牛顿运动定律解题技巧

牛顿运动定律解题技巧
牛顿运动定律解题技巧

牛顿运动定律的解题技巧

常用的方法:

一、整体法★★:整体法是把两个或两个以上物体组成的系统作为一个整体来研究的分析方法;当只涉及研究系统而不涉及系统部某些物体的受力和运动时,一般可采用整体法.

二、隔离法★★:隔离法是将所确定的研究对象从周围物体(连接体)系统中隔离出来进行分析的方法,其目的是便于进一步对该物体进行受力分析,得出与之关联的力.为了研究系统(连接体)某个物体的受力和运动情况时,通常可采用隔离法.一般情况下,整体法和隔离法是结合在一起使用的.

注:整体与隔离具有共同的加速度,根据牛二定律,分别建立关系式,再联合求解。

三、等效法:

在一些物理问题中,一个过程的发展,一个状态的确定,往往是由多个因素决定的,若某量的作用与另一些量的作用相同,则它们可以互相替换,经过替换使原来不明显的规律变得明显简单。这种用一些量代替另一些量的方法叫等效法,如分力与合力可以互相代替。

运用等效法的前提是等效。

四、极限法

极限法是把某个物理量推向极端,即极大或极小,极左或极右,并依此做出科学的推理分析,从而给出判断或一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当运用极限法能提高解题效率,使问题化难为易,化繁为简思路灵活,判断准确。

五、作图法

作图法是根据题意把抽象的复杂的物理过程有针对性的表示成物理图示或示意图,将物理问题化成一个几何问题,通过几何知识求解。作图法的优点是直观形象,便于定性分析,也可定量计算。

六、图象法

图象法是根据题意把抽象复杂的物理过程有针对性地表示成物理图象,将物理量间关系变为几何关系求解。对某些问题有独特的优势。

动力学的常见问题:

TB TA B A 2解之得g m M m M a A 42sin +-=

α,g m M m M a B 42sin 2+-=α 讨论:

(1)当m M 2sin >α时,0>A a ,其方向与假设的正方向相同;

(2)当m M 2sin =α时,0==B A a a ,两物体处于平衡状态;

(3)当m M 2sin <α时,0

2.

程。

例2:如图1μ出?

分析:M 和g m mg

m F a fm

m 11μμ===

m a 就是系统在此临界状态的加速度,设此时作用于M 的力为n F ,再取M 、m 整体为研究对象,则有m n a m M g m M F )()(2+=+-μ

即g m M F n ))((21μμ++=

当n F F >时,必能将M 抽出,故g m M F ))((21μμ++>

3. 程序法分析动力学问题

按顺序对题目给出的物体运动过程进行分析的方法简称“程序法”。“程序法”要求我们从读题求:

(1)设小木球自由下落到水面时的速度为v ,根据自由落体运动的规律应有

gh v 2= ①

小木球落入水中时,木球受到重力和浮力两个力的作用,设水密度为330/100.1m kg ?=ρ,

对木球,应用牛顿第二定律,有Va gV gV ρρρ=-0 ②

式中V 为木球体积,a 为进入水中木球的加速度。

由②式得20/15s m g g a -=-=ρ

ρ 设木球在水中下沉的深度为H ,有aH v 202=- ③

由①②③式可得m H 7.2=

(2)木球从水面下沉到最大深度处的时间1t 与由最大深度处上浮到水面所需的时间2t 相等。

s a

v t 6.001=-=,s t t 6.012== 木球从水面下沉到重新浮出水面的时间为t ,则s t t t 2.112=+=。

A 与A ,A 、

B 不发生相对运动的临界条件是:NA ,此时木块A 受到重力1、B 对A 的弹力N 和水平力F 三个力的作用。根据牛顿第二定律有

a m F F N 1sin =-θ g m F N 1cos =θ a m m F )(21+=

例5求:

(1(2分析:(1)g a <1,小球仍在斜面上,根据牛顿第二定律,有mg F F N T =+cos sin

1sin cos ma F F N T =-θθ

代入数据解之得N F T 20=

(2)g a >2,小球离开斜面,设绳子与水平方向的夹角为α,则2cos ma F T =α

mg F T =αsin

例6:P 的质量m 则F 分析:渐减小;0.2s 之后,物体离开秤盘。设P 处于静止状态时,弹簧被压缩的长度为x ,则 kx mg =,22

1at x = 代入数据,解之得2/5.7s m a =

根据牛顿第二定律,有ma mg F F N =-+

所以N F ma mg F -+=

开始时,mg F N =,F 有最小值N ma F 90==

脱离时,0=N F ,F 有最大值N mg ma F 210=+=

例7:如图8所示,两细绳与水平的车顶面的夹角为?60和?30,物体的质量为m 。当小车以大小为g 2的加速度向右匀加速运动时,绳1和绳2的力大小分别为多少?

所以g a 30=

因为车的加速度02a g >,所以物块已“飘”起来,则绳1和绳2的力大小分别为

01=T F ,mg mg ma T T 5)()(222=+=

2. 利用“加速度相同”的临界条件

例8:如图9所示,在劲度系数为k 的弹簧下端挂有质量为m 的物体,开始用托盘托住物体,

分析:当托盘以a 所以k

a g m x )(-= 即a

x t 2= 例9:如图10所示,推力A F 作用于A 上,拉力B F 作用于B 上,A F 、B F 大小均随时间而变化,其规律分别为N t F A )29(-=,N t F B )22(+=,问从0=t 开始,到A 、B 相互脱离为止,A 、B 的共同位移是多少?

