氮磷检测器

氮磷检测器
氮磷检测器

氮磷检测器

氮磷检测器(nitrogen phosphorus detector,NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。氮磷检测器的使用寿命长、灵敏度极高,可以检测到5×10(-13次)g/s偶氮苯类含氮化合物,2.5×10(-13次)g/s的含磷化合物,如马拉松农药。它对氮、磷化合物有较高的响应。而对其他化合物有的响应值低10000~100000倍。氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。

氮磷检测器

氮磷检测器(NPD)又称热离子化检侧器(TID)是分析含N、P化合物的高灵敬度高选择性和宽线性范围的检测器。1961年Cremer等最初研制的火箱热离子化检测器是在FID检侧器的喷口上方加热碱源。由于采用的碱源为挥发性碱金属,寿命短、检测器灵敏度不稳,无推广价值;1974年Kolb采用不易挥发性碳酸铷和二氧化硅烧结成硅酸铷珠,解决了铷珠寿命短的缺点,由于铷珠在冷氢焰中用电加热。因此检测器的稳定性明显改警、灵敏度显著提高,背景基流从10-9A降至10-13A,从而使NPD一越为气相色谱仪中最常装备的检测器之一,成为检侧痕量氮、磷化合物的气相色谱专一检侧器广泛被用于环保、医药、临床、生物化学、食品等领域。

1 氮磷检测器的结构

NPD的结构与操作因产品型号不同而异,典型结构如图2-26所示。

NPD与FID的差异是在喷口与收集极间加一个热电离源(又称铷珠)。热电离源通常采用硅酸铷或硅酸铯等制成的玻璃或陶瓷珠,珠体约为1~5mm3,支择在一根约0.2mm直径的铂金丝支架上。其成分、形态、供电方式、加热电流及负偏压是决定NPD性能的主要因素,各公司不同型号的NPD电离源的设计也不尽相同。

NPD的操作有两种方式:(1)氮磷型操作,此为主要的操作方式,如图2-27(a)所示,喷嘴不接地,空气和氢气流量较小[V空气<150/ml/min,VH2<(4~9ml/min)]被电加热至红热的电离源,在电离源周围形成冷焰,含N、P的有机化合物在此发生裂解和激发反应,形成N,P的选择性检侧,对烃的选择性可达102~104。(2)磷型操作,如. 2-27(b)所示,喷嘴接地,电离源在正常FID操作状态的火焰中[V空气=300ml/min,VH2=50~60ml/min]加热至发红,烃类化合物的的信号被导入大地,而含P的化合物坡电离源激发,形成P的选择性检测。

为了进一步改善NPD上含P化合物的峰形。有文献报道,可在电离源表面涂Al、Rb粉改善峰形。

2 氮磷检测器的响应机理

NPD的响应机理有不同的解释,土要有Kolb提出的气相电离理论和Patterson与Olah等提出的表面电离理论。Kolb提出的气相电离理论认为电离源被加热后,挥发出激发态铷原子,铷原子与火焰中各基团反应生成Rb+,Rb+被负极电离源吸收还原;火焰中各基团获得电子成为负离子,形成基流。当含N、P化合物进人电离源的冷焰区,生成稳定的电负性基团(CN和PO或PO2)电负性基团从气化的铷原子上获得电子生成Rb+与负离子CN-或PO -,、PO2-。负离子在正电位的收集极释放出一个电子,同时物出信号。Rb+又回到负电位的物表面,被吸收还原.以维持电离源的长期使用。

3 氮磷检测器操作条件的选择

NPD检侧的主要影响因素是加热电流、极化电压和气体流速.

(1)极化电压的影响

与FID相似。极化电压增加。输出信号相应增大;但电压绝对值大于180V时,响应值基本不变。

(2)电离源温度的影响

加热电流决定电高源的表面温度,当表面温度低于600度,基流和响应都小,而且容易出现溶剂淬灭现象;加热电流过大,不仅基流和噪声迅速增加,而且直接影响电离源的寿命,最好温度控制在700~900度,不同型号的检测器相应有不同的加热电流相对应。

3 气体流速

电离源周围的气体及其流速直接影响NPD的灵敏度和选择性。不同形式结构的电离源其影响也不尽相同。对通用型NPD,空气流速增加。电离源表面温度降低。输出信号相应降低,在N-P型操作时,空气流量不应大于150ml/min;P型操作时空气流量不应大于300m l/min,氮气流量过大也会使电离源温度降低,但氮气流量太低也不利于组分参加反应,必须通过实验选定最佳值。氢气增加不仅可以增加反应的概率,而且可以增加电离源的表面温度,使响应迅速增加,但必须小于喷嘴点火流速,否则NPD就变成FID,失去其对N、P 的选择性。一般情况氢气流速必须小于10ml/min。

NPD在测含N化合物上表现出特殊的高灵敏度和高选择性,它对含N化合物的灵敏度高于ELCD,对含P化合物的灵敏度高于FPD,对烃的选择性达104~106。可以认为是气相色谱枪侧器中惟一可以选择性检测痕量含N化合物的检测器,但是NPD固有的缺点是稳定性差和寿命短,为此,不断有新的电离源也包括外热式离子电离源出现。早期NPD的电离源都是采用铷盐制作成小球状,故称为铷珠。目前碱盐不限于铷盐,形状也不限于小球,所以通称为热离子电离源,简称电离源。

