3.3泰勒公式

常用泰勒公式

简介 在数学上, 一个定义在开区间(a-r, a+r)上的无穷可微的实变函数或复变函数f的泰勒级数是如下的幂级数 这里,n!表示n的阶乘而f(n)(a) 表示函数f在点a处的n阶导数。如果泰勒级数对于区间(a-r, a+r)中的所有x都收敛并且级数的和等于f(x),那么我们就称函数f(x)为解析的。当且仅当一个函数可以表示成为幂级数的形式时,它才是解析的。为了检查级数是否收敛于f(x),我们通常采用泰勒定理估计级数的余项。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。 如果a = 0, 那么这个级数也可以被称为麦克劳伦级数。 泰勒级数的重要性体现在以下三个方面:首先,幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。第二,一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。第三,泰勒级数可以用来近似计算函数的值。 对于一些无穷可微函数f(x) 虽然它们的展开式收敛,但是并不等于f(x)。例如,分段函数f(x) = exp(?1/x2) 当x≠ 0 且f(0) = 0 ,则当x = 0所有的导数都为零,所以这个f(x)的泰勒级数为零,且其收敛半径为无穷大,虽然这个函数f仅在x = 0 处为零。而这个问题在复变函数内并不成立,因为当z沿虚轴趋于零时 exp(?1/z2) 并不趋于零。 一些函数无法被展开为泰勒级数因为那里存在一些奇点。但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数。例如,f(x) = exp(?1/x2) 就可以被展开为一个洛朗级数。 Parker-Sockacki theorem是最近发现的一种用泰勒级数来求解微分方程的定理。这个定理是对Picard iterati on一个推广。 [编辑]

些常用函数及其泰勒展开式的图像

图 1 )exp(x y =及其 Taylor 展开式 其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

图 2 )sin(x y =及其 Taylor 展开式 其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

图 3 )cos(x y =及其 Taylor 展开式 其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

一些常用函数及其泰勒(Taylor)展开式的图像

其中, 。 ! 4!3!21)(; ! 3!21)(; ! 21)(; 1)(;)exp(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y e x y x ++++==+++==++==+==== -3 -2-1 0123 -50 5 10 15 20 25 Figure 1 y=exp(x) and its Taylor expansion equation X Y

其中, 。 ! 7!5!3)(; !5!3)(; ! 3)(; )();sin(7 53775 35533311x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-===== -4 -3-2-1 01234 -8-6-4-202468Figure 2 y=sin(x) and its Taylor expansion equation X Y

其中, 。 ! 8!6!4!21)(; !6!4!21)(; ! 4!21)(; !21)(); cos(8 642886 42664 2442 22x x x x x P y x x x x P y x x x P y x x P y x y +-+-==-+-==+-==-=== -4 -3-2-1 01234 -8-6 -4 -2 2 4 Figure 3 y=cos(x) and its Taylor expansion equation X Y

其中, 。 4 32)(; 3 2)(; 2 )(; )();1ln(4 32443 23322211x x x x x P y x x x x P y x x x P y x x P y x y -+-==+-==-====+= -1 -0.50 0.51 1.52 -3-2 -1 1 2 3 Figure 4 y=ln(x) and its Taylor expansion equation X Y

常见泰勒公式展开式

泰勒公式 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。 泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容历史发展 泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。 18世纪早期英国牛顿学派最优秀的代表人物之一的数学家泰勒( Brook T aylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的著名定理——泰勒定理。1717年,泰勒用泰勒定理求解了数值方程。泰勒公式是从格雷戈里——牛顿差值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。1772年,拉格朗日强调了泰勒公式的重要性,称其为微分学基本定理,但是泰勒定理的证明中并没有考虑级数的收敛性,这个工作直到19世纪20年代,才由柯西完成。泰勒定理开创了有限差分理论,使任何单变量函数都

可以展开成幂级数,因此,人们称泰勒为有限差分理论的奠基者。 泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

