STAT3入核的核定位序列研究

STAT3入核的核定位序列研究
STAT3入核的核定位序列研究

伪随机序列的产生及应用设计-通信原理课程设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:信息工程学院 题目:伪随机序列的产生及应用设计 初始条件: 具备通信课程的理论知识;具备模拟与数字电路基本电路的设计能力;掌握通信电路的设计知识,掌握通信电路的基本调试方法;自选相关电子器件;可以使用实验室仪器调试。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、设计伪随机码电路:产生八位伪随机序列(如M序列、Gold 序列等); 2、了解D/A的工作原理及使用方法,将伪随机序列输入D/A中(如 DAC0808),观察其模拟信号的特性; 3、分析信号源的特点,使用EWB软件进行仿真; 4、进行系统仿真,调试并完成符合要求的课程设计说明书。 时间安排: 二十二周一周,其中3天硬件设计,2天硬件调试 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要................................................................................................................................ I 1理论基础知识 (1) 1.1伪随机序列 (1) 1.1.1伪随机序列定义及应用 (1) 1.1.2 m序列产生器 (2) 1.2芯片介绍 (4) 1.2.1移位寄存器74LS194. (4) 1.2.2移位寄存器74LS164 (5) 1.2.3 D/A转换器DAC0808 (6) 2 EWB软件介绍 (8) 3设计方案 (9) 4 EWB仿真 (11) 5电路的安装焊接与调试 (13) 6课程设计心得体会 (14) 参考文献 (15) 附录1 (16)

伪随机码生成器

M序列发生器 M序列是最常用的一种伪随机序列,是一种线性反馈移位寄存器序列的简称。带线性反馈逻辑的移位寄存器设定各级寄存器的初试状态后,在时钟的触发下,每次移位后各级寄存器状态都会发生变化。其中一级寄存器(通常为末级)的输出,随着移位寄存器时钟节拍的推移会产生下一个序列,称为移位寄存器序列。他是一种周期序列,周期与移位寄存器的级数和反馈逻辑有关。 以4级移位寄存器为例,线性反馈结构如下图: 4级以为寄存器反馈图 其中a4=a1+a0

信号a4:a0禁止出现全0,否则将会出现全0,序列不变化。实验仿真 Code: library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity random_4 is Port ( clk : in STD_LOGIC; reset : in STD_LOGIC;

din : in STD_LOGIC_VECTOR (3 downto 0); dout : out STD_LOGIC_VECTOR (3 downto 0); load : in STD_LOGIC); end random_4; architecture Behavioral of random_4 is signal rfsr :std_logic_vector(3 downto 0); --signal temp:std_logic; begin process(clk,reset,load,din) begin if (reset ='1') then rfsr <=(others =>'0'); elsif (clk' event and clk='1') then if(load ='1') then ----load =1 rfsr<= din; else rfsr(3) <= rfsr(0) xor rfsr(1); rfsr(2 downto 0) <= rfsr(3 downto 1); end if; end if; end process; ------signal rename----

(完整版)伪随机序列的毕业设计

摘要 本毕业设计主要介绍了两种常用的反馈移位寄存器序列(m序列和Gold序列)的特性,并对其进行仿真研究。 伪随机序列良好的随机性和接近于白噪声的相关函数,使其易于从信号或干扰中分离出来。伪随机序列的可确定性和可重复性,使其易于实现相关接收或匹配接收,因此有良好的抗干扰性能。伪随机序列的这些特性使得它在伪码测距、导航、遥控遥测、扩频通信、多址通信、分离多径、数据加扰、信号同步、误码测试、线性系统、各种噪声源等方面得到了广泛的应用,特别是作为扩频码在CDMA系统中的应用已成为其中的关键问题。 在本论文中首先简要阐述了伪随机序列的研究现状及其相关意义,接着介绍了伪随机序列的发展历史,研究方法和研究工具。然后分别对m序列和Gold序列这两种常用的伪随机序列的生成过程、随机特性以及相关特性进行了详细的研究,并分析它们的优点以及存在的问题。最后在理论证明的基础上应用MATLAB仿真验证它们的随机特性,并用仿真做出m 序列和Gold序列相关特性图形并加以比较。 关键词:伪随机序列;m序列;Gold序列;相关;

ABSTRACT Matlab software used extensively in many engineering fields due to its strong operation fanction. To expanding or compressing the signal spectrum in spread spectrum system,the signal is generally multipled by a spread Spectrum sequence. The character of spread spectrum sequence significantly affects the communication quality. In all PN sequences, m-sequence and Gold-sequence are often used asspread spectrum sequence. In this paper, the brief introduction of the theory, property and constructing means of the two sequences are given first, and the generation and analysis of them by programming with M language in MATLAB are given later. The simulation results show the correctness and feasibility of this method.The simple and intuitive method is convenient for the engineering personnel. KEYWORDS:PN sequence; Sequence; Spread spectrum sequence 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除