4.氮磷检测器的响应因子

NPD的响应与N、P化合物的杂原子流速成正比,其线性范围可达105,但其响应大小还与化合物的分子结构有关,易分解成CN基的化合物其响应值也大,其他结构尤其是硝酸酯、酰胺类响应小,其响应大小顺序为偶氮化合物>腈化物>含氮杂环化合物>芳胺>硝基化合

物>脂肪胺>酰胺,其RNR值见表1。

NPD使用注意事项

为了使NPD保持其最佳性能,预防损坏和出现事故,使用中需注意以下四方面的操作:

1. 电离源的维护

(1)老化电离源老化时,切勿将柱连至检测器。可将柱卸下用闷头螺丝将检测器入口密封,通氢、空气老化之。

(2)开电加热开加热电源后,应逐渐升高加热电流,切勿突然用大电流加热电离源。

(3)氢气流速只要灵敏度等能满足分析方法要求,应尽量用低氢气流速,以延长电离源寿命。

(4)关电加热关电加热前,务必先将加热旋钮退回至不加热状态,然后关电源。以防下次开电源时,加热电流过大。

(5)休息如果较长时间不工作(如过夜),应关加热电流,以延长电离源寿命。

2. 避免大量具电负性的化合物进入检测器

(1)溶剂应避免使用氯代烃溶剂,如:CH2Cl2、CHCl3等。它会使灵敏度急剧下降;虽然以后灵敏度还会逐渐恢复,但影响寿命。水、甲醇、乙醇等溶剂对电离源的性能和寿命也有一定影响,同样要尽量避免。在一定要用氯代烃或用其他溶剂时,为避免溶剂峰后基线不能恢复,可在分析方法中设一时间程序:从进样至出溶剂峰期间,关闭氢气,当溶剂峰出完后再恢复氢流速至原设定值。这样,NPD可很快恢复稳定的基线。

(2)固定液和磷酸切勿用带氰基的固定液,如OV-275、XE-60等。还应避免用磷酸处理载体和玻璃毛等。

(3)水如NPD长期闲置在高温度环境中,检测器内可能积水,造成基流升高。这时,可在通气的情况下,将检测器温度逐渐升至70℃、100℃各保持30min,再升至150℃约15 min,基流即可降至1pA以下。平时正常使用时,检测器温度应保持在150℃以上。

3. 氢气的安全和对NPD 性能的影响

(1)防漏切勿让氢气漏入柱恒温箱,以防爆炸。具体操作同FID。

(2)氢载气不要用氢气作载气,它将极大地影响NPD的灵敏度和专一性。如一定要用氢作载气,流量必须小于3mL/min。

4. 其他

(1)柱流失和气路漏 NPD对柱流失和气路漏不像FID那样敏感,因它是对N、P化合物专一性响应的检测器。尽管如此,实际操作中还是应避免出现这些异常为妥。

(2)清洗在用聚硅氧烷类固定液或作大量硅烷化衍生物样品后,电极和喷嘴均必须定期清洗。

(3)电子线路与故障通常检测器的电子线路不会出现故障。因当代的检测器电子线路都是固态电路。固态电路的特点是:如有故障,在开机后的前四周就会出现。所以,如果28 天是好的,那么28年也不会有问题。通常如出现检测器故障,几乎总是由于操作条件或传感器部分不妥所致。

062.湖泊氮磷赋存形态和分布研究进展

湖泊氮磷赋存形态和分布研究进展 许萌萌1,2张毅敏2高月香2彭福全2汪龙眠2吴晗2,3 (1.河海大学环境学院,南京210098,2.环境保护部南京环境科学研究所,南京210042,3. 常州大学环境与安全工程学院213164) 摘要:湖泊水体和沉积物中氮磷等营养盐的生物地球化学循环直接影响着湖泊的富营养化。所以全面了解氮磷等营养盐的含量分布特征及其来源,为湖泊富营养化的成因及氮磷迁移转化提供了科学的依据。目前,很多研究学者采用了野外采样、实验室分析和收集文献资料相结合的方法,研究了氮磷营养盐的形态含量及分布差异。 关键词:湖泊氮磷赋存形态分布特征 Advances in chemical speciation and distribution of nitrogen and phosphorus in lakes Xumeng Meng1,2Zhang Yimin2,Gao Yue Xiang2,Peng Fu Quan2,Wang Long Mian2,Wu Han2,3 Environment Department of Hohai University,Nanjing210098,2.Nanjing Institute of Environmental Sciences of,Ministry of Environmental Protection,Nanjing210042,3.Environmental and Safety Engineering Department of Changzhou University213164) Abstract:The biogeochemical cycles of nitrogen and phosphorus in the lake water and sediment directly affect the eutrophication of the lake.Therefore,a comprehensive understanding of the content distribution and source of nitrogen and phosphorus can provide a scientific basis for the cause of eutrophication and the migration and transformation of nitrogen and phosphorus.Currently,many researchers using a field sampling, laboratory analysis and the collection method of combining literature studied the content and distribution differences of morphology of nitrogen and phosphorus. Keywords:Lakes Nitrogen and phosphorus Chemical speciation Distribution characteristics 随着社会和经济发展,人为活动导致的湖泊污染已经成为当今世界面临的一个严重的环境问题,尤其是浅水湖泊的富营养化日益成为各国的主要环境问题。工农业废水大量排放,湖泊流域的水体及沉积物的污染问题日益突出,养殖水体尤为严重。水体氮磷营养盐含量过高易引发自身及外部水域的富营养化,严重时导致赤潮或水华频发。 沉积物承载着湖泊营养物质循环的中心环节,一方面对上覆水体起到净化水质的作用,另一方面又不断向上覆水释放营养盐发挥着营养源作用。沉积物氮磷主要来源于水体中颗粒有机物的沉降积累。水体中的氮磷进入沉积物都是要经过“沉降-降解-堆积”的3个阶段,自上而下呈现逐渐变小的趋势。但是由于各个地方物质来源组成、水动力环境、生物化学条件及生物种群等不同,使其含量在垂直分布变化上产生波动,从而反映出不同区环境的不同变化。上覆水的氮磷进入到沉积物中后,会发生明显的形态转化和再迁移作用,其“活性”取决于氮磷在沉积物中的形态[1]。当外源负荷受到控制后,沉积物作为内源污染源,其氮磷还可通过间隙水和上覆水进行物理、生物化学交换[2]。因此了解沉积物中的氮磷赋存和分布对防治富营养化,控制内负荷具有重要意义。养殖水域氮磷的赋存形态分布比较复杂,相关的研究很少。由于过量的污染物的排放,在低水位时期会超过洞庭湖湖自身净化的能力而对栖息于湖内的生物造成严重影响并危害到其生存[3]。 根据国内外调查研究的相关文献资料,湖泊流域的氮磷形态研究不仅仅局限在湖泊中,湖泊