分析:N t F B )22(+=。在0=t 时,N F A 9=,N F B 2=,此时A 、B 加速度分别为

2/3s m m F a A A A == 2/3

1s m m F a B B B == 则有B A a a > B A a a >,说明A 、B 间有挤压,A 、B 间实际上存在弹力。

随着t 的增大,A a 减小,B a 增大,但只要B A a a >,两者总有挤压。当A F 对A 独自产生的加速度与B F 对B 独自产生的加速度相等时,这种挤压消失,A 、B 开始脱离,有B

B A A m F m F = 即6

22329t t +=- 解之得s t 38= A 、B 共同运动时,加速度大小为 2/63)22()29(s m t t m m F F a B A B A +++-=++=

2/9

11s m = A 、 B 的共同位移为m at s 3.4)38(911212122=??==

注:牛顿第二定律不仅适用于单个物体,同样也适用于系统。下面总结如下:

若系统各物体具有相同的加速度时,应先把这个系统当作一个整体(即看成一个质点),分析其受到的外力及运动情况,利用牛顿第二定律求出加速度。若求系统各物体之间的作用力,应先把物体进行隔离。

动力学的两类问题

二. 知识要点:

进一步学习分析物体的受力情况,能结合力的性质和运动状态进行分析,掌握应用牛顿运动定律解决问题的基本思路和方法,学会综合应用牛顿运动定律和运动学公式解决动力学的两类问题。

对物体进行受力分析,应用牛顿运动定律和运动学知识来分析解决物体在几个力作用下的运动问题是本次课重点。

1. 动力学的两类基本问题

(1)根据物体的受力情况,确定物体的运动情况。

基本思路是:利用牛顿第二定律ma

求出加速度a,再利用运动学的

F=

有关公式求出速度,位移等。

(2)根据物体的运动情况,确定受力情况。

基本思路是:分析物体运动情况,运用运动学公式求出加速度a,再由牛顿第二定律求出合力进而求出某个外力。

2. 复习应用牛顿运动定律解题的一般步骤。

1. 动力学的两类基本问题

(1)根据物体的受力情况,确定物体的运动情况。基本思路是:利用

求出物体的加速度a;再利用运动学的有关公式求出牛顿第二定律ma

F=

速度

v和位移S等。

t

(2)根据物体的运动情况,确定物体的受力情况,其基本思路是:分

2. 应用牛顿运动定律的解题步骤

(1)确定研究对象(解题时要明确地写出来)可根据题意选某物体(题设情景中有多个物体时更应注意),也可以选一个或几个相关物体(存在相互作用的物体)为一个系统作为研究对象,所选研究对象应是受力或运动情况清楚便于解题的物体。有的物体虽是涉及到的对象,但受力情况或运动情况不能直接求出解,通过牛顿第三定律,取相作用的物体作研究对象。

(2)全面分析研究对象的受力情况,正确画出受力示意图,一般按力的性质依次分析物体受力情况。根据力的平行四边形定则或正交分解法求合力(由牛顿第二定律求出加速度)。

(3)全面分析研究对象的运动情况,画出过程示意图,找出前后过程的联系。

(4)利用牛顿运动定律求解

(5)讨论结果

(一)用牛顿定律解决两类基本问题

1. 在牛顿定律解决的两类问题中,无论是已知受力求运动情况,还是已知运动情况求未知力,加速度都是连接力和运动的纽带.因此对物体进行正确的受力分析和运动过程的分析是解决问题的关键.

在对物体进行受力分析时,常用的方法是“整体”法和“隔离”法.隔离法:使用隔离法时,可对构成连接体的不同物体隔离,也可以将同一物体隔离成若干个部分.取隔离体的实质在于把系统的力转化为其中某一隔离体的外力,以便应用牛顿定律解题.

整体法:所求量与系统物体无关时,把物体系(连接体)看成整体,可大大简化求解过程.

2. 应用牛顿第二定律解题的基本方法

(1)选取研究对象:根据题意,研究对象可以是单一物体,也可以是几个物体组成的系统.

(2)分析物体的受力情况.

(3)建立坐标

①若物体所受外力在一条直线上,可建立直线坐标.

②若物体所受外力不在一条直线上,应建立直角坐标系,通常以加速度的方向为一坐标轴,然后向两轴方向正交分解外力.

(4)列出牛顿第二定律方程x x y y F ma F ma =??

=? (5)解方程,得出结果.

在求解的过程中,注意解题的过程和最后结果的检验,必要时对结果进行讨论.

3. 如果物体在运动过程中仅仅受到两个共点力的作用,通常采用平行四边形定则求出这两个力的合力,此合力方向与物体运动的加速度方向相同. 如果物体同时受到三个以上共点力作用,应建立平面直角坐标系,采用正交分解法,应用牛顿第二定律分量形式来求解.即x x F ma =∑,y y F ma =∑.为了减少矢量分解给解题带来的麻烦,在建立直角坐标系时,

要求分解的矢量(如力、加速度等)越少越好,常用的两种方法是:①分解力而不分解加速度(此时可规定加速度方向为正方向);②分解加速度而不分解力(此种方法一般是在以某个力为z 轴正方向时,其他力都落在两个坐标轴上而不需

要再分解).

【例l 】如图所示,传送带与地面倾角θ=37°,从A →B 长度为16 m ,传送带以10 m /s 的速率逆时针转动.在传送带上端A 处无初速度地放一个质量为0.5 kg 的物体,它与传送带之间的动摩擦因数为0.5。求物体从A 运动到B 需要的时间是多少?(sin37°=0.6,

cos37°=0.8)

解析:物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F f ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得

1ma cos mg sin mg =+θμθ

()221s /m 10s /m 8.05.06.010a =?+?=

物体加速至与传送带速度相等需要的时间

m 5t a 2

1s t ,s 1s 1010a v t 211111=====时间内位移 由于tan μθ<,物体在重力作用下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力f F .此时物体受力情况如图所示,由牛顿第二定律得

2ma cos mg sin mg =-θμθ 22s /m 2a =

设后一阶段物体滑至底端所用的时间为2t ,由

2

222t a 2

1vt s L +== 解得2t =l s 2t =ll s (舍去)

所以物体由A —B 的时间t=t 1+t 2=2 S .