Gold序列的仿真研究

Gold序列的仿真研究 Gold序列的仿真研究 摘要: Gold序列是R·Gold提出的一种基于m序列的码序列,这种序列有较优良的自相关和互相关特性,构造简单,产生的序列数多,因而获得了广泛的应用。本文对Gold序列进行仿真研究,首先介绍了扩频通信中常用的m序列和Gold序列码产生的方法原理和性质,运用Matlab对Gold码的生成和性能进行了仿真分析。 关键词:伪随机序列;Gold序列;m序列;Matlab仿真 SIMULATION OF GOLD SEQUENCES Abstract:Gold sequences is proposed by R ? Gold which is based on m sequences. Gold sequences has good properties, such as good autocorrelation and cross-correlation, easy to construct and more sequences, etc, therefore it has wide applications. This paper investigates the Gold sequences. The principle and performance of m sequences and Gold sequences in spread spectrum communication are first introduced in the paper. Simulation by Matlab is also provided in the paper to analyze the nature of Gold sequences. Key words: Pseudo-random sequence;Gold sequence;m sequence;Matlab simulation

伪随机序列发生器本科毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

PN码的设计

课程名称:通信系统课程设计课题名称:PN码的设计 系部:电气与信息工程学院专业班级:通信13101 学号:201316020115 学生姓名:朱恩邦 指导教师:侯清莲 完成时间:2016-12-28 报告成绩:

目录 摘要....................................................... 错误!未定义书签。ABSTRACT.. (4) 第一章前言 (5) 1.1设计的提出 (5) 1.2 伪随机序列的应用及其意义 (5) 1.3 伪随机序列研究现状 (6) 1.4设计内容 (6) 第二章伪随机序列与仿真工具的简介 (6) 2.1 伪随机序列理论的发展历史 (7) 2.2 伪随机序列的构造方法 (8) 2.3 MATLAB简介 (8) 第三章m序列 (10) 3.1 m序列的定义 (10) 3.2 m序列的产生 (10) 3.3 m序列的性质 (12) 3.4 m序列的计数 (16) 第四章Gold序列 (16) 4.1 Gold序列的定义 (16) 4.2 m序列优选对 (17) 4.3 Gold序列的产生结构 (20) 4.4 Gold码的性质 (21) 4.5 平衡Gold码 (23) 第五章序列的仿真及其仿真比较 (23) 5.1 m序列的仿真 (23) 5.2 Gold序列的仿真 (26) 5.3 MATLAB环境中伪随机序列相关函数的实现及特性 (28) 5.4 两种相关函数间的相关特性比较 (29) 第六章心得体会 (30) 参考文献: (31)

PN码的设计 摘要 本次设计主要介绍了PN序列中两种常用的反馈移位寄存器序列(m序列和Gold序列)的特性,并对其进行仿真研究。 伪随机序列良好的随机性和接近于白噪声的相关函数,使其易于从信号或干扰中分离出来。伪随机序列的可确定性和可重复性,使其易于实现相关接收或匹配接收,因此有良好的抗干扰性能。伪随机序列的这些特性使得它在伪码测距、导航、遥控遥测、扩频通信、多址通信、分离多径、数据加扰、信号同步、误码测试、线性系统、各种噪声源等方面得到了广泛的应用,特别是作为扩频码在CDMA系统中的应用已成为其中的关键问题。 在本论文中首先简要阐述了伪随机序列的研究现状及其相关意义,接着介绍了伪随机序列的发展历史,研究方法和研究工具。然后分别对m序列和Gold序列这两种常用的伪随机序列的生成过程、随机特性以及相关特性进行了详细的研究,并分析它们的优点以及存在的问题。最后在理论证明的基础上应用MATLAB仿真验证它们的随机特性,并用仿真做出m序列和Gold序列相关特性图形并加以比较。 【关键词】:PN序列(伪随机序列);m序列;Gold序列;相关;