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

固定污染源废气氮氧化物的测定化学发光法

ICS DB 37 山东省地方标准 固定污染源废气氮氧化物的测定 化学发光法 Stationary source emission-Determination of nitrogen oxides- Chemiluminescence method (征求意见稿) 20XX-XX-XX发布20XX-XX-XX实施山东省质量技术监督局发布

DBXX/T XXXX-2017 目次 前言....................................................................................................................................................................... I I 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 方法原理 (2) 5 干扰和消除 (2) 6 试剂和材料 (2) 7 仪器和设备 (2) 8 采样和测定 (3) 9 结果计算与表示 (4) 10 精密度和准确度 (4) 11 质量保证和质量控制 (5) 12 注意事项 (6) 附录A(规范性附录)测定前后仪器性能审核表 (7) I

DBXX/T XXXX-2017 II 前言 本标准按照GB/T1.1-2009给出的规则起草。 本标准由山东省环境保护厅提出并负责解释。 本标准由山东省环保标准化技术委员会归口。 本标准起草单位:山东省环境监测中心站、北京希望世纪有限公司。 本标准验证单位:淄博市环境监测站、潍坊市环境监测中心站、德州市环境保护监测中心站、聊 城市环境监测中心、陵城区环境保护监测站、山东省产品质量检验研究院。 本标准主要起草人:潘光、周成、邹康、李恒庆、谷树茂、潘齐、由希华、高文彪、吕岩、朱永超、刘文凯。

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

化学发光检测

第一章化学发光技术 一、免疫学检测发展阶段 免疫学检测主要是利用抗原和抗体的特异性反应进行检测的一种手段,由于其可以利用同位素、酶、化学发光物质等对检测信号进行放大和显示,因此常被用于检测蛋白质、激素等微量物质。我国免疫学的检测基本历经了以下几个过程,如图1.1所示。 20世纪60年代70年代90年代时间 图1.1免疫学检测发展阶段 尽管免疫诊断在临床诊断中占据着非常重要的地位,但是从我国临床免疫诊断现状来看,无论是临床应用方面,还是产业化角度,都处于相对比较落后的状态,亟待改进。下表1.1就此做一比较: 表1.1 中国免疫诊断现状 由以上分析不难看出,化学发光免疫检测是大势所趋;而取代进口,发展我国的化学发光检测事业,

正是临床检验界着手发展的方向。由此,我公司自1998年立项至今,致利于化学发光检测方案设计,自行开发了具有国内领先水平的化学发光底物,与国外知名检测仪器生产商联合开发了化学发光全自动、半自动检测仪,并自行设计开发了化学发光管理软件,而今形成了仪器、试剂、软件全面配套,为我国的临床检验界提供了一套完善的解决方案。 二、化学发光免疫分析技术 【概述】 本世纪70年代中期Arakawe首次报道用发光信号进行酶免疫分析,利用发光的化学反应分析超微量物质,特别是用于临床免疫分析中检验超微量活性物质。目前,这一技术已从实验室的稀有技术过渡到临床医学的常规检测手段。化学发光免疫分析(Chemiluminescence Immunoassay,CLIA)是将化学发光或生物发光体系与免疫反应相结合,用于检测微量抗原或抗体的一种新型标记免疫测定技术。其检测原理与放射免疫(RIA)和酶免疫(EIA)相似,不同这处是以发光物质代替放射性核素或酶作为标记物,并藉助其自身的发光强度直接进行测定。 化学发光免疫分析既具有放射免疫的高灵敏度,又具有酶联免疫的操作简便、快速的特点,易于标准化操作。且测试中不使用有害的试剂,试剂保持期长,应用于生物学、医学研究和临床实验诊断工作,成为非放射性免疫分析法中最有前途的方法之一。 【原理】 在化学发光免疫分析中包含两个部分,即免疫反应系统和化学发光系统。免疫反应系统,其基本原理同酶联免疫技术(ELISA),常采用双抗体夹心法、竞争法、间接法等反应模式,如图1.2,1.3,1.4所示。 如图1.2双抗体夹心法反应原理示意图