【例3】如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上做减速运动,a 与水平方向的夹角为θ,求人受的支持力和摩擦力.

解析:将加速度a 沿水平、竖直方向分解,如下图所示.

cos x a a θ=,sin y a a θ=.

根据牛顿第二定律有

水平方向 cos x f ma ma θ==

竖直方向 sin y mg N ma ma θ-==

由此得,人受的摩擦力cos f ma θ=,方向水平向左;受的支持力(sin )N m g a θ=-,

方向竖直向上.

答案:cos f ma θ=,方向水平向左; (sin )N m g a θ=-,方向竖直向上.

(二)超重和失重

1. 超重与失重

(1)超重现象:当物体存在向上的加速度时,物体对水平支持物的压力(或对竖直悬绳的拉力)大于物体的重力的现象.

(2)失重现象:当物体存在向下的加速度时,物体对水平支持物的压力(或对竖直悬绳的拉力)小于物体的重力的现象.

(3)完全失重现象:当物体的加速度是重力加速度时,物体对水平支持物的压力(或对竖直悬绳的拉力)等于零的现象.

(4) 超重与失重,只是物体的“视重”发生改变,即感觉到的重力或用弹簧测力计称得的重力增大或减小,而实际所受重力即万有引力并没有改变.

(5)在完全失重状态下,平常由重力引起的一切物理现象都会完全消失.例如,物体对桌面无压力,单摆停止摆动,液柱不再产生压强,浸在水中的物体不受浮力.天平不能使用。

2. 牛顿运动定律对地面及相对于地面做匀速直线运动的参考系成立.牛顿运动定律成立的参考系叫惯性参考系.

3. 超重和失重的本质是物体在竖直方向上具有了加速度,与物体运动速度大小及方向无关.当物体具有竖直向上加速度时,物体处于超重状态,对应两种运动状态,即向上的加速运动或向下的减速运动.当物体具有竖直向下的加速度时,物体处于失重状态.同样也对应两种运动状态,即竖直向下的加速运动或竖直向上的减速运动.

4. 超重和失重在航天技术中有着广泛的应用.比如宇宙飞船升空是一个加速过程,加速度向上,此时处于超重状态;宇宙飞船在太空中绕地球飞行,处于完全失重状态;宇宙飞船返回是一个减速过程,加速度仍向上,所以此过程也是处于超重状态.

【例4】飞船降落过程中,在离地面高度为h 处速度为0v ,此时开动反

冲火箭,使飞船开始做减速运动,最后落地时的速度减为v .若把这一过程当作匀减速运动来计算,则其加速度的大小等于 .已知地球表面处的重力加速度为g ,航天员的质量为m ,在这一过程中航天员对座椅的压力等于 .

解析:由运动学公式ax v v 22021=-知: 运动过程中加速度大小为h 2v v a 220-=

取航天员为研究对象,由牛顿第二定律知

ma mg F N =- 则h

2)v v (m mg F 220N -+= 由牛顿第三定律知,宇航员对座椅的压力亦为h

2)v v (m mg 220-+。 答案:h 2v v 220- h

2)v v (m mg 220-+

(三)连接体(或重叠物体中)牛顿运动定律的应用

1. 所谓连接体(或重叠物体),是在所研究对象中存在两个或多个物体,即一般是物体系统.而在这物体系统中的每个物体之间都有关联.比如每个物体的速度、加速度等是相同的,或者位移之间有联系等.

2. 在物体系统中,如果几个物体间有力的作用,则每个物体的受力情况

及运动状态与另外几个都有联系.一个物体的受力及运动状态发生变化,必定影响到其他物体.求解这类问题时,必须充分考虑到系统各个物体的运动关联性;对物体作受力分析,往往要把部分分析和整体分析结合;要在求解过程中灵活地选择研究对象,并且在求解中可能会变换研究对象,结合牛顿第二定律、第三定律列方程求解.

【例5】如图所示,质量为m 1=60 kg 的人站在质量为m 2=30 kg 的吊篮

中,通过一根跨过定滑轮的轻绳拉着吊篮和人一起以加速度a=1 m /s 2加速上升(绳均竖直,不计滑轮和绳的质量,不计一切摩擦,取g=l0 m /s 2),求:

(1)人要用多大的力拉绳?

(2)挂滑轮的悬绳所受的拉力为多大?

解析:设人的拉力为F ,把人和吊篮作为整体,竖直方向受2F 的拉力和()21m m +g 的重力作用

据牛顿第二定律得

a )m m (g )m m (F 22121+=+-

代入数据解得N 495F =,即人的拉力为495N

滑轮处于平衡状态,由平衡条件得悬线所受的拉力N 990F 2T ==。 答案:(1)495N (2)990N

【例6】如图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平地面上做匀减速运动(不计其他外力及空气阻力),则其中一个质量为m 的土豆A 受其他土豆对它的总作用力大小应是( )

A. mg

B. mg μ

C. 1mg 2+μ

D. 21mg μ-

解析:土豆A 受周围土豆的力的作用无法一一明示,】

故无法逐力去分析,因此先对整体有

g a ,Ma Mg μμ==(方向水平向左)

再隔离土豆A ,受力如图所示,根据三解形法则有 1mg )mg ()ma (F 222+=+=μ其他

选项C 正确。

答案:C

【例7】质量为m=40 kg 的小孩子站在电梯的体重计上.电梯从t=0时刻由静止开始上升,在0到6 s 体重计示数F 的变化如图所示.试问:在这段时间电梯上升的高度是多少?取重力加速度g=10 m /s 2.