伪随机码发生器设计

伪随机码发生器设计 1 引言 随着科学技术的进步,现代战争样式向信息战形式发展。现代战争胜负对于信息获取的依赖程度前所未有的提高。在现代战争中,若己方的通讯交流方式早敌军破获,则地方将获取己方部队动向或实施信息干扰。将会使部队陷入极其危险地境地中。因此,信息战对通讯加密手段的要求极高。 伪随机序列(Pseudonoise Sequence)又称伪噪声或伪随机码,具有类似随机信号的一些统计特性,但又是有规律的,容易产生和复制的。最大长度线性移位寄存器序列(m序列)是保密通信中非常重要的一种伪随机序列,它具有随机性、规律性及较好的自相关和互相关性,而且密钥量很大。利用m序列加密数字信号,使加密后的信号在携带原始信息的同时具有伪噪声的特点,以达到在信号传输的过程中隐藏信息的目的;在信号接收端,再次利用m序列加以解密,恢复出原始信号。这样,通过对m序列的应用,将大大的提高通讯的保密程度和防窃取能力。这样的通讯手段被称为扩展频谱通信 扩展频谱通信(Spread Spectrum Communication)是将待传送的信息数据被伪随机编码也就是扩频序列调制,实现频谱扩展以后再在信道中传输,接收端则采用与发送端完全相同的编码进行解调和相关处理,从而恢复出原始的信息数据。在这其中,伪随机码发生器是十分重要的一环,是对信息加密的核心器件。m序列伪随机码发生器即使通过m序列的方式对信息数据编码。 本系统所设计的伪随机码发生器,产生m序列伪随机码。系统采用AT89S51单片机作为控制芯片,控制使用LCD12864显示处理器产生的m序列伪随机码,并且可通过按键对参数修改,设置初始码及m 序列长度。单片机根据设定的初始码及m序列长度,按照约定的逻辑运算关系,循环往复的产生0或者1。 2 发生器系统设计 2.1总体设计 系统分为信息处理、实时显示和按键修改共五大模块。 系统总体结构框图如图1所示:

扩频系统使用的伪随机码PN码

第六章 扩频系统使用的伪随机码(PN 码) 在扩展频谱系统中,常使用伪随机码来扩展频谱。伪随机码的特性,如编码类型,长度,速度等在很大程度上决定了扩频系统的性能,如抗干扰能力,多址能力,码捕获时间。 6.1 移位寄存器序列 移位寄存器序列是指由移位寄存器输出的由“1”和“0”构成的序列。相应的时间波形是指由“1”和“-1”构成的时间函数,如图6-1所示。 图6-1 (a )移位寄存器序列 (b )移位寄存器波形 移位寄存器序列的产生如图6-2 。主要由移位寄存器和反馈函数构成。移位寄存 器内容为),,,(21n x x x f 或1,反馈函数的输入端通过系数与移位寄存器的各级状态相联()(1)(0通或断=i c )输出通过反馈线作为1x 的输入。移位寄存器在时钟的作用下把反馈函数的输出存入1x ,在下一个时钟周期又把新的反馈函数的输出存入1x 而把原1x 的内容移入2x ,依次循环下去,n x 不断输出。 根据反馈函数对移位寄存器序列产生器分类: (1) 线性反馈移位寄存器序列产生器(LFSRSG ):如果),,(1n x x f 为n x x ,,1 的模2加。 (2) 非线性反馈移位寄存器序列产生器(NLFSRSG ):如果),,(1n x x f 不是n x x ,,1 的 模2加。 例1: LFSRSG :n=4,4314321),,,(x x x x x x x f ⊕⊕= (a) 图6-2 移位寄存器序列生成器

共16个不同状态,1111,0000为死态,每个状态只来自一个前置态。 例2: LFSRSG :n=4,4143214321),,,(,1,0,0,1x x x x x x f c c c c ⊕===== 设初态为:1,1,1,14321====x x x x ,则移位寄存器状态转移图如下:

水印代码

clear all; %logistic序列生成算法 figure(1); an=linspace(3.1,3.99,400); hold on;box on;axis([min(an),max(an),-1,2]); N=64*64; xn=zeros(1,N); for a=an; x=rand; for k=1:20; x=a*x*(1-x); end for k=1:N; x=a*x*(1-x); xn(k)=x; b(k,1)=x; end plot(a*ones(1,N),xn,'k.','markersize',1); end c=reshape(b,64,64); %二维矩阵调制 for a1=1:64; for a2=1:64; if c(a1,a2)>=0.5; d(a1,a2)=1; else d(a1,a2)=0; end; end; end %水印加密 e=imread('c:\new\123.BMP'); e=double(e); f=bitxor(d,e);%mm=imread('c:\new\0.BMP');nn=double(mm);%h=bitxor(d,mm); g=bitxor(d,f); figure(2); subplot(2,2,1); imshow(d);title('混沌序列矩阵'); subplot(2,2,2); imshow(e);title('水印图像'); subplot(2,2,3); imshow(f);title('混沌加密水印图像'); imwrite(f,'c:\new\0.BMP'); subplot(2,2,4);