脱氮除磷工艺原理及方法比较

1.水污染现状 自从我们进入和谐社会以来,随着科学和经济的发展,资源严重浪费、环境重度污染等一些问题逐渐突出。由于我国经济发展模式与环境承受能力不相融合,导致现在我国大部分水体造成严重污染。在我国坚持走可持续发展的道路上,水资源的污染和浪费已经成为我国推进现代化建设和可持续发展的绊脚石。防止水资源环境进一步被污染和治理被污染的水资源环境,早就成为我国目前最需要处理的棘手问题之一。水污染的现状也是触目惊心。 2.脱氮除磷工艺原理及方法比较 生物脱氮原理由同化作用、氨化作用、硝化作用、反硝化作用四个步骤组成。在污水生物处理过程中,一部分氮(氮氨或有机氮)被同化成微生物细胞的组分;氨化作用将有机氮化合物在氨化菌的作用下,分解、转化为氨氮;硝化作用实际上是由种类非常有限的自养微生物完成的,该过程分两步:氨氮首先由亚硝化单胞菌氧化为亚硝酸氮,继而亚硝酸氮再由硝化杆菌氧化为硝酸氮;反硝化作用是由一群异养型微生物在缺氧的条件下完成的生物化学过程。生物除磷原理过程中,在好氧条件下细菌吸收大量的磷酸盐,磷酸盐作为能量的储备;在厌氧状态下吸收有机底物并释放磷。 现在,广泛应用的生物脱氮除磷工艺方法有氧化沟法、SBR法、A2/O法等。 ①氧化沟又称连续循环反应器,是20世纪50年代由荷兰的公共卫生所(TNO)开发出来的。氧化沟是常规活性污泥法的一种改型和发展,是延时曝气法的一种特殊形式。其主要功能是供氧;保证其活性污泥呈悬浮状态,是污水、空气、和污泥三者充分混合与接触;推动水流以一定的流速(不低于0.25m/s)沿池长循环流动,这对保持氧化沟的净化功能具有重要的意义。 氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。但是,在实际的运行过程中,仍存在一系列的问题,如污泥膨胀问题、泡沫问题、污泥上浮问题、流速不均及污泥沉积问题。 ②?间歇式活性污泥法简称SBR工艺,一个运行周期可分为五个阶段即:进水、反应、沉淀、排水、闲置。这种一体化工艺的特点是工艺简单,由于只有一个反应池,不需二沉池、回流污泥及设备,一般情况下不设调节池,多数情况下可省去初沉池。 SBR法?工艺流程:?污水?→?一级处理→?曝气池?→?处理水? 特点有:大多数情况下,无设置调节池的心要;SVI值较低,易于沉淀,一般情况下不会产生污泥膨胀;通过对运行方式的调节,进行除磷脱氮反应;自动化程度较高;得当时,处理效果优于连续式;单方投资较少;占地规模较大,处理水量较小。 ③?A2/O法即厌氧一缺氧一好氧活性污泥法。污水在流经厌氧、缺氧、好氧三个不同功能分区的过程中,在不同微生物菌群的作用下,使污水中的有机物、N、P得到去除。A2/O法是最简单的同步除磷脱氮工艺,总水力停留时问短,在厌?氧缺氧、好氧交替运行的条件下,可抑制丝状菌的繁殖,克服污泥膨胀,SVI一般小于100,有利于处理后的污水与污泥分离,

化学发光免疫分析仪

化学发光免疫分析仪招标参数 技术参数及要求 1、检测原理:微粒子直接化学发光技术; 2、测试项目齐全:需具备包含系统性红斑狼疮、磷脂综合征、自免肝、I型糖尿病、血管炎、类风湿关 节炎相关测试项目; 3、感染类项目包括:TORCH、肺炎检测、EB病毒相关测试项目 4、其他项目要求:可检测PCT、AMH、抑制素B、PG I、PG II项目。 5、试剂位:≥20个项目,工作中可在线更换; 6、样本位:≥50人份,原始管上机并随时加载; 7、*检测速度:≥180测试/小时; 8、第一个出结果时间:最快≤10分钟; 9、反应杯:可一次性装载≥1000个反应杯,可在线随机加杯,全程跟踪,不足报警。 10、急诊功能:可支持软件定义任意位为急诊位,急诊优先处理,急诊项目完成时间10-15分钟; 11、反应过程中能连续加载样本试剂及耗品; 12、试剂系统:具备试剂冷藏装置(2-8℃),试剂可在机冷藏存储,试剂不足报警且可在线添加; 13、加样系统:加样(样本添加和试剂添加)系统具备液面感应、随量跟踪、气泡、空吸检测、防堵、 防撞功能; 14、测定的精确性好,TSH分析灵敏度≦0.005ulU/ml; 15、混匀技术:非接触式混匀; 16、交叉污染率:≤2PPM,保证结果精确性; 17、操作系统:具备中文操作系统; 18、通讯功能:可与LIS、HIS系统双向通讯; 19、标准曲线稳定持久,稳定时间≥28天; 20、设备可24小时待机; 21、设备对仪器状态、测试状态、试剂耗材可进行实时监测; 22、设备具有实时故障报警反馈日志记录报警日志功能; 23、检测结果可溯源,并能提供相关资料;