解析:由图可知,0t =到s 2t t 1==的时间,体重计的示数

大于mg ,故电梯应做向上的加速运动。设在这段时间体重计

作用于小孩的力为1f ,电梯及小孩的加速度为1a ,由牛顿第二定律得

11ma mg f =-

在这段时间电梯上升的高度

2111t a 2

1h = 在1t 到s 5t t 2==的时间,体重计的示数等于mg ,故电梯应做匀速上升运动,速度为1t 时刻电梯的速度,即111t a v =

在这段时间电梯上升的高度

)t t (v h 1212-=

在2t 到s 6t t 3==的时间,体重计的示数小于mg ,故电梯应做向上的减速运动,设这段时间体重计作用于小孩的力为2f ,电梯及小孩的加速度为2a ,

由牛顿第二定律得22ma f mg =-。

在这段时间电梯上升的高度

22322313)t t (a 21)t t (v h ---=

电梯上升的总高度321h h h h ++=

由以上各式,利用牛顿第三定律和题文及题图中的数据,解得m 9h =。 答案:m 9h =。

【模拟试题】

1. 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人的质量为70kg ,吊板的质量为10 kg ,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=10 m /s 2,当人以440 N 的力拉绳时,人与吊板的加速度和人对吊板的压力F 。分别为( )

A. N 260F ,s /m 0.1a N 2==

B. N 330F ,

s /m 0.1a N 2== C. N 110F ,s /m 0.3a N 2== D. N 50F ,

s /m 0.3a N 2== 2. 在如图所示的装置中,重4 N 的物块被平行于斜面的细绳拴在斜面上端的小柱上,整个装置保持静止,斜面的倾角为30。,被固定在测力计上.如果物体与斜面间无摩擦,装置稳定以后,当细线被烧断,物体正在下滑时,与稳定时比较,测力计的读数( )

A. 增加4 N

B. 增加3 N

C. 减小1 N

D. 不变

3. 如图所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板

上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体l ,与物体l 相连

接的绳与竖直方向成θ角,则( )

A. 车厢的加速度为gsin θ

B. 绳对物体1的拉力为m 1g /cos θ

C. 底板对物体2的支持力为(m 2-m 1)g

D. 物体2所受底板的摩擦力为m 2gtan θ

4. 如图所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连.它们一起在光滑水平面上做简谐运动.振动过程中A 、B 之间无相对运动.设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于( )

A. 0

B. kx

C. kx M m

D. kx m

M m + 5. 一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是( )

A. 当θ一定时,a 越大,斜面对物体的正压力越小

B. 当θ一定时,a 越大,斜面对物体的摩擦力越大

C. 当a 一定时,θ越大,斜面对物体的正压力越小

D. 当a 一定时,θ越大,斜面对物体的摩擦力越小

6. 如图所示,一条不可伸长的轻绳跨过质量可忽略不计的光滑定滑轮,绳的一端系一质量m=15 kg 的重物,重物静止于地面上.有一质量m /=10 kg 的猴子从绳的另一端沿绳向上爬,在重物不离开地面的条件下,猴子向上爬的最大加速度为 .(g 取lO m /s 2)

7. 在粗糙的水平面上,两个物体A 、B 相互靠放,其质量分别为1m 、2m ,两物体与水平面间的动摩擦因数均为μ.现在水平力F 的作用下做匀加速直线运动,如图所示,求:

(1)A 与B 之间的相互作用力N F 与F 的比值;

(2)若A 、B 与水平面间的动摩擦因数分别为1μ、2μ,求两个物体受到

的合力之比.

8. 京津唐高速公路上行驶的两汽车之间留有200 m 的距离,设两车正以100 km /h 的速度匀速行驶时,后车司机突然发现前车出现事故,因此采取急刹车,若从司机发现事故到启动刹车措施使车轮停转的时间为0.1 s ,汽车轮胎与路面间的动摩擦因数围为0.4~0.6,问后汽车的实际刹车距离有多大?由此你认为在高速公路上保持200 m 的行车距离,安全性如何?(g 取10 m /s 2)

9. 举重运动是力量和技巧充分结合的体育项目.就“抓举”而言,其技术动作可分为预备、提杠铃、发力、下蹲支撑、起立、放下杠铃等六个步骤,如图甲所示照片表示了其中的几个状态.现只研究从发力到支撑这个过程,测得杠铃在照片中的直径为0.8 cm ,在照片上用尺量出从发力到支撑,杠铃上升的距离为l.2 cm ,已知运动员 所举杠铃的直径D=0.32 m ,质量m=120 kg ,运动员从发力到支撑历时t=0.6 s ,为简便起见,可以认为在该过程中运动员作用在杠铃上的竖直向上的作用力与时间的关系,以及在该过程中杠铃的速度与时间的关系分别如乙、丙所示.(空气阻力不计,g 取10 m /s 2)

(1)试估算出该过程中杠铃被举起的实际高度h l ;

(2)简要说明杠铃在该过程中做什么运动?并估算在该

过程中杠铃向上运动的最大速度m v ;

(3)求F-t 图象中的F 0的值.