伪随机序列

太原理工大学现代科技学院 移动通信技术课程实验报告 专业班级 学号 姓名 指导教师

实验名称 伪随机序列 同组人 专业班级 学号 姓名 成绩 一、 实验目的 掌握数字锁相环的组成、工作原理及在位同步恢复中的应用。 通过本实验掌握m 序列的特性、产生方法及应用。 通过本实验掌握Gold 序列的特性、产生方法及应用,掌握Gold 序列与m 序列的区别. 二、 实验内容 1、观察位同步电路信号波形及特性。 2、观察数字锁相环提取位同步的相位抖动 。 3、观察m 序列,识别其特征。 4、观察m 序列的自相关特性。 5、观察Gold 序列,识别其特征。 6、观察Gold 序列的自相关特性及互相关特性。 三、 实验原理 1数字基带信号本身是否含有位同步信息与其码型有密切关系。二进制基带信号中的位同步离散谱分量是否存在,取决于二进制基带矩形脉冲信号的占空比。若单极性二进制矩形脉冲信号的码元周期为T s ,脉冲宽度为τ,则NRZ 码的τ=T s ,则NRZ 码除直流分量外不存在离散谱分量,即没有位同步离散谱分量1/T s ;RZ 码的τ满足0<τ

伪随机序列matlab仿真

MATLAB实验报告 姓名:李金玮 学号:14061114 班级:14184111

实验七伪随机序列的产生与相关特性分析 一、实验目的 1、了解伪随机序列的相关知识。 2、了解m 序列的相关知识,了解其相关性质。 3、学会用matlab 实现方框图描述的系统,并由此产生m 序列。 二、相关理论知识 (1)伪随机序列 伪随机序列, 又称伪随机码, 是一种可以预先确定并可以重复地产生和复制, 又具有随机统计特性的二进制码序列。在现代工程实践中, 伪随机信号在移动通信、导航、雷达和保密通信、通信系统性能的测量等领域中有着广泛的应用。例如,在连续波雷达中可用作测距信号, 在遥控系统中可用作遥控信号, 在多址通信中可用作地址信号, 在数字通信中可用作群同步信号, 还可用作噪声源以及在保密通信中的加密作用等。伪随机发生器在测距、通信等领域的应用日益受到人们重视。 伪随机信号与随机信号的区别在于: 随机信号是不可预测的, 它在将来时刻的取值只能从统计意义上去描述;伪随机序列实质上不是随机的, 而是收发双方都知道的确定性周期信号。之所以称其为伪随机序列, 是因为它表现出白噪声采样序列的统计特性, 在不知其生成方法的侦听者看来像真的随机序列一样。m 序列作为一种基本的PN 序列,具有很强的系统性、规律性和相关性。 (2)m 序列的产生 ①线性反馈移位寄存器 m 序列发生器的系统框图如图。其中加法器为“模2 相加”运算,寄存器与反馈的每一位只有1、0 两种状态。

由于带有反馈,因此在移位脉冲作用下,移位寄存器各级的状态将不断变化,通常移位寄存器的最后一级做输出,输出序列为 输出序列是一个周期序列。其特性由移位寄存器的级数、初始状态、反馈逻辑以及时钟速率(决定着输出码元的宽度)所决定。当移位寄存器的级数及时钟一定时,输出序列就由移位寄存器的初始状态及反馈逻辑完全确定。当初始状态为全零状态时,移位寄存器输出全0序列。为了避免这种情况,需设置全0 排除电路。 三、实验任务 编写程序利用5级移位寄存器产生m序列,初始状态全1,抽头系数[1 0 0 1 1 1]。 四.我自己的实验代码 clear all close all solve=0; zk=0 a=[1,1,1,1,1]%an c=[1,1,1,0,1,1] lena=length(a) lenb=length(c) newc=fliplr(c) shuchu=zeros(1,lena) for zk=1:2^(lena+1) for k=1:lena zhong(k)=a(k)*newc(k); lenz=length(zhong) %solve=0; end%%%%得到每个被加数 for t=1:lenz solve=solve+zhong(lenz-t+1) if solve>=2 solve=0