常用的泰勒公式

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

泰勒级数展开

泰勒级数展开若干方法 何琼(绍兴文理学院 数学系,浙江 绍兴 312000) 摘要: 泰勒级数的各项是由结构简单、性质明了的幂函数组成.把一个函数展开成泰勒级数或幂级数, 有着广泛的应用.本文对泰勒级数的若干展开方法进行探究、综述,有助于我们对这部分知识的深入理解. 关键词: 泰勒级数;幂级数;余项 §1 引言 泰勒级数是数学分析中级数部分的重要内容,其主要内容包括两个方面:(1)幂 级数的收敛理论;(2)如何把一个函数展开成泰勒级数.本文是对后者进行较全面的归纳和总结.我们知道把一个函数展开成泰勒级数的方法大致上可分为两类,即直接展开法和间接展开法.直接展开法可按下列步骤进行: 第一步:求出函数的各阶导数;),(),("),(') (L L x f x f x f n 第二步:求函数?(χ)及其各阶导数在),(0x f ;),(),("),('0) (00L L x f x f x f n 第三步:写出泰勒级数 L L +?++?+ ?+n n x x n x f x x x f x x x f x f )(! )()(!2)("))((')(00)(2 00000 第四步:考察余项)(x R n 在0x 的某一领域)(0x U 内极限是否为零. 按照Taylor 定理,直接展开法是一种基本的方法,但有时是比较繁杂的方法,实际应用 中通常利用间接展开法. 1 代换法 这种方法的特点是:进行适当变量替换使得被展函数符合某个已知泰勒展开式.这是一种在实际应用中被广泛使用的间接展开法. 例1 求x e 处1=x 的泰勒级数 解 已知t e 在0=t 处的泰勒级数为 L L +++++=! !212n t t t e n t , ),(+∞?∞∈x 而 11 1?+??==x x x e e e e 设1?=x t 代入(1)得 ∑∞ =?=0 !)1(n n x n x e e , ),(+∞?∞∈x 2 等比级数求和法 利用公式 L L +++++=?n x x x x 2111 由于本公式应用广泛,所以专列一条.

泰勒公式的几种证明及应用

泰勒公式的几种证明及应用 摘要:泰勒公式是高等数学中的重要公式,它在理论上和使用上都有很重要的作用.本文将运用分析法或数学归纳法对带有佩亚诺型余项、拉格朗日型余项、积分型余项这三种带有不同型余项的泰勒公式进行简单易懂的证明,从而能更好地理解泰勒公式的内容及性质.在深刻理解的基础上,对泰勒公式在高等数学中有关近似计算及误差估计、求极限、研究函数的极值问题、证明等式或不等式和关于界的估计等方面的应用给予一定的介绍,然后分别给出例题. 关键词:泰勒公式 佩亚诺型余项 拉格朗日型余项 积分型余项 应用 Several Proofs and Applications of Taylor Formula Abstract: Taylor formula is an important formula in higher mathematics, it plays a very important role in theoretical and methodological. In order to better understand the content and nature of Taylor formula, this article will use the method of analysis or mathematical induction to prove three different kinds of Taylor formula with remainder terms: Peano remainder term, Lagrange remainder term, and Integral remainder term. On the basis of deep understanding, then the article gives some introductions about the applications of Taylor formula in these aspects: approximate calculation and error estimation, work out limit, research problem of function’s extreme value, the proving of equality or inequality, and about boundary estimate, also supported by examples. Keywords: Taylor formula; Peano remainder term; Lagrange remainder term; Integral remainder term; application 1. 引言 大家都知道,多项式函数是各类函数中结构较简单、计算较方便的一种,用多项式逼近函数是近似计算和理论分析的一个重要内容.可以看到用00()()()f x f x x x '+-这个)(0x x -的一次多项式近似代替)(x f 且求其在0x 附近的函数值是很方便的,但是

常用十个泰勒展开公式

常用bai泰勒展开公式如下: 1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+…… 2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) 3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞

泰勒公式在近似计算中的研究

淮北师范大学 2013届学士学位论文 泰勒公式在近似计算中的研究 学院、专业数学科学学院数学与应用数学 研究方向计算数学 学生姓名白冰 学号20091101001 指导教师姓名王福章 指导教师职称讲师 2013 年 3 月23 日