化学发光氮测定仪.发光法

化学发光定氮仪概述: 化学发光定氮仪仪器采用化学发光检测原理,待测样品(或标样)被引入到高温裂解炉后,在1050℃左右的高温下,样品被完全气化并 发生氧化裂解,其中的氮化物定量地转化为一氧化氮(NO)。反应气由载气携带,经过干燥器高氯酸镁脱去其中的水份,进入反应室。亚稳态的一氧化氮在反应室内与来自臭氧发生器的O3气体发生反应,转 化为激发态的NO2*。当激发态的NO2*跃迁到基态时发射出光子,光 信号由光电倍增管按特定波长检测接收。再经微电流放大器放大、计算机数据处理,即可转换为与光强度成正比的电信号。在一定的条件下, 反应中的化学发光强度与一氧化氮的生成量成正比,而一氧化氮的量又与样品中的总氮含量成正比,故可以通过测定化学发光的强度来测定样品中的总氮含量。 适用范围:适用于测定原油、馏分油、石油气、塑料、石油化工产品、食物以及水中的总氮含量。 化学发光定氮仪符合标准:符合SH/T0657、ASTM D4629、ASTM D5762等标准。 化学发光定氮仪技术参数: 测量范围:0.2mg/L~10000mg/L 可测样品状态:固体、液体、气体(配相应进样器) PMT高压范围:DC500V~900V(根据测量浓度的高低,设置所需值。) 工作站:兴化睿科REK-20N

温度范围:室温~1100℃ 控温精度:±3℃ 重复性误差:0.2mg/L≤X<1.0mg/L,≤±0.1mg/L 1.0mg/L≤X<100mg/L,Cv≤10% 100mg/L≤X≤10000mg/L,Cv≤5% 仪器成套性:主机、裂解炉、自动进样器、计算机(含兴化睿科软件)、打印机等。 化学发光定氮仪特点: Windows操作平台,人机对话,操作便捷。 微电流检测采用国内首创硫检测器,使仪器具有灵敏度高、噪声低、线性范围宽、抗干扰能力强等优点。 高压任意调节,标样校正可采取单点校正,方便、快速、准确。 采用国际流行电路和进口器件。 化学发光定氮仪, 化学发光定氮仪, 化学发光定氮仪, 化学发光定氮仪

生物脱氮除磷大比较

生物脱氮除磷大比较 1.污水生物脱氮除磷的基本原理 在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化反应将硝酸盐异化还原成气态氮从水中去除。由此而发展起来的生物脱氮工艺大多将缺氧区和好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立进行。 污水生物除磷是通过厌氧段和好氧段得交替操作,利用活性污泥的超量吸磷特性,使细胞含磷量相当高的细菌群体能够在处理系统的基质竞争中取得优势,剩余污泥的含磷量达到3%-7%,进入剩余污泥的总磷量增大,处理出水的磷浓度明显降低。 2.生物脱氮除磷工艺的比较 2.1 AAO工艺 传统的AAO工艺流程是:污水首先进入厌氧池,兼性厌氧菌将水中的易降解有机物转化成VFAS1回流污泥带入的聚磷菌将体内的聚磷菌分解,此为释磷,所释放的能量一部分可供好氧的聚磷菌在厌氧的环境下维持生存,另一部分共聚磷菌主动吸收VFAS,并在体内储存PHB。进入缺氧区,反消化细菌就利用混合液回流带入硝酸盐及进水中的有机物进行反消化脱氮,接着进入好氧区,聚磷菌除了吸收利用污水中残留的易降解BOD外,主要分解体内储存的PHB产生的能

量供自身生长繁殖。最后,混合液进入沉淀池进行泥水分离,上清液作为处理水释放,沉淀污泥的一部分回流厌氧池,另一部分作为剩余污泥排放。 N2 混合液回流 ↑↓ 进水→厌氧池→缺氧池→好氧(硝化)池→沉淀池→出水 ↑↓剩余污泥 AOO工艺流程图 该工艺简洁,污泥在厌氧、缺氧、好氧环境中交替运行,丝状菌不能大量繁殖,污泥沉降性能好。该处理系统出水中磷浓度科达到1 mg/L以下,氨氮也可达到8 mg/L以下。 该法需要注意的问题是,进入沉淀次得混合液通常要保持一定的溶解氧浓度,以防止沉淀池中反消化和污泥厌氧释磷,但这会导致回流污泥和回流混合液中存在一定的溶解氧回流污泥存在的硝酸盐对厌氧释磷过程也存在一定的影响,同时,系统所排放的剩余污泥中。仅有的一部分污泥是经历了完整的厌氧和好氧的过程,影响了污泥的充分吸磷。系统污泥泥龄因为兼顾硝化菌的生长而不可能太短,导致除磷效果难以进一步提高。 2.2改良Bardenpho工艺