10. 惯性制导系统已广泛应用于弹道式导弹工程中,这个系统的重要元件之一是加速度计.加速度计的构造原理示意图如图所示.沿导弹长度方向安装的固定光滑杆上套一质量为m 的滑块,滑块两侧分别与劲度系数均为k 的弹簧相连;两弹簧的另一端与固定壁相连.滑块原来静止,弹簧处于自然长度,滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导.设某段时间导弹沿水平方向运动,指针向左偏离O 点的距离为s ,则这段时间导弹的加速度( )

A. 方向向左,大小为ks /m

B. 方向向右,大小为ks /m

C.方向向左,大小为2ks /m

D. 方向向右,大小为2ks /m

11. 三个完全相同的物块l 、2、3放在水平桌面上,它们与桌面间的动摩擦因数都相同.现有大小相同的外力F 沿图示方向分别作用在1和2上,用12

F 的外力沿水平方向作用在3上,使三者都做加速运动.令1a 、2a 、3a 分别代表物块1、2、3的加速度,则……( )

A. 321a a a ==

B. 3221a a ,a a >=

C. 3221a a ,a a <>

D. 3221a a ,a a >>

试题答案

1. B

2. C

3. BD

4. D

5. BC

6. 5 m /s 2

7. (1)隔离A 、B ,设A 、B 的加速度为a ,对A 、B 分别应用牛顿第二定律有

11N F m g F m a μ--=

22N F m g m a μ-=

整理可得212

N F m F m m =+ 若动摩擦因数相同,动力分配与阻力无关.

(2)两物体受到的合力应分别满足

11

F m a =∑ 22F

m a =∑ 则1

122

F m F m =∑∑. 8. 67~99 m 安全

9. (1)0.48 m

(2)先向上做匀加速运动,后做竖直上抛运动

1.6 m /s

(3)1 636 N

10. D

11. C

离,对某个物体进行单独受力分析,再利用牛顿第二定律解决。

有关牛顿运动定律的几个小专题

一. 运用牛顿运动定律解题的基本方法:

牛顿运动定律是力学的核心,整个力学的知识体系都是建立在牛顿运动定律的基础上的,熟练掌握牛顿运动定律是学好力学的关键。

(一)解题的基本思路

1. 选取合适的研究对象:在物理过程中,一般会涉及两个或两个以上的物体,通常选取我们了解得相对较多的那个物体作为研究对象。

2. 分析受力情况和运动情况:画出示意图,分析物体的受力情况与物体的运动情况,分析物体的运动情况是指确定加速度与速度的方向,判断物体是做加速直线还是减速直线运动,或是曲线运动。

3. 建立直角坐标系:一般选取加速度的方向为x 轴的正方向,将各个力沿坐标轴方向进行正交分解。有时为了解题的方便,而选取互相垂直的两个力的方向作为x 轴和y 轴,将加速度沿坐标轴进行正交分解。总之,坐标轴方向的选取要视具体问题灵活运用。

4. 列F=ma 方程求解:如果还无法求出未知量,则可运用运动学公式求加速度。求解加速度是解牛顿运动定律题目的关键,因为加速度是联系物体受力情况与运动情况之间的桥梁;如果不求出加速度,则受力情况与运动情况之间的对应关系就无法建立起来,也就无法解题。即:F v a m t

?=

=?合 (二)题型举例

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

牛顿运动定律的运用教案

牛顿运动定律的运用教 案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

牛顿运动定律的应用 教学目标 一、知识目标 1.知道运用牛顿运动定律解题的方法 2.进一步学习对物体进行正确的受力分析 二、能力目标 1.培养学生分析问题和总结归纳的能力 2.培养学生运用所学知识解决实际问题的能力 三、德育目标 1.培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、新课教学

(一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况 例1.如图所示,质量m=2Kg 的物体静止在光滑的水平地 面上,现对物体施加大小F=10N 与水平方向夹角θ= 370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=,cos370=取g=10m/s 2,求物体5s 末的速度及5s 内的位移。 问:a.本题属于那一类动力学问题 (已知物体的受力情况,求解物体的运动情况) b.物体受到那些力的作用这些力关系如何 引导学生正确分析物体的受力情况,并画出物体受力示意图。

人教版必修一 第四章牛顿运动定律-牛顿运动定律题型归纳

牛顿运动定律题型归纳 题型一:牛顿运动定律理解 例题:质点做匀速直线运动现对其施加一恒力,且原来作用在质点上的力不发生改变,则 A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 练习:一个质点做方向不变的直线运动,加速度的方向始终与速度方向相同,但加速度大小逐渐减小直至为零,在此过程中 A.速度逐渐减小,当加速度减小到零时,速度达到最小值 B.速度逐渐增大,当加速度减小到零时,速度达到最大值 C.位移逐渐增大,当加速度减小到零时,位移将不再增大 D.位移逐渐减小,当加速度减小到零时,位移达到最小值 题型二:动力学图像问题 例题一:将一质量不计的光滑杆倾斜地固定在水平面上,如图甲所示,现在杆上套一光滑的小球,小球在一沿杆向上的拉力F的作用下沿杆向上运动。该过程中小球所受的拉力以及小球的速度随时间变化的规律如图乙、丙所示。g=10 m/s2。则下列说法正确的是A.在2~4 s内小球的加速度大小为0.5 m/s2 B.小球质量为2 kg C.杆的倾角为30° D.小球在0~4 s内的位移为8 m 例题二:如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不