摘要 泰勒公式是数学分析中非常重要的内容,集中体现了微积分“逼近法”的精髓,在微积分的各个方面都有重要的应用。本文论述了泰勒公式的一些基本内容,主要采用举例分析的方法,讨论了泰勒公式在近似计算方面的应用及技巧。通过本文的论述,可知泰勒公式可以使近似计算问题的求解简便。 关键词: 泰勒公式,近似计算,应用 Abstract Taylor's formula is very important mathematical analysis of the contents of a concentrated expression of the calculus "approximation" of the essence, the calculus of various important aspects of the application. This paper discusses some of the basic content of the Taylor formula, mainly using the example analysis, the Taylor formula in the approximate calculation and skills. Through the discussion of this article, we can see the Taylor formula can approximate calculation problem solving is simple. Key words: Taylor's formula, Approximate calculation, Applications,

常用的泰勒公式

常用的泰勒公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k- 1)!+……。(-∞

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

泰勒展开式

函数的幂级数展开式 通过前面的学习我们看到,幂级数不仅形式简单,而且有一些与多项式类似的性质。而且我们还发现有一些可以表示成幂级数。为此我们有了下面两个问题: 问题1:函数f(x)在什么条件下可以表示成幂级数 ; 问题2:如果f(x)能表示成如上形式的幂级数,那末系数c n(n=0,1,2,3,…)怎样确定? 下面我们就来学习这两个问题。 泰勒级数我们先来讨论第二个问题.假定f(x)在a的邻区内能表示成 这种形式的幂级数,其中a是事先给定某一常数,我们来看看系数c n与f(x)应有怎样的关系。 由于f(x)可以表示成幂级数,我们可根据幂级数的性质,在x=a的邻区内f(x)可任意阶可导.对其幂级数两端逐次求导。得: , , ……………………………………………… , ……………………………………………… 在f(x)幂级数式及其各阶导数中,令x=a分别得: 把这些所求的系数代入得: 该式的右端的幂级数称为f(x)在x+a处的泰勒级数. 关于泰勒级数的问题 上式是在f(x)可以展成形如的幂级数的假定下得出的.实际上,只要f(x)在x=a处任意阶可导,我们就可以写出函数的泰勒级数。

问题:函数写成泰勒级数后是否收敛?是否收敛于f(x)? 函数写成泰勒级数是否收敛将取决于f(x)与它的泰勒级数的部分和之差 是否随n→+∞而趋向于零.如果在某一区间I中有那末f(x)在x=a处的泰勒级数将在区间I中收敛于f(x)。此时,我们把这个泰勒级数称为函数f(x)在区间I中的泰勒展开式. 泰勒定理 设函数f(x)在x=a的邻区内n+1阶可导,则对于位于此邻区内的任一x,至少存在一点c,c 在a与x之间,使得: 此公式也被称为泰勒公式。(在此不加以证明) 在泰勒公式中,取a=0,此时泰勒公式变成: 其中c在0与x之间, 此式子被称为麦克劳林公式。 函数f(x)在x=0的泰勒级数称为麦克劳林级数.当麦克劳林公式中的余项趋于零时,我们称相应的泰勒展开式为麦克劳林展开式. 即: 几种初等函数的麦克劳林的展开式 1.指数函数e x 2.正弦函数的展开式

最新33泰勒公式汇总

33泰勒公式

第三节泰勒公式 教学目的:使学生了解泰勒公式,并会求简单函数的泰勒展开式。 教学重点:函数的泰勒展开式 教学过程: 多项式是函数中最简单的一种,用多项式近似表达函数是近似计算中的一个重要内容,在§2、8中,我们已见过:?Skip Record If...?等近似计算公式,就是多项式表示函数的一个特殊情形,下面我们将推广到一个更广泛的、更高精度的近似公式。 设?Skip Record If...?在?Skip Record If...?的某一开区间内具有直到?Skip Record If...?阶导数,试求一个多项式 ?Skip Record If...? (1) 来近似表达?Skip Record If...?,并且?Skip Record If...?和?Skip Record If...?在?Skip Record If...?点有相同的函数值和直到?Skip Record If...?阶导数的各阶导数,即:?Skip Record If...?。 下面确定?Skip Record If...?的系数?Skip Record If...?,通过求导,不难得到?Skip Record If...??Skip Record If...? ?Skip Record If...? (2) 这个?Skip Record If...?即为所求。