SCD硫化学发光检测器

硫化学发光检测器( SCD) (一)硫化学发光检测嚣对硫化物的检测 1.检测原理和检测器构成 硫化学发光检测器(sulfur chemilucminescence detector,SCD)是目前公认的检测硫最灵敏、选择性最宽的检测器。其检测原理如下。 从柱子洗脱出的含硫化合物跟载气一起流人燃烧室,在高温下(>1800℃)燃烧成so,然后和臭氧03发生反应形成激态so2,后者衰变至基态,发出特征的蓝色光谱(280-420nm); 光波hv通过滤光片后被光电倍增管接收进行检测,从而实现对硫的检测。 SCD的结构示意图如图5-19所示。主要由燃烧室、反应室、臭氧发生器以及相关的气路组成。燃烧室为不锈钢材质,位于色谱仪的顶部,直接和色谱柱相连,以消除色谱峰的拖尾和减小系统的死体积,避免柱效降低。燃烧室的作用是把硫化合物裂解氧化成SO和其他产物。为了避免烃类物质在燃烧室内部积炭,配置有一个除焦阗,定期把积炭物除掉。反应池的作用是使SO和臭氧O3发生反应生成SO2,通过一探头把这S02吸入至反应池中进行反应。臭氧发生器的功能是为燃烧室提供反应所需要的臭氧。此外还有辅助设备真空泵,以便完成上述物质的传送。

为了同时测定烃类化合物和含硫化合物,燃烧炉可装有FID检测器。来自柱子的流出物先通过FID,然后进入SCD进行检测。这种联合检测同时得到硫和其他烃类化合物的信息,而且省掉了分流装置,简化了操作。 2 SCD的性能特征 (l)对硫检测的线性响应和等摩尔响应从反应机理可以得知.SCD对硫的响应是线性响应,其响应值随着硫浓度的增大而线性地增大,并且是等摩尔响应。不管含硫化合物的结构如何,只要是摩尔值相同的硫化物都产生相同的响应值。这个特征使定量测定十分方便简单。而FPD是非线性响应,定量测定很不方便。 (2)一流的灵敏度和选择性SCD的灵敏度一般小于0.5pg/s(s),优于FPD 1个量级。对烷烃、氯代烷烃的选择性高达l07g(S)/g(C),也优于FPD,因而不受大量基体样品的干扰。表5-14为两种检测器对某些硫化物检测限的比较。

化学发光测定仪

贝克曼库尔特UniCel DxI 800全自动化学发光免疫分析仪 强大的样本处理系统、急诊功能 ??真正24小时待机,每小时400个实验 ??样本检测项目的随机组合,急诊标本具有优先权力 ??自动稀释、重检、Reflex Testing功能 ??仪器前部具备一次性上机120个原始管能力,运行状态中可不断循环加入??仪器背部的预留自动化轨道进样模式保证了持续加样能力 ? ? ?

独有的分立一体化设计 ??分立的4个进样系统、一体化的整系统检测方式 ??自动稀释、重检、Reflex Testing功能 ?? 4个进样通道,加快进样速度、任一通道故障不影响其它操作、提高灵活性?? 4个进样通道,根据需要可任意指定检测项目、保证整系统流程的最优化?? 4个进样通道,共享一个检测系统和孵育器、共享一套冲洗、读数系统?? 4个进样通道,使用同一个光量子探测器、共享一个定标和QC结果 ??一体化整系统,避免了分系统组合带来的结果差异 完备的控制、供给系统 ??简单、易学的智能操作软件 ??强大的编程、数据查询、定标、质控、帮助系统 ?? 50个试剂储存于仪器自备冷藏系统中 ??运行中任意随机添加、更换任何一种消耗品,不需要通过软件操作 ??所有消耗品使用完毕后,系统可以自行更换 智能化性能 ??分立一体化的整系统运行 ??预分杯冷藏储存系统的样品管理智能化 ??系统内部定点分检(PnP)系统的传送智能化 ??消耗品/试剂补充的流程智能化 ?? 134个传感器的全面系统监控智能化 ??一目了然的远距离系统指示灯监控方式 ??最简便的人工操作和保养程序 免疫学原理 ??抗原、抗体特异性结合 ??小分子采用(一步、二步)竞争结合法 ??大分子采用(一步、二步)夹心法

化学发光原理及应用

化学发光及生物发光的原理及其应用 第一部分概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: 依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称ECL) 等。 根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、气相、掖相 CL 。分析法;

5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为: 在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。 第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ),第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分子数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物