伪随机序列

伪随机序列 扩频通信技术在发送端以扩频码进行扩频调制,在接收端以相关解扩技术进行收信,这一过程使其具有诸多优良特性,即抗干扰性能好、隐蔽性强、干扰小、易于实现码分多址等。 扩频调制即是将扩频码与待传输的基带数字信号进行模二叠加(时域相乘)。扩频调制后的信号还需经过载波调制后才可发送至信道。而接收端则采用相干解扩和解调,恢复出原始数据信息,以达到抑制干扰的目的。 扩频调制是通过伪随机码或伪随机序列来实现的。从理论上讲,用纯随机序列来扩展信号的频谱是最重要的,但是接收端必须复制同一个伪随机序列,由于伪随机序列的不可复制性,因此,在工程中,无法使用纯随机序列,而改为采用伪随机序列。 各类扩频通信系统都有伪随机编码序列,而且具有良好随机特性和相关特性的扩频编码对于扩频通信是至关重要的,对扩频通信的性能具有决定性的重要作用。在扩频通信系统中,抗干扰、抗截获、信息数据隐蔽和保密、多径保护和抗衰落、多址通信、实现同步捕获等都与扩频编码密切相关。能满足上述要求的扩频编码应具有如下的理想特性: (1)有尖锐的自相关特性; (2)有处处为零的互相关; (3)不同码元数平衡相等; (4)有足够的编码数量; (5)有尽可能大的复杂度。 m序列 m序列是最长线性移位寄存器序列的简称。顾名思义,m序列是由多级移位寄存器或其延迟元件通过线性反馈产生的最长的码序列。在二进制移位寄存器中,若n为移位寄存器的级数,n级移位寄存器共有2n个状态,除去全零状态外,还剩下2n-1种状态,因此它能产生最大长度的码序列为2n-1位。故m序列的线性反馈移位寄存器称做最长线性移位寄存器。 产生m序列的移位寄存器的电路结构,即反馈线连接不是随意的,m序列的

基于FPGA 的伪随机序列的生成方法及应用

摘要:通过分析各种伪随机序列生成方法,提出了一种基于M 序列的连续抽样方法,可以生成满足自适应光学系统SPGD 控制算法要求的多路、相互独立以及服从伯努利分布的伪随机序列。该方法适合于用FPGA等超大规模集成电路实现,且具有占用硬件资源较少,实现方便等优点。用FPGA 实现了用于61 单元自适应光学系统SPGD 控制算法的伪随机序列,并将此方法应用于基于SPGD 控制算法的自适应光学系统实验中,实验表明,该方法能够满足自适应光学系统SPGD 算法的需求,系统实现成功闭环。 1 引言 随机序列是一组满足特定统计学规律的数据,在信号理论分析中应用非常普遍。由于精确的随机序列生成方法较为复杂,产生的随机序列不具有可重复性等特点,在很多应用场合使用伪随机序列。伪随机序列在扩频通信、信息加密和系统测试等诸多领域中都有着广泛的应用。在自适应光学SPGD 算法中,伪随机序列亦有相当重要的作用。 Vorontsov 等人在1997 年将SPGD 算法引入到自适应光学领域[2]。国内在近几年开始了对 SPGD 算法在自适应光学系统应用的研究,并且在计算机上用软件编程实现了算法,进行了自适应光学的系统实验[3]。自适应光学SPGD 控制算法的研究趋势是使用专用的信号处理硬件电路作为算法的实现平台,以获得更高的迭代速度和更好的收敛效果。Cauwenberghs等人设计了专用的模拟超大规模集成电路实现SPGD 控制算法,并且在一些应用领域进行了实验[5]。目前自适应光学系统的规模普遍达到几十上百单元。针对多单元自适应光学系统SPGD 控制算法的特殊要求,本文提出了一种适合于用FPGA 硬件电路产生满足算法要求的多路伪随机序列的生成方法,完成了FPGA 电路的硬件实现,并将其用于实现61 单元自适应光学SPGD控制算法,同时进行自适应光学的闭环实验。 2 自适应光学 SPGD 控制算法对伪随机序列的要求 SPGD(the Stochastic Parallel Gradient Descent algorithm)算法通过对多路的控制参数加入随机并行的扰动,使用性能指标测量值的变化量与控制参数的变化量进行控制参数的梯度估计,以迭代方式在梯度下降方向上进行控制参数的搜索。在自适应光学SPGD 算法中,控制参数为变形镜的控制电压,随机并行的扰动通过多路伪随机序列模拟。SPGD 算法中随机并行扰动的特性,对伪随机序列也提出了相应的要求[5]: (1) 路数多。路数等于变形镜单元数(即变形镜上驱动单元的数目)。例如在一个61 单元的自适应光学系统中,就需要产生61 路的伪随机序列。 (2) 伪随机序列两两相互独立。相互独立可避免变形镜各驱动单元间的相互耦合。 (3) 伪随机序列符合伯努利分布,两个样本值出现的概率各为0.5。 3 硬件电路实现伪随机序列的传统方法

伪随机序列

目录 伪随机序列 (2) 1 基本原理 (2) 1.1 背景 (2) 1.2 实现原理 (2) 2 实现方式 (3) 3 FPGA的实现 (5) 3.1 设计思路 (5) 3.2 代码实现分析 (5) 3.2.1斐波那契方式 (5) 3.2.2伽罗瓦方式 (9) 4 总结 (12)