Taylor中值定理:如果函数?Skip Record If...?在?Skip Record If...?的某区间 ?Skip Record If...?内具有直到?Skip Record If...?阶的导数,则当?Skip Record If...?时,?Skip Record If...?可表示为?Skip Record If...?的一个多项式?Skip Record If...?和一个余项?Skip Record If...?之和: ?Skip Record If...? (3) 其中?Skip Record If...?(?Skip Record If...?介于?Skip Record If...?与?Skip Record If...?之间) 证明:令?Skip Record If...?,下证?Skip Record If...?在?Skip Record If...?与 ?Skip Record If...?之间,使得: ?Skip Record If...? 由于?Skip Record If...?有直到?Skip Record If...?阶导数,?Skip Record If...?为多项 式,故?Skip Record If...?在?Skip Record If...?内有直到?Skip Record If...?阶导数,并且?Skip Record If...?。现对函数?Skip Record If...?和?Skip Record If...?在以 ?Skip Record If...?和?Skip Record If...?为端点的区间上应用Cauchy中值定理,?Skip Record If...?(?Skip Record If...?在?Skip Record If...?与?Skip Record If...?之间) ?Skip Record If...? (?Skip Record If...?介于?Skip Record If...?与?Skip Record If...?之间) 如此继续下去,经过?Skip Record If...?次后,?Skip Record If...?一个?Skip Record If...?介于?Skip Record If...?与?Skip Record If...?之间,使得

常用的泰勒公式

h i n g s i n t h r b e i a r g o 常用的泰勒公式 e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

泰勒公式及其在在计算方法中的应用

泰勒公式及其在在计算方法中的应用 Revised on November 25, 2020

泰勒公式在计算方法中的应用 摘要:泰勒公式是高等数学中的一个重要公式,同时它是求解高等数学问题的一个重要工具,在此结合例子简要讨论了泰勒公式在计算方法中的误差分析、函数值估测及近似计算、数值积分、常微分方程的数值解法中的应用。通过本文的论述,可知泰勒公式可以使数值问题的求解简便. 关键词:泰勒公式;误差分析;近似计算;数值积分 §1 引言 泰勒公式是高等数学中的一个重要公式,利用泰勒公式能将一些初等函数展成幂级数,进行函数值的计算;而且函数的Taylor 公式是函数无穷小的一种精细分析,也是在无穷小邻域将超越运算转化为整幂运算的手段,从而可将无理函数或超越函数的极限转化为有理式的极限而求解,有效简化计算.泰勒公式作为求解高等数学问题的一个重要工具,在计算方法中有重要的应用. §2泰勒(Taylor )公式 定理1 设函数()f x 在点0x 处的某邻域内具有1+n 阶导数,则对该邻域内异于 0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得: ()2 0000000()()()()()()()()()2!n n n f x f x f x f x f x x x x x x x R x '''=+-+-+-+……+n! (1) 其中 (1)10() ()()(1)! n n n f R x x x n ξ++= -+ (2

) 公式(1)称为()f x 按0()x x -的幂展开的带有拉格朗日型余项的n 阶泰勒公式,()n R x 的表达式(2)称为拉格朗日型余项. 定理2 若函数()f x 在点0x 存在直至n 阶导数,则有 ()2 00000000()()()()()()()()(())2!n n n f x f x f x f x f x x x x x x x o x x '''=+-+-+-+-……+n! (3) 公式(3)称为()f x 按0()x x -的幂展开的带有佩亚诺型余项的n 阶泰勒公式,形如0(())n o x x -的余项称为佩亚诺型余项. 特别地:在泰勒公式(1)中,如果取00x =,则ξ在0与x 之间,因此可令 (01),x ξθθ=<<从而泰勒公式就变成比较简单的形式,即所谓带有拉格朗日型余项的麦克劳林(Maclaurm )公式: ()()() 1 12(0)(0)()()(0)(0)2!(1)! n n n n f f f x f x f f x x x x n θ++'''=+++++……+n! (01)θ<< (4) 在公式(3)中,如果取00x =,则得带有佩亚诺型余项的麦克劳林公式:

一些常用的泰勒公式

一些常用的泰勒公式 作者:余世明 单位:星茂装饰有限公司 摘要:一些常用的泰勒公式 关键字:泰勒公式 前切点泰勒公式 后切点泰勒公式 中间切点泰勒公式 城市:上海 邮政编码:200011 中图分类号:O17 title: Some common Taylor formulas author: Yu Shiming company: Xinmao Decoration company city: Shanghai postcode: 200011 digest: Some common Taylor formulas 正文: 很容易推导下面的公式: K --+---=?3)2(2)1()(!3)()(!2)())(()(c x x f c x x f c x x f dx x f 1 由此可以通过牛顿莱布尼兹公式得到一下公式: Λ----+ -------=?])(!3)()(!3)([])(!2)()(!2)([)])(())(([)(3)2(3)2(2)1(2)1(c a a f c b b f c a a f c b b f c a a f c b b f dx x f b a 2 当 c=a 公式 2 为: Λ--+---=? 3)2(2)1()(!3)()(!2)())(()(a b b f a b b f a b b f dx x f b a 3 当 c=b 公式 2 为: Λ+-+-+-=?3)2(2)1()(! 3)()(!2)())(()(a b a f a b a f a b a f dx x f b a 4 当 c=0 公式 2 为: Λ--+---=?]!3)(!3)([]!2)(!2)([])()([)(3)2(3)2(2)1(2)1(a a f b b f a a f b b f a a f b b f dx x f b a 5 还可以利用以下公式,前半部分用公式4,后半部分用公式3: ???+=c a b c b a dx x f dx x f dx x f )()()( 6 或者可以利用以下公式进行积分: Λ+-+-+-+=3!3)(2!2)()1()()())(()()()3()2(c x c x c x c f c f x f c f c f 积分得到公式如下: Λ+-+-+-+=?????dx c x dx c x dx c x c f dx c f dx x f b a c f b a c f b a b a b a 3!3) (2!2)()1()()()()()()()3()2(

常用十个泰勒展开公式

常用十个泰勒展开公式 常用泰勒展开公式如下:1、e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)3、sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…….(- ∞

阶导数)泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数。 在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。 泰勒公式还对于此处,这里o(x^5)和o(x^6)都是可以的∵sinx继续往后展开的次数为x^7∴可以写o(x^5),也可以写o(x^6)但是写o(x^6)对这个无穷小的阶更准确通常的展开是分别按x,x,x,..展开的∴如果展开到x^n,那么后面一般就写o(x^n)就可以了

第六节 泰勒公式与泰勒级数

§7.6 泰勒公式与泰勒级数 教学目的:掌握泰勒公式与TaylorTh ,了解函数的Taylor 级数与 Taylor 展式的关系. 重点:泰勒公式与泰勒定理成立的条件,理解泰勒公式的推导方法. 难点: 理解泰勒公式的推导方法. 教学方法:启发式讲授与指导练习相结合 教学过程: O 、近似表达函数的多项式的特性 无论是函数的性态还是近似计算,多项式函数总是比较简单.为此可以考虑在一个局部范围内用多项式来近似表示一个复杂函数 引例:当x 很小时,1x e x ≈+,设()x f x e =,1()1P x x =+,则 11(0)(0)1,(0)(0)1f P f P ''==== 若将2 1222()()1,(0)(0)1,()2 x x P x P x x f P P x e ''''=+==换成+ 则与在0x =更为接近.猜想将1()()n P x P x 换成则在0x x =处两函数有 直到n 阶相同的导数,其在0x x =处接近的程度更高,即2 12! n x x x e x n ≈++ ++ .为用多项式表示更复杂的函数:设有函数 )(x f 在0x x =的某一邻域内有直到1n +阶的导数,令 )(x f ≈0100()()()n n n P x a a x x a x x =+-++- ,再令 )()(1 I D x f n +∈,),(0b a I x =∈, 若 () () 00()()k k n f x P x =,n k ,,1,0 =. ((0) (0) 00()()n f x P x =表示0k =的函数值相等)则 )(!10) (x f k a k k = (n k ,,1,0 =),于是 )(x f ≈0100()()()n n n P x a a x x a x x =+-++- . 证明:因0100()()()n n n P x a a x x a x x =+-++- , 10()()(1)n P x a x x O '=+-,20()2!()(1)n P x a x x O ''=+-…… , () 0()!()(1)k n k P x k a x x O =+- …… , () ()!n n n P x n a =,