读《氮磷在农田土壤中的迁移转化规律及其对水环境质量的影响》

读《氮磷在农田土壤中的迁移转化规律及其对水环境质量的影响》 作者——陈英旭梁新强 前言:本书是陈英旭教授领导的团队对太湖流域水环境近十年来持续研究的成果,从田间中观到区域宏观阐明农田土壤氮磷流失的发生机制和界面过程。估算了区域氮磷流失强度与通量,提出了利用新型硝化抑制剂,生态施肥和生态灌溉等方法圆头阻控氮磷流失的策略和措施建议。 国际上关于农田养分流失提出“最佳管理措施”(BMPs Best Management Practices )1、农田最佳养分管理,2、农业水土保持技术及其配套措施,3、等高线条带种植技术,4、在水源保护区指定和执行限定性农业生产技术标准。 内容 农业面源污染:泛指污染物从非固定的地点,通过径流汇入受纳水体并引起水体富营养化或其他形式的污染。三大特征:发生具有随机性,排放途径和排放污染物具有不确定性,时空的差异性。研究的核心过程:降雨径流(代表有美国SCS 模型),土壤侵蚀(美国提出的通用土壤流失方程USLE及后来改进的RUSLE),地表溶质溶出(有效混合深度EDI),土壤溶质溶出四个过程。 农业面源研究常用模型:RUSLE CREAMS AGNPS ANSWERS WEPP SWAT 美国农业部农业研究局(US departent of agriculture and agriculture research service USDAARS)在1992年12月正式发行RUSLE(revised universal soil loss equation)RUSLE是一套完整软件,可以测出适用于不同地区不同作物和耕作方式及林地、草地灯土壤侵蚀速率的很小的变化。 农业面源污染主要调控技术:面临的问题,缺乏适合中国农村特色的施肥技术,不合理的田间耕作管理模式。 稻田淹水时期通过降雨径流及排水径流大量流失的氮磷已经成为影响水体环境的一个重要农业面源污染源。研究对杭嘉湖平原的杭州市,湖州市和嘉兴市调查水中典型水生植物浮萍与藻的数量及分布情况,同时以嘉兴双桥农场大田为例,进一步探讨浮萍密度,藻的数量及多样性以及叶绿素a含量对不同施肥量的响应状况。大量研究表明,藻类数量总量与叶绿素a之间有很好的直线正相关关系,可以作为藻类生物量的表征。而叶绿素a含量与浮萍密度之间呈显著的线性负相关,说明浮萍的生长抑制了田面水中藻类的生长于繁殖。 浮萍除了本身吸收大量氮磷外还影响水体硝化和反硝化及氨挥发等主要氮素转化过程,稻田中大量生找的浮萍可加快田面水尿素态氮的水解过程,浮萍可以起到降低氮素流失的潜能作用,浮萍层的存在可明显降低氨挥发损失,同时有利于提高氮素利用率。 硝化作用是在通气条件下由土壤微生物把氨气和某些胺化合物化为硝态氮化合物的过程。SWAT(soil and water assessment tools)主要是模拟和预测不同土地利用类型和多种农业管理措施对流域的水,泥沙,化学物质的长期影响。

化学发光法氮氧化物分析仪故障分析及解决方案

化学发光法氮氧化物分析仪故障分析及解决方案摘要:在对空气自动监测站仪器的10年维护过程中,遇到很多仪器故障和技术问题,通过对仪器的探索和实践,整理了化学发光法氮氧化物分析仪常见故障分析和解决办法,并着重于实际条件,总结出主要依靠自身来排除故障的方案, 希望对仪器的正常运行提供一些有益的参考。 关键词:氮氧化物分析仪常见故障解决方案 Abstract:For automatic air quality monitoring station instrument in the 10 years maintenance process, met many instrument malfunction and technical problems, through to the instrument of exploration and practice, sorting the chemiluminescence jet-engine analyzer common failure analysis method and solution, and focuses on the actual conditions, summarizes mainly rely on their own to ways to remove the faults, hopes to provide some normal operation of instrument beneficial reference. Key Words:Nitrogen oxides analyzer;Common faults;Solutions 我国近年来在全国各地建成了许多环境空气自动监测站,由于空气自动监测站具有长期性、连续性、自动化运行的特点,所以在运行中经常出现了一些问题,只有通过高质高效的管理维护才能保证仪器设备稳定运行及监测数据准确有效;化学发光法氮氧化物分析仪是一台能够监测NO、NOx、NO2的多参数分析仪,该仪器主要是由电路系

化学发光法测定油品氮含量的影响因素分析

化学发光法测定油品氮含量的影响因素分析 林洁

化学发光法测定油品氮含量的影响因素分析 【摘要】探讨了化学发光法测氮的影响因素,以及不同样品测试结果的分析,指出化学发光法测定油品中具有较高的灵敏度和准确性,该方法可以直接测定油品中0.3-10000 mg/kg的氮含量,而且具有操作简单、快速、适用范围广,仪器维护简便等优点,更适合化工生产中的应用。 【关键词】化学发光法;油品;微量氮 随着炼油技术的发展,石油中的氮化物对石油加工工艺的影响已越来越明显,而且在某些方面的危害比硫化物大得多。许多研究结果表明石油产品中的氮化物是导致油品在贮存过程中生成胶质、颜色变深、安定性变坏的主要因素之一,因而直接影响油品的质量及使用性能。在炼厂催化重整工艺过程中,若装置进料油的氮含量偏高,则可能使催化剂中毒、活性下降,降低轻质油品的产率,造成企业经济损失;另一方面,油品中的氮化物在使用过程中生成氮氧化物,造成环境污染,危害人类的健康。总之,随着原油的重质化以及对石油产品质量要求的提高,准确地测定石油及其产品中的氮含量具有十分重要的意义。 目前国内普遍使用且检测下限能达到2.0 mg/kg的方法主要有微库仑法和化学发光法。微库仑法虽然测定快速,但测定时的影响结果因素很多,不适合测定高硫、高氯含量的样品,特别是在测定重质油品时,操作条件不易掌握,且易使测定结果偏低。而化学发光法克服了微库仑法的缺点,测定不仅快速、准确而且不受样品中高含量的硫、氯影响[1]。但在实际工作中,我们发现在测定氮含量<0.5 mg/kg的轻质油品和沸点>500℃的重质油品时,测定结果精密度容易超出方法允许的范围。因此我们考察了化学发光法在测定过程中影响其灵敏度和准确性的因素,为优化操作条件、提高分析速度和分析结果的准确度提供了参考。 1仪器和方法 1.1试验仪器 美国ANTEK7000N/S元素分析仪,仪器配套有石英裂解管、液体进样器、舟进样系统;R200D-42/205电子天平(德国赛多利斯电子天平仪器公司)。 1.2试验试剂及材料