连接),初始时物体处于静止状态,现用竖直向上的拉力F 作用在物体上,使物体开始向上 做匀加速运动,拉力F 与物体位移x 的关系如图乙所示(g =10 m/s 2 ),下列结论正确的是 A .物体与弹簧分离时,弹簧处于原长状态 B .弹簧的劲度系数为750 N/m C .物体的质量为2 kg D .物体的加速度大小为5 m/s 2 例题三:如图甲所示,一物块在t =0时刻滑上一固定斜面,其运动的v -t 图象如图乙所示。若重力加速度及图中的v 0、v 1、t 1均为已知量,则可求出 A .斜面的倾角 B .物块的质量 C .物块与斜面间的动摩擦因数 D .物块沿斜面向上滑行的最大高度 例题四:甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时由静止释放。两球下落 过程所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即kv f =(k 为正的常 量)。两球的t v -图象如图所示。落地前,经时间0t 两球的速度都已达到 各自的稳定值1v 、 2v 。则下列判断正确的是( ) A .释放瞬间甲球加速度较大 B.1221v v m m = C .甲球质量大于乙球质量

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

高一牛顿运动定律练习题及答案

第三章牛顿运动定律 【知识要点提示】 1.牛顿第一定律:一切物体总保持状态或状态,直到有外力迫使它改变这种状态为止。 2.惯性:物体保持原来的的性质叫惯性。所以牛顿第一定律也称为。惯性是物体本身的,与物体运动情况无关,与受力情况无关。是物体惯性大小的量度。 3.物体运动状态的改变是指它的发生了变化,物体运动状态变化的快慢用来描述。 4.保持物体质量不变,测量物体在不同的力作用下的加速度,可得出与成正比;保持物体所受的力不变,测量不同质量的物体在该力作用下的加速度,可得出与成反比。 5.牛顿第二定律的内容:物体加速度的大小跟所受的合外力成,跟物体的质量成;加速度的方向跟的方向相同。数学表达式 6.牛顿第二定律的说明 ①矢量性:等号不仅表示左右两边,也表示,即物体加速度方向与 方向相同。力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。 ②瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大 小和方向也要同时发生;当合外力为零时,加速度同时,加速度与合外力同时产生、同时变化、同时消失。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。 ③相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时 将,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在中才成立。 7.在国际单位制中,力的单位,符号,它是根据定义的,使质量为的物体产生的加速度的力叫1N。 8.F=ma是一个矢量方程,应用时应先,凡与正方向相同的力或加速度均取,反之取,通常取的方向为正方向。根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:F x=ma x,F y=ma y列方程。 9.在物理学中,我们选定几个物理量的单位作为;根据物理公式,推导出其它物理量的单位,叫。基本单位和导出单位一起组成单位制。例如国际单位制。10.在力学中三个基本物理量分别为、、,在国际单位制中对应的三个基本单位为、、。 11.牛顿第三定律的内容:两个物体之间的作用力和反作用力总是 。 12.物体之间的作用总是相互的,所以施力物体同时也一定是物体,物体间相互作用的一对力叫做,其性质一定相同。 13.我们常用牛顿运动定律解决两类问题:一类是已知要求确定;另一类是已知要求确定,首先求解加速度是解决问题的关键。 14.超重现象:物体对支持物的压力(或对悬挂物的拉力)物体所受重力的现象,产生超重现象的条件:是物体具有的加速度,与物体速度的大小和方向无关。15.失重现象:物体对支持物的压力(或对悬挂物的拉力)物体所受重力的现象,产

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

牛顿运动定律典型例题分析报告

牛顿运动定律典型例题分析 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性; (4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点: (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,

F x=ma x,F y=ma y,F z=ma z; (4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。对牛顿第三定律的理解要点: (1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提; (2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力; (3)作用力和反作用力是同一性质的力; (4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序: (1)确定研究对象; (2)采用隔离法分析其他物体对研究对象的作用力; (3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力; (4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重: (1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;

应用牛顿运动定律解题的方法和步骤

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有 两种方法,一种是将两物体隔离,得方程为 ma T mg =- Ma Mg T =-μ 另—种方法是将整个系统作为研究对象,得方 程为 a M m Mg mg )(+=-μ 显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢 图3-4-1

掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能 同时取而说它受到三个力的作用。一般情况下选取合Array力,如物体在斜面上受到重力,一般不说它受到下滑力 和垂直面的两个力。在—些特殊情况下,物体其合力不 图3-4-2 能先确定,则可用两分力来代替它,如图3-4-2横杆左 端所接铰链对它的力方向不能明确之前,可用水平和竖直方向上的两个分力来表示,最后再求出这两个分力的合力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分 清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处

