检测系统设计是一种传感器检测装置。利用车速传感器把检测到的转速信号转变成的电压信号输送给计算机,计算机通过变频器来控制电机速度,利用传感器检测的速度值与规定值进行比较,达到对传感器的检测目的。本文介绍了车速传感器检测系统的工作原理,详细讲述了系统的组成、原理和检测方法。系统采用硬件兼软件对测量过程及测量结果进行处理。与传统的检测技术相比,此种传感器检测装置有结构简单、新颖、易于实现的特点。实践证明在检测,维修范围内都取得了良好的效果,系统具有良好的稳态精度及动态响应性能,检测实用性强、准确度高,具有广阔的应用前景。 关键词 数据采集;控制装置;传感器;速度检测 Auto speed sensor detection system design Abstract Auto speed sensor detection system design is a kind of sensor detection device. Use the detection speed sensor to the speed signal into a voltage signal transmission to the computer, the computer through the inverter to control motor speed, using sensor test speed value and comparison, achieve e. of sensor detection purpose. This paper introduces the working speed sensor detection system, the system are described in detail the principle component, the principle and test methods. Hardware and software system adopts the measuring process and measurement results for processing. Compared with the traditional test technology, this kind of sensor detection device has simple structure, the characteristics of novelty, easy to realize. Practice has proved in the test, repair within achieved good effect, the system has good dynamic response performance steady precision and practicability, detection, high accuracy, has the broad application prospect..

在线连续自动监测系统

在线连续自动监测系统 一、自动监测系统 1.水质在线自动监测系统是一套以在线自动分析仪器为核心,运用现在传感器技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图、多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储制定的监测数据及各种运行资料、环境资料以备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动恢复功能;远程故障诊断,便于例行维修和应急故障处理等功能。 2. CEMS是英文Continous Emission Monitoring System的缩写,即烟气连续排放监测系统。该系统对固定污染源颗粒物浓度和气态污染物浓度以及污染物排放总量进行连续自动监测,并将监测数据和信息传送到环保主管部门,以确保排污企业污染物浓度和排放总量达标。同时,各种相关的环保设备如脱硫、脱硝等装置,也依靠CEMS的数据进行监控和管理,以提高环保设施的效率。 二、连续监测系统的组成 1、水质自动监测系统主要由如下几部分组成: ①采水单元包括水泵、管路、供电及安装结构部分。 ②配水单元包括水样预处理装置、自动清洗装置及辅助部分。

③分析单元由一系列水质自动分析和测量仪器组成,包括水温、Ph/溶解氧(DO)、电导率、浊度、氨氮、化学需氧量、高锰酸钾指数、总有机碳(TOC)、总氮、总磷、硝酸盐、磷酸盐、氰化物、氟化物、氯化物、酚类、油类、金属离子、水位计、流量/流速/流向计及自动采样器等组成。 ④控制单元包括系统控制柜和系统控制软件;数据采集、处理与存储及基站各单元的控制和状态的监控;有线通讯(ADSL)和无线通讯(GSM、GPRS和CDMA)设备。 ⑤子站站房及配套设施包括站房主体和配套设施。 2、烟气排放连续监测系统(CEMS)的组成: ①颗粒物监测子系统主要对烟气排放中的烟尘浓度进行测量。 ②气态污染物监测子系统主要对烟气排放中NO x、SO2、CO、CO2等气态方式存在的污染物进行监测。 ③烟气排放参数监测子系统主要对排放烟气的温度、压力、湿度、含氧量等参数进行监测,用以将污染物的浓度转换成标准干烟气状态和排放标准中规定的过剩空气系数下的浓度。 ④数据处理子系统主要完成测量数据的采集、存储、统计功能,并按相关标准要求的格式将数据传输到环保局。 三、我公司的现状 1、水质自动监测系统:

车载车流量监控系统方案

车载车流量监控系统使用说明书

1. 车载车流量监控系统 随着现代社会人民生活水平的提高,经济的快速发展,交通拥挤、道路阻塞频繁发生,为了阻止交通拥堵现象的进一步恶化,各国政府启动智能交通计划。 智能交通系统的关键在于交通信息的采集,开发成本低、可大量布设到各个路口的基于无线传感器网络的车流量监控系统,通过控制交叉口合适的信号参数,使不同方向的车流在时间上隔离,控制车流的运行秩序,实现交叉口车辆运行的安全、有序,是解决交通拥挤的一种基本手段。 2.车载车流量监控系统编写背景、目的及意义 2.1编写背景 在汽车内安装无线通信模块,使汽车通过自身安装的传感器节点或道路基础设施上安装的无线传感器节点感知行驶途中的各种信息,已经成为提高行驶安全和城市的交通性能的一种重要手段。[1]大量的车辆传感器节点通过车上以及道路基础设施上安装的无线通信设备,可构成车载无线传感器网络[2],通过车辆之间的中继传输得到全面的城市交通信息。 车载无线网络可以让行驶者或交管部门得到车辆的状态数据和城市的交通数据。车辆状态数据包括行驶时的各种内在状态、比如位置或快慢等;交通数据包括交通流量或路面状况等。除了车上安装的传感装置外,驾驶员也可以通过对道路和交通的观察,获知复杂事件,如发生的交通事故、比较危险的路段等即时事件。 世界各国的研究机构在近年来对车载无线传感器网络持续关注,美国联邦通信委员会(FCC)1999年在5.9GHz的频谱上为智能交通通信分配了75MHz的带宽[3],并制定了DSRC协议。这个75MHz的频带包括了7个10MHz的信道,另外还提供了1个信道用于传递控制信息和6个信道传递服务信息。DSRC协议是一个

基于地磁传感器的车位检测系统设计

基于地磁传感器的车位检测系统设计 摘要:针对近年来兴起的开放式停车场技术,文章 利用三轴地磁传感器HMC5883检测车位中的车辆停放状况,并将传感器的检测数据送至stc12c1052ad单片机,利用动 态波形特征提取算法运算处理,从而确定车辆的停放状态,通过无线发送模块将数据传送到管理终端。管理终端接收的数据通过stc89c52芯片运算整合,将车位状态显示在液晶 屏上,极大的方便了停车场的管理。 关键词:地磁传感器;车位检测;无线传感器网络 1 系统方案设计 1.1 地磁传感器原理 地磁场是一个磁场强度随位置和时间变化而变化的弱 磁场,平均感应强度为50000-60000nT。在没有外部磁场干扰时,传感器内部磁阻电流密度矢量[2]一般呈直线状态;当外部磁场扰动时,电流密度矢量因霍尔效应会与电场方向偏离一定角度,因此,电流的大小和方向将变化,电阻值变化。 设计采用霍尼韦尔公司的三轴地磁传感器HMC5883,HMC5883可以同时感应水平和垂直三个方向的地磁强度。 仅需要判断车位中是否有车辆停放,不必知道车辆停放的空间姿态,所以只使用到了其中的X轴,而另外两轴可以为其

他功能的扩展提供用途,如通过三个轴的磁场感应强度计算出车辆的空间位置状态,从而实现帮助驾驶员规范停车等功能。检测停车位是否有车辆,HMC5883地磁传感器放置如图1,车辆沿x轴的负方向进入停车位,当车辆进入停车位时,x轴产生的磁场变化最大,因此只需读取x轴的变化便可判断车辆的有无,Y轴和z轴均与x轴垂直,z轴指向天空,Y轴与车辆行驶方向垂直,因此几乎不受影响。 1.2 系统结构设计 系统主要由车位检测小板,网络节点,管理终端组成[3]。由安装在车位中的检测小板检测车位数据,通过无线网络将数据发送到管理终端运算处理,显示车位信息,并将数据存入数据库。 2系统硬件电路设计 地磁车位检测小板的检测与发送装置的电路,主要由芯片STC12C1052、霍尼韦尔HMC5883、315MHz无线收发模块,tps61070电源模块等组成,实现对地面磁感线疏密度的检测功能,当车辆停止在检测板上方时,会对该处的地球磁场产生扰动,影响HMC5883内部的铁镍合金的电阻率改变,进而将磁场变动的信号发送给STC12C1052,由 STC12C1052运算处理,再控制315MHz发射模块发送信息给管理终端。检测发送装置的原理设计电路如图3所示。 3 系统软件设计

基于视频的车流量检测算法研究

西南交通大学 毕业设计(论文) 基于视频的车流量检测算法研究 专业: 自动化 指导老师: 侯进 二零一零年六月

西南交通大学本科毕业设计(论文)第I页 院系信息科学与技术学院专业自动化 年级2006级姓名安伟 题目基于视频的车流量检测算法研究 指导教师 评语 指导教师(签章) 评阅人 评语 评阅人(签章) 成绩 答辩委员会主任(签章) 年月日