伪随机序列 1 基本原理 1.1 背景 随着通信技术的发展,在某些情况下,为了实现最有效的通信应采用具有白噪声统计特性的信号;为了实现高可靠的保密通信,也希望利用随机噪声;另外在测试领域,大量的需要使用随机噪声来作为检测系统性能的测试信号。然而,利用随机噪声的最大困难是它难以重复再生和处理。伪随机序列的出现为人们解决了这一难题。伪随机序列具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理,有预先的可确定性和可重复性。由于它的这些优点,在通信、雷达、导航以及密码学等重要的技术领域中伪随机序列获得了广泛的应用。而在近年来的发展中,它的应用范围远远超出了上述的领域,如计算机系统模拟、数字系统中的误码测试、声学和光学测量、数值式跟踪和测距系统等也都有着广阔的使用。 伪随机序列通常由反馈移位寄存器产生,又可分为线性反馈移位寄存器和非线性反馈移位寄存器两类。由线性反馈移位寄存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移位寄存器,即为通常说的m序列,因其理论成熟,实现简单,应用较为广泛。 m序列的特点: (1)每个周期中,“1”码出现2n-1次,“0”码出现2n-1次,即0、1出现概率几乎相等。 (2)序列中连1的数目是n,连0的数目是n-1。 (3)分布无规律,具有与白噪声相似的伪随机特性。 1.2 实现原理 在二进制多级移位寄存器中,若线性反馈移位寄存器(LFSR)有n 阶(即有n级寄存器),则所能产生的最大长度的码序列为2n-1位。如果数字信号直接

通信原理伪随机序列课程设计

1课程设计概述 本课程设计主要是使学生增进对伪随机序列的认识,加深对通信原理理论方面的理解,使学生了解如何产生伪随机序列以及D/A 的工作原理及使用方法,并将伪随机序列输入D/A 转换器,观察其模拟信号特性。 设计伪随机码电路:产生八位伪随机序列(本次产生的是m 序列);了解D/A 的工作原理及使用方法,将伪随机序列输入D/A 中(如DAC0808),观察其模拟信号的特性;分析信号源的特点,使用软件进行仿真;进行系统仿真,调试并完成符合要求的课程设计书。 2设计相关知识介绍 2.1伪随机序列的定义 伪随机序列是一种可以预先确定并可以重复产生和复制,且具有随机统计特性的二进制码序列。m 序列是最常见的一种伪随机序列,它是最大长度线性反馈移位寄存器序列的简称.之所以称其为伪随机序列,是因为它表现出白噪声采样序列的统计特性,在不知其生成方法的侦听者看来像真的随机序列一样.m 序列具有很强的系统性、规律性和相关性. 在现代工程实践中,伪随机信号在信息安全、数字网络、移动通信、导航、雷达和保密通信、通信系统性能的测量等领域中有着广泛的应用.例如:在连续波雷达中可用作测距信号,在遥控系统中可用作遥控信号,在多址通信中可用作地址信号,在数字通信中可用作群同步信号,还可用作噪声源以及在保密通信中起加密作用等121.基于伪随机序列具有的科学价值和社会价值,其分析、构造和生成一直是国内外相关领域研究的热点,因此研究设计m 序列在现代社会中依然具有重要意义。 2.2 m 序列及其产生 m 序列是最长线性反馈的移位寄存器序列的简称。它是由带线性反馈的移存器产生的周期最长的序列。在4级线性反馈移存器中,设其初值状态(3210,,,a a a a )=(1,0,0,0),则在移位一次时,由3a 和0a 模2相加产生新的输入4a =1 0=1,新的状态变为(4321,,,a a a a )=(1,1,0,0)。这样移位15次后又回到初始状态(1,0,0,0)。不难看出,若初始状态为全“0”,即(0,0,0,0),则移位后得到的仍为全“0”状态。这就意味着在这种反馈移存器中应该避免出现全“0”状态,否则移存器的状态将不会改变。因为4级移存器共有2的4