牛顿运动定律-最全面、经典题型

1. 如图所示,在光滑的水平 面上,有一物体A,质量为3kg, 当用F=10N 的力通过滑轮拉 物体A 时,物体做什么运动? 绳子上的拉力是多大?若改用质量为1kg 的物体B 拉物体A 时,物体A 又做什么运动?绳子上的拉力又是多大? (g 取10m/s 2) 2. 如图甲所示,物体A 与B 用一根不可伸长的轻绳连接,放置 于光滑的水平面上,现用F=6N 的力拉物体A,则物体的加速度为多少?绳上的张力为多大?若图乙呢? A B 2kg 1kg F=6N A B 2kg 1kg F=6N 3.如图所示,光滑水平面上静止放着长L=1.6m ,质量为M=3kg 的木块(厚度不计),一个质量为m=1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,(g 取10m/s2). A B F (1)为使物体与木板不发生滑动,F 不能超过多少? (2)如果拉力F=10N 恒定不变,求小物体所能获得的最大速度? (3)如果拉力F=10N ,要使小物体从木板上掉下去,拉力F 作用的时间至少为多少? 4.水平传送带以v=2m/s 速度匀速运动,将物体轻放在传送带的A 端,它运动到传送带另一端B 所需时间为11s ,物体和传送带间的动摩擦因数μ=0.1,求: (1)传送带AB 两端间的距离? (2)若想使物体以最短时间到达B 端,则传送带的速度大小至少调为多少?(g=10m/s2) 5.如图所示,传送带与地面倾角θ=37°,A→B 长度为L=16m ,传送带 以v0=10m/s 的速率逆时针转动,在传送带上端A 无初速度地释放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数 为0.5.求:物体从A 运动到B 需时间是多少? 6.将金属块用压缩的轻弹簧卡在一个矩形箱子中,如图所示,在箱子的上顶板和下底板装有压力传感器,能随时显示出金属块和弹簧对箱子上顶板和下底板的压力大小.将箱子置于电梯中,随电梯沿竖直方向运动.当箱子随电梯以a=4.0m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0N ,下底板的传感器显示的压力为10.0N .取g=10m/s2,若 上顶板传感器的示数是下底板传感器的示数的一半,则升降机的运动状态可能是( ) A .匀加速上升,加速度大小为5m/s2 B .匀速上升 C .匀加速下降,加速度大小为5m/s2 D .静止状态 7.质量为50kg 的一学生从1.8m 高处跳下,双脚触地后,他紧接着弯曲双腿使重心下降0.6m ,则着地过程中,地面对他的平均作用力为多少? 8.如图所示,在水平面上行驶的车厢中,车厢顶部悬挂一质量为m 的球,悬绳与竖直方向成α角,相对车厢处于静止状态,求箱子的运动状态? 9.如图所示,一个箱子质量为M 放在水平地面上,箱子内有一固定的竖直杆,在杆上套着一个质量为m 的圆环,圆环沿着杆加速下滑,环与杆的摩擦力大小为f ,则此时箱子对地面的压力为( ) A .等于Mg B .等于(M+m )g C .等于Mg+ f D .等于(M+m )g- f A A B 1kg F=10N M m

牛顿运动定律经典例题(含解析)

7.14作业一牛顿第一定律、牛顿第三定律 看书:《大一轮》第一讲 基础热身 1.2012·模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示,下列说确的是( ) B.F2的反作用力是F3 C.F3的施力物体是地球 D.F4的反作用力是F1 2.2011·模拟关于惯性,下列说法中正确的是( ) A.在月球上物体的重力只有在地面上的1 6 ,但是惯性没有变化 B.卫星的仪器由于完全失重,惯性消失了 C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D.磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·模拟跳高运动员蹬地后上跳,在起跳过程中( ) A.运动员蹬地的作用力大小大于地面对他的支持力大小 B.运动员蹬地的作用力大小等于地面对他的支持力大小 C.运动员所受的支持力和重力相平衡 D.运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F1、F2、F3三个力的作用而保持平衡状态,则以下说确的是( ) A.F1与F2的合力一定与F3大小相等,方向相反 B.F1、F2、F3在某一方向的分量之和可能不为零 C.F1、F2、F3中的任何一个力变大,则物体必然做加速运动 D.若突然撤去F3,则物体一定沿着F3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D.摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A.作用力大时,反作用力小 B.作用力和反作用力的方向总是相反的 C.作用力和反作用力是作用在同一个物体上的 D.牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

牛顿运动定律经典例题(含解析)

7.14作业一 牛顿第一定律、牛顿第三定律 看书 :《大一轮》 第一讲 基础热身 1.2012·厦门模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示, 下列说法正确的是( ) B .F 2的反作用力是F 3 C .F 3的施力物体是地球 D .F 4的反作用力是F 1 2.2011·芜湖模拟关于惯性,下列说法中正确的是( ) A .在月球上物体的重力只有在地面上的16 ,但是惯性没有变化 B .卫星内的仪器由于完全失重,惯性消失了 C .铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D .磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·金华模拟跳高运动员蹬地后上跳,在起跳过程中( ) A .运动员蹬地的作用力大小大于地面对他的支持力大小 B .运动员蹬地的作用力大小等于地面对他的支持力大小 C .运动员所受的支持力和重力相平衡 D .运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F 1、F 2、F 3三个力的作用而保持平衡状态,则以下说法正确的是( ) A .F 1与F 2的合力一定与F 3大小相等,方向相反 B .F 1、F 2、F 3在某一方向的分量之和可能不为零 C .F 1、F 2、F 3中的任何一个力变大,则物体必然做加速运动 D .若突然撤去F 3,则物体一定沿着F 3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A .采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B .射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C .货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D .摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·台州模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A .作用力大时,反作用力小 B .作用力和反作用力的方向总是相反的 C .作用力和反作用力是作用在同一个物体上的 D .牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

高一物理牛顿运动定律练习及答案

相关习题:(牛顿运动定律) 一、牛顿第一定律练习题 一、选择题 1.下面几个说法中正确的是[ ] A.静止或作匀速直线运动的物体,一定不受外力的作用 B.当物体的速度等于零时,物体一定处于平衡状态 C.当物体的运动状态发生变化时,物体一定受到外力作用 D.物体的运动方向一定是物体所受合外力的方向 2.关于惯性的下列说法中正确的是[ ] A.物体能够保持原有运动状态的性质叫惯性 B.物体不受外力作用时才有惯性 C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性 D.物体静止时没有惯性,只有始终保持运动状态才有惯性 3.关于惯性的大小,下列说法中哪个是正确的[ ] A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大 B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大 C.两个物体只要质量相同,那么惯性就一定相同 D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ] A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动 B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动 C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来 D.人跳起后直到落地,在水平方向上人和车具有相同的速度 5.下面的实例属于惯性表现的是[ ] A.滑冰运动员停止用力后,仍能在冰上滑行一段距离 B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板 C.奔跑的人脚被障碍物绊住就会摔倒 D.从枪口射出的子弹在空中运动 6.关于物体的惯性定律的关系,下列说法中正确的是[ ] A.惯性就是惯性定律 B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律 C.物体运动遵循牛顿第一定律,是因为物体有惯性 D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因