毕业设计任务书 班级自动化2班学生姓名安伟学号2006 专业自动化 发题日期:2010 年1月1 日完成日期:2010 年6 月15 日 题目基于视频的车流量检测算法研究 题目类型:工程设计√技术专题研究理论研究软硬件产品开发 一、设计任务及要求 车流量信息是交通控制中的重要信息,其检测在智能交通系统中占有重要地位。基于视频图像处理技术的车流量检测系统,通过安装在道路旁边或者中间隔离带的支架上的摄像机和图像采集设备将实时的视频信息采入,经过对视频图像的处理分析可以进行车流量的实时检测。基于视频的车流量检测系统有易安装、维护及实现方便等明显的优势,非常有利于交通系统的管理及控制。具体要求如下: 1. 对图像进行预处理 2. 进行车流量的统计 3. 人机界面简单清楚友好 二、应完成的硬件或软件实验 采集视频图像,对图像进行分析处理,完成车流量的统计,与实际通过车辆数目比较,分析本系统的正确检测率。 三、应交出的设计文件及实物(包括设计论文、程序清单或磁盘、实验装置或产品等) 1. 毕业设计论文(必须完全符合学校规范,内容严禁有丝毫的抄袭剽窃) 2. CD-R(含论文,程序,程序使用说明书,演示视频,盘面注明姓名,专业,日期) 3. 英文翻译按学校规定,导师无特殊要求

车流量检测系统设计

车流量检测系统设计 随着我国经济的快速发展交通安全的有效保障显得尤其重要,并且对交通管理的要求越来越高。与此同时各种各样的道路监控设备也应运而生。雷达监控系统视频监控系统地表传感系统激光检测系统等相继应用。由此计算机科学与现代通信等高新技术运用于交通监控管理与车辆控制以保障交通顺畅及行车安全。而实时获取交通车流量的车辆检测技术是是进行交通管理必不可少的一个步骤。随着我国城市车辆使用的增多道路状况同时也变得复杂如何对道路车流量进行实时监控对统计、预测道路交通状况十分重要并且同时这也是对道路车辆运行情况高效调度的一项十分的重要参考依据。而且当前对道路监测多使用视频方法有事还可能采用人工计数方法此方法对每条公路在某个时间段车辆行驶情况不容易做到长时间、高效的统计。因此我们需要进行一种低成本、高准确率的智能识别装系统的设计由此促进对高速路口交通情况的检测水准。 本文设计了一种基于A T89C51单片机的车速检测系统。其主要原理是将红外传感器测得的电平信号传递到单片机中通过单片机判断处理、计数等功能实现车流量的检测。本系统传感电路采用的的是红外传感矩阵利用单片机实时对传感器的输出数据进行连续读取通过特定的算法处理数据然后送显示或者发出报警信号。本系统致力于为路口车流量的监控服务从而形成对路口行车的科学管理减少交通事故的发生。 1、工作原理及总体方案选择 1.1车流量监测系统的工作原理 红外线矩阵法是一种利用红外传感器组成的红外线矩阵检测设备检测道路上机动车流量和车速的方法。它是利用红外线发射和接收方向较强的特点在车辆经过的路面上安装密度适当的几排红外线发射接收电路由此组成红外线矩阵红外线检测矩阵由两排嵌入路面内的接收器和安装在其上方几米处的发射器组成两排接收器之间的距离为0.5到2米每排接收器由若干间隔0.2到0.9米的接收管和接收电路组成。接收管在没有遮挡的情况下可以接收发射器发出的信号接收电路中产生低电平接收管在受到遮蔽的状况下下收不到发射器发出的信号接收电路中出现高电平信号。因此根据车辆驶入、通过、驶出检测区域以及车辆行驶方向并排行驶车辆的流量等情况引起的矩阵内部各测试点高低电平信号的变化经过硬件电路设计和软件编程计算方法,最终统计计算出经过该测量区域内双向并排经过的多辆车的车流量测量。 1.1.1系统总体模块设计 本系统是利用单片机并且采用模块化设计来设计车流量检测系统只要有车辆经过就会挡住两个发射和接收红外线传感器之间的传感信号这样就能根据车量的流动情况对车流量进行检测。当然对于正常的情况下还会有并行的车量经过本系统也做了设计。系统的总体模块图如下图1

相关文档
最新文档