伪随机序列在CDMA通信系统用的应用31概述在扩频系统中

第三章 伪随机序列在CDMA 通信系统用的应用 3.1 概述 在扩频系统中,伪随机码序列起着很重要的作用。在直扩系统中,在发送端用伪随机码(PN 码)将信号频谱扩展,送入信道进行传输,在接收端用相同的PN 码完成解扩。扩频系统的性能同采用的伪随机码的性能有很大关系,伪随机码性能的好坏,直接关系到整个性能的好坏。 shannon 编码定理指出:只要信息速率R d 小于信道容量C ,则总可以找到某种编码方法,使在码字相当长的条件下,能够几乎无差错的从受到高斯白噪声干扰的信号中复制出原发送信号。高斯白噪声的理想特性为: ()()2 n n R τδτ= 式中 2 n 为白噪声的双边噪声谱密度。 从理论上讲,纯随机序列去扩展信号频谱是最理想的。但是很难实现白噪声的放大、调制、检测、同步及在接收机中为了解扩复制一个同发送端扩频码相同的副本。因此,工程上只能用伪随机码(PN 码)或伪噪声序列作为扩频码。伪随机序列具有类似噪声的性质,但它又是周期性有规律的,既容易产生,又可以复制。在实际应用系统中,对伪随机序列的要求一般如下:1、易于产生;2、具有随机性;3、尽可能长的周期;4、平衡性,即随机序列中0和1的个数相等;5、自相关函数具有类似于白噪声自相关函数的性质;6、良好的互相关特性。 最简单、最常用的伪随机编码是m 序列。m 序列有尖锐的自相关特性,有较小的互相关值,码元平衡,但序列数目不多,序列复杂度不大。1976年R.Gold 提出了新的一类序列:Gold 序列,它与m 序列的相关特性大致相同,但序列数目却大大增加,序列复杂度也有所改善,也是一种非常重要的扩频序列。

伪随机m序列发生器的产生设计

信息科学与技术学院 通信原理课程设计课题名称:伪随机M序列发生器设计 学生姓名:许奎英2008082491 学院:信息科学与技术学院 专业年级:电子信息工程2008级 指导教师:邓红涛 完成日期:二○一一年七月十二日

目录 前言 (3) 摘要 (4) 理论基础知识 (5) 伪随机序列 (6) 伪随机序列定义及应用. (7) m序列产生器 (7) 芯片介绍 (8) 移位寄存器74LS164 (9) D/A转换器IDAC (9) EWB软件介绍 (10) 设计方案 (10) EWB仿真 (11) 电路的调试 (13) 参考文献 (13) 实验心得 (14) 附录 (15)

前言 题目:伪随机序列的产生及应用设计 初始条件: 具备通信课程的理论知识;具备模拟与数字电路基本电路的设计能力;掌握通信电路的设计知识,掌握通信电路的基本调试方法;自选相关电子器件;可以使用实验室仪器调试。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、设计伪随机码电路:产生八位伪随机序列(如M序列); 2、了解D/A的工作原理及使用方法,将伪随机序列输入D/A中(如DAC0808),观察其模 拟信号的特性; 3、分析信号源的特点,使用EWB软件进行仿真; 4、进行系统仿真,调试并完成符合要求的课程设计说明书。

摘要 伪随机序列具有良好的随机性和接近于白噪声的相关函数,使其易于从信号或干扰中分离出来。伪随机序列的可确定性和可重复性,使其易于实现相关接收或匹配接收,因此有良好的抗干扰性能。伪随机序列的这些特性使得它在伪码测距、导航、遥控遥测、扩频通信、多址通信、分离多径、数据加扰、信号同步、误码测试、线性系统、各种噪声源等方面得到了广泛的应用,特别是作为扩频码在CDMA系统中的应用已成为其中的关键问题。此次课设根据m序列的产生原理,利用74LS164加少量门电路方法设计了8位m序列发生器。 关键词:伪随机序列m序列移位寄存器D/A转换EWB仿真

基于MATLAB的伪随机序列实现论文

基于MATLAB的伪随机序列实现Realization of Pseudo-random Sequence Based on MATLAB

作者声明 本人声明所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果,除了文中特别加以标注的地方外,没有任何剽窃、抄袭、造假等违反学术道德、学术规的行为,也没有侵犯任何其他人或组织的科研成果及专利。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了意。如本毕业设计(论文)引起的法律结果完全由本人承担。 毕业设计(论文)成果归工程大学邮电与信息工程学院所有。 特此声明。 作者专业: 作者学号: 作者签名: ____年___月___日

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。 作者签名:日期:

学位论文原创性声明 本人重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

实验一 随机信号的产生、相关分析及其应用实验

大连理工大学实验预习报告 学院(系):信息与通信工程学院专业:班级:1401 工程信电子

息姓名:学号组:___ :***** ***** 实验时间:实验室:实验台:C227 2016/10/31 指导教师:李小兵 实验I:随机信号的产生、相关分析及其应用实验 一、实验目的和要求 通过实验理解掌握随机信号样本生成的原理和方法、掌握随机过程相关函数的计算原理和方法。训练MATLAB程序代码编写能力,要求完成以下工作,并将实验结果与理论分析对照。 1.基于均匀分布伪随机数,掌握均匀分布白噪声典型生成方法。 2.基于均匀分布伪随机数,掌握高斯分布白噪声典型生成方法。 3.掌握随机信号相关函数计算、相关分析及实现方法。 二、实验原理和内容 1 实验原理 较简单的伪随机序列产生方法是采用数论中基于数环理论的线性同余法(乘同余法、混合同余法),其迭代公式的一般形式为f(x) = (r*x + b) Mod M,其离散形 式为s(n + 1) = [r*s(n)+ b] Mod M。其中,s(n)为n 时刻的随机数种子,r 为扩展因子,b 为固定扰动项,M 为循环模,Mod M 表示对M 取模。为保证s(n)的周期为M,r 的取值应满足r = 4k + 1,p M 2 ,k与p 的选取应满足:r < M,r(M-1) + 1< 231-1。通常公式中参数常用取值 为s(0) =12357,r = 2045,b = 1,M =1048576。 较简单的高斯白噪声产生方法是基于概率论中的中心极限定理。即无穷多个同分布随机变量之和构成随机变量服从高斯分布。方便起见,可用 N 个(通常 N=12)均匀分. 布随机变量之和 Xi近似高斯分布随机变量。若 Xi,i = 0, 1, …, 11 在[0, 1)上服从均匀分布,则 Y= 错误!未找到引用源。近似服从均值为 0,方差为 1 的高斯分布。 随机信号相关函数计算、相关分析及实现方法原理: 离散随机序列自相关函数定义为 Rx(m)=E[x(n)x(n+m)]。对于各态历经随机过程,

伪随机序列仿真实验报告

伪随机序列仿真仿真实验报告 报告时间:2013年5月13日 姓名:刘梦曦 学号:2010101012 电子邮件:604417989@https://www.360docs.net/doc/d47831907.html, 一、实验目的 1、熟悉MATLAB 仿真的应用; 2、掌握伪随机序列的原理、软件产生,并仿真分析其相关特性。 二、实验内容 1、MATLAB中产生127位gold序列,并分析其自相关和互相关特性。 2、采用MATLAB的伪随机函数,生成127位二进制伪随机序列,并分析其自 相关和互相关特性。 3、收集学习技术资料,列举五种以上通信系统中采用的伪随机序列。 三、实验过程记录 根据搜集的资料在matlab中编写代码,然后运行,得到相应的特性图。 1、产生127位的gold序列 2、gold序列的自相关性 在MATLAB中编写的代码如下: close all; clear all; clc; n=7;%移位寄存器级数 P=2^n-1%m列的周期 %产生m1序列% c1=[1 0 1 0 0 1 1];%反馈系数==211 reg1=[zeros(1,n-1) 1];%初始化移位寄存器 m1(1)=reg1(n); for i=2:P new_reg1(1)=mod(sum(c1.*reg1),2) ; for j=2:n new_reg1(j)=reg1(j-1); end reg1=new_reg1; m1(i)=reg1(n); end subplot(311); stairs(m1); xlabel('k'); title('m1序列');

%产生m2序列% c2=[1 0 1 1 0 0 1];%反馈系数==217 reg2=[zeros(1,n-1) 1];%初始化移位寄存器 m2(1)=reg2(n); for i=2:P new_reg2(1)=mod(sum(c2.*reg2),2) ; for j=2:n new_reg2(j)=reg2(j-1); end reg2=new_reg2; m2(i)=reg2(n); end subplot(312); stairs(m2); xlabel('k'); title('m2序列'); %产生gold序列% for i=0:P-1 shift_m2=[m2(i+1:P) m2(1:i)];%m2 g(i+1,:)=mod(m1+shift_m2,2);%模2加 end subplot(313) stairs(g(1,:)); xlabel('k'); title('gold序列的第1行'); %gold序列的自相关特性和互相关特性% g1=g(1,:); g2=g(2,:);%取gold序列的第2行% for i=-P+1:-1 % shift=[g1(i+P+1:P) g1(1:i+P)]; % r1(P+i)=sum(g1(P+i).*shift(P+i)) ; % end % for i=0:P-1 % shift=[g1(i+1:P) g1(1:i)]; % r1(P+i)=sum(g1(i+1).*shift(i+1)) ; % end r1=conv(g1,g1); figure(2) subplot(211) stem(r1/P); xlabel('k'); title('g1的自相关特性'); % for i=-P+1:-1 % shift=[g1(i+P+1:P) g1(1:i+P)]; % r2(P+i)=g2(P+i).*shift(P+i); % end % for i=0:P-1 % shift=[g1(i+1:P) g1(1:i)]; % r2(P+i)=g2(i+1).*shift(i+1); % end r2=conv(g1,g2); subplot(212); stem(r2/P); xlabel('k'); title('g1与g2的互相关特性'); (产生图形见附录) 四、分析及结论 由这个实验我们可以看出,Gold序列间不仅有良好的互相关性能,而且个数远比m序列多。但是Gold序列的周期自相关函数在非零点也是三值的,这一点远不如m序列。

相关文档
最新文档