泰勒公式及其应用典型例题.docx

泰勒公式及其应用 常用近似公式,将复杂函数用简单的一次多项式函数近似地表示,这是一个进步。当然这种近似表示式还 较粗糙(尤其当较大时),从下图可看出。 上述近似表达式至少可在下述两个方面进行改进: 1、提高近似程度,其可能的途径是提高多项式的次数。 2、任何一种近似,应告诉它的误差,否则,使用者“心中不安”。 将上述两个想法作进一步地数学化: 对复杂函数,想找多项式来近似表示它。自然地,我们希望尽可能多地反映出函数所具有的性态——如:在某点处的值与导数值;我们还关心的形式如何确定;近似所产生的误差。 【问题一】 设在含的开区间内具有直到阶的导数,能否找出一个关于的次多项式

近似 【二】 若一的解存在,其差的表达式是什么一、【求解问题一】 一的求解就是确定多式的系数。 ????? 上述工整且有律的求系数程,不出:

于是,所求的多项式为: (2) 二、【解决问题二】 泰勒 (Tayler)中值定理 若函数在含有的某个开区间内具有直到阶导数,则当时,可以表示成 这里是与之间的某个值。 先用倒推分析法探索证明泰勒中值定理的思路:

这表明: 只要对函数之间反复使用 及在与次柯西中值定理就有可能完成该定理的证明工作。 【证明】 以与为端点的区间函数 或记为在上 具有直至 ,。 阶的导数, 且 函数在上有直至阶的非零导数, 且 于是,对函数及在上反复使用次柯西中值定理,有

三、几个概念 1、 此式称为函数按的幂次展开到阶的泰勒公式; 或者称之为函数在点处的阶泰勒展开式。 当时,泰勒公式变为 这正是拉格朗日中值定理的形式。因此,我们也称泰勒公式中的余项。 为拉格朗日余项。 2、对固定的,若 有

常用十个泰勒展开公式

常用十个泰勒展开公式 泰勒公式,泰勒公式[1]真的非常有名,我相信上过高数课的一定都记得它的大名。即使你翘掉了所有的课,也一定会在考前重点里见过。 我对它的第一映像就是比较难,而且感觉没有太多意思,就是一个近似的函数而已。最近重温了一下有了一些新的心得,希望尽我所能讲解清楚。 泰勒公式的用途 在看具体的公式和证明之前,我们先来了解一下它的用途,然后带着对用途的理解再去思考它出现的背景以及原理会容易许多。这也是我自学这么久总结出来的规律。 泰勒公式本质解决的是近似的问题,比如说我们有一个看起来很复杂的方程,我们直接计算方程本身的值可能非常麻烦。所以我们希望能够找到一个近似的方法来获得一个足够近似的值。 从这里,我们得到了两个重点,一个是近似的方法,另一个是近似的精度。我们既需要找到合适的方法来近似,同时也需要保证近似的精度是可控的。否则一切都没有意义,结合实际其实很好理解,比如我们用机床造一个零件。我们都知道世界上不存在完美的圆,实际上我们也并不需要完美,但是我们需要保证偏差是可控的,并且在一定的范围内。泰勒公式也是一样,它既可以帮助我们完成近似,也可以保证得到的结果是足够精确的。

泰勒公式的定义 我们下面来看看泰勒公式的定义,我们已经知道了它的用途是求一个函数的近似值。但是我们怎么来求呢,其实一个比较朴素的思路是通过斜率逼近。 举个例子: 这是一张经典的导数图,从上图我们可以看到,随着Δx的减小,点P0 和P 也会越来越接近,这就带来了Δy 越来越接近Δx f'(x0)。 当然,当Δx 比较大的时候显然误差就会比较大,为了缩小误差,我们可以引入二阶导数、三阶导数以及高阶导数。由于我们并不知道函数究竟可以有多少阶导数,我们不妨假设f(x)在区间内一直有(n+1)阶导数,我们试着写出一个多项式来逼近原函数: 我们希望这个式子与原值的误差越小越好,究竟要多小才算足够好呢?数学家们给出了定义,希望它是

相关文档
最新文档