全自动化学发光免疫分析仪课件

全自动化学发光免疫分析仪 技术审查指导原则 (第一次征求意见稿) 一、前言 本指导原则旨在指导注册申请人对全自动化学发光免疫分析仪注册申报资料的准备及撰写,同时也为技术审评部门对注册申报资料的技术审评提供参考。 本指导原则是对全自动化学发光免疫分析仪的一般要求,申请人应依据产品的具体特性确定其中内容是否适用,若不适用,需具体阐述理由及相应的科学依据,并依据产品的具体特性对注册申报资料的内容进行充实和细化。 本指导原则是对申请人和审查人员的指导性文件,但不包括注册审批所涉及的行政事项,亦不作为法规强制执行,如果有能够满足相关法规要求的其他方法,也可以采用,但需要提供详细的研究资料和验证资料,相关人员应在遵循相关法规的前提下使用本指导原则。 本指导原则是在现行法规和标准体系以及当前认知水平下制定的,随着法规和标准的不断完善,以及科学技术的不断发展,本指导原则相关内容也将适时进行调整。

二、适用范围 化学发光免疫分析根据化学发光物质的类型和发光特点,可分为电化学发光免疫分析和化学发光免疫分析,其中化学发光免疫分析根据发光剂的不同,可分为直接化学发光免疫分析、酶促化学发光免疫分析和鲁米诺氧途径免疫分析。目前,各类型化学发光免疫分析的常见发光剂包括:电化学发光剂为三联吡啶钌[RU(bpy)3]2+,直接化学发光剂为吖啶酯(AE),酶促化学发光剂为辣根过氧化物酶(HRP)催化鲁米诺(3-氨基苯二甲酰肼,luminol)及其衍生物或者碱性磷酸酶催化3-(2′-螺旋金刚烷)-4-甲氧基-4-(3″-磷酰氧基)苯-1,2-二氧杂环丁烷(AMPPD),鲁米诺氧途径发光剂为酞箐、二甲基噻吩衍生物及Eu螯合物。 化学发光免疫技术根据反应过程中标记物是否需要分离可分为均相反应和非均相反应。均相反应主要应用于鲁米诺氧途径免疫分析中,而非均相反应则应用于其他类型化学发光免疫分析中,通过采用固相分离、过滤分离、珠式分离、顺磁性颗粒分离等方式实现游离标记物和免疫复合物标记物的分离,其中顺磁性颗粒分离较其他分离方式更为常用。目前,基于鲁米诺氧途径免疫分析原理的产品还比较少,临床常用的全自动化学发光免疫分析仪更多地采用非均相反应模式。

污水厂脱氮除磷三种方法

污水厂脱氮除磷三种方法 传统A2/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A2/O 工艺进行污水处理。然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。在传统A2/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。 传统A2/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A2/O 工艺进行污水处理。 然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。 在传统A2/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。 传统A2O工艺存在的矛盾 01 污泥龄矛盾 传统A2/O 工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同: 1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d 以上;即使夏季,若SRT<5 d,系统的硝化效果将显得极其微弱。 2)PAOs 属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。

化学发光检测原理和微孔板

化学发光检测原理 概述 化学发光作为一种分析工具的吸引之处就在于检测的简单性。化学发光的实质是自身发光,这意味着化学发光的分析测试仪器只需要提供一种可以检测光信号和纪录结果的方法就可以了。自发光检测仪需要一个闭光的样品室和光检测器。最简单的便是相片纸或X光片,甚至视觉检测器都可以。 化学发光检测方法的简单性使得它的应用很简单并且完全可以自动化。但是它的灵敏度又是怎么样的呢?化学发光有如下两个内在的优势: 1.绝大多数的样品没有“背景”信号,如它们自身不发光。 2.化学发光的检测不是一个比例测试,这是与荧光和吸收或比色测试不同的。在荧光测试中,具有小的Stokes Shift的荧光基团非常难检测。荧光很难从激发波长中分辨出来。 另外一个问题是,特别在样品是浑浊的情况下有一部分杂光会进入到检测器。 在吸收光测试上,其灵敏度受到限制的根本因素是需要在两个相对较强的信号之间去区分一个较小的差别。 需要注意的是检测器对光谱的敏感性近可能接近化学发光的光谱,以得到最大化的灵敏度。一般在自发光仪中的光电倍增管对蓝光有最佳的反应,对红光的末端光谱不太敏感。固态检测器对红光有较好的反应。 X光片广泛用于记录在尼龙膜、纤维素膜或PVDF膜上的化学发光印迹分析。但是我们需要牢记在心的是X光片仅能够用于检测紫外到蓝光光谱范围内的光信号,虽然有一些特殊的光片对增强的绿光有敏感性。 液体样品的检测 有一些特定的词来描绘化学发光检测:灵敏度、线性和动态范围。每一个词的意义如下: 1.灵敏度指的是某种东西可靠检测的最低水平。“某种东西”是指在一个分析测试中的测试物。测试物是被标记了一种可检测的东西,如化学发光化合物或的一种酶。分析物也可以是一种通过与具有标记的亲合物有特异性结合反应而检测的物质。所谓的可靠检测指的是针对一个空白测试样品,检测器能够重复感应到最低水平的信号,而这种信号是由所检测物本身产生的。 2.线性描述的是信号与分析检测物浓度范围之间的关系。理想的比例因子是常数;信号点与分析检测物是一条直线关系。标准曲线可以不是直线,如s形,仍是有用的。 3.动态范围指的是被检测物浓度与信号单一模式的变换范围。它定义的是分析的工作范围。

相关文档
最新文档