牛顿运动定律题型练习

牛顿运动定律题型分项练习 一、解连接体问题 整体法与隔离法 在实际问题中,常常遇到几个相互联系的、在外力作用下一起运动的物体系。因此,在解决此类问题时,必然涉及选择哪个物体为研究对象的问题。 整体法与隔离法的综合应用 实际上,不少问题既可用“整体法”也可用“隔离法”解,也有不少问题则需要交替应用“整体法”与“隔离法”。因此,方法的选用也应视具体问题而定。 1.求内力:先整体求加速度,后隔离求内力。 2.求外力:先隔离求加速度,后整体求外力。 例题分析 1、相同材料的物块m 和M 用轻绳连接,在M 上施加恒力 F ,使两物块作匀加速直线运动,求在下列各种情况下绳中张力。 (1)地面光滑,T=? (2)地面粗糙设与地面间的摩擦因数为μ,T=? (3)竖直加速上升,T=? (4)斜面光滑,加速上升,T=? 总结:①无论m 、M 质量大小关系如何,无论接触面是否光滑,无论在水平面、斜面或竖直面内运动,细线上的张力大小不变。 ②动力分配原则:两个直接接触或通过细线相连的物体在外力的作用下以共同的加速度运动时,各个物体分得的动力与自身的质量成正比,与两物体的总质量成反比。 ③条件:加速度相同;接触面相同

a 同步练习 1.如图所示,质量分别为mA 、mB 的A 、B 两物块用轻线连接放在倾角为θ的斜面上,用始终平行于斜面向上的拉力F 拉A ,使它们沿斜面匀加速上升,A 、B 与斜面的动摩擦因数均为μ,为了增加轻线上的张力,可行的办法是( ) A .减小A 物的质量 B .增大B 物的质量 C .增大倾角θ D .增大动摩擦因数μ 2.光滑水平桌面上有一链条,共有 (P+Q)个环,每个环的质量均为m 。 链条右端受到一水平拉力F ,如右图所示,则从右向左数, 第P 环对第(P+1)环的拉力是 A .F B .(P+1)F C. QF/(P+Q ) D. PF/(P+Q ) 3. (2004年全国)如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m 1-和m 2,拉力F 1和F 2方向相反,与轻线沿同一水平直线,且F 1>F 2。试求在两个物块运动过程中轻线的拉力T 。 4.(2002年广西物理)跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人 的质量为70kg ,吊板的质量为10kg ,绳及定滑轮的质量、滑轮的摩擦均可忽略不计.取重力加速度g =10m/s2.当人以440N 的力拉绳时,人与吊板的加速度a 和人对吊板的压力F 分别为( ) A .a=1.0m/s2,F=260N B .a=1.0m/s2,F=330N C .a=3.0m/s2,F=110N D .a=3.0m/s2,F=50N 6.(09年安徽卷)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。为了探究上升过程中运动员与绳索和吊椅间的作用,可将过程简化。一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示。设运动员的质量为65kg ,吊椅的质量为15kg ,不计定滑轮与绳子间的摩擦。重力加速度取g=10m/s2。当运动员与吊椅一起正以加速度a=1m/s2上升时,试求 (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力。

牛顿运动定律题型归纳

牛顿运动定律题型归纳 一、瞬不瞬变的问题(牛二律的瞬时性、同一性) 1、如图所示,细绳栓一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连,平衡时细绳与竖直方向的夹角为53°,求: (1)小球静止时细绳的拉力大小? (2)烧断细绳瞬间小球的加速度? 2、如图所示,三物体A、B、C的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把 A、B之间的细绳剪断的瞬间,求三物体的加速度aA、a B、aC。 3、如图,弹簧吊着质量为2m的箱子A,箱放有质量为m的物体B,现 对箱子施加竖直向下的力F=3mg,而使系统静止。撤去F的瞬间,B对A 的压力大小为() A. mg B. 1.5mg C. 2mg D. 2.5mg 二、单一物体单一过程的动力学问题 力→加速度→运动或运动→加速度→力 4、在水平地面上,质量50kg的木箱受到一个与水平面成37°斜向上的拉力作用,已知木箱与地板间的动摩擦因数为0.2,拉力F=150N,木箱沿水平方向向右运动,问经过10s木箱的速度多大?位移多大?

5、将一质量为m=2kg的物体以初速度v0=16m/s从地面竖直向上抛出,设在上升和下降过程中所受空气阻力大小恒为12N,g=10m/s2,求: (1)物体上升的最大高度; (2)物体落回地面的速度。 6、如图所示,ad、bd、cd是竖直面三根固定的光滑细杆,a、b、c、 d位于同一圆周上,a点为圆周的最高点,d点为最低点.每根杆上都 套着一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初 速为0),用t1、t2、t3依次表示滑环到达d所用的时间,则() A. t1<t2<t3 B. t1>t2>t3 C. t3>t1>t2 D. t1=t2=t3 三、单一物体多个过程的动力学问题 熟练掌握力和运动的关系,会分析物体的运动: F合=0时,物体将保持静止或匀速直线运动; F合≠0且与v0方向相同,物体将做加速直线运动; F合≠0且与v0方向相反,物体将做减速直线运动。 7、如图所示,一质量为m=100kg的箱子静止在水平面上,与水平面间的动摩擦因素为μ=0.5。现对箱子施加一个与水平方向成θ=37°角的拉力,经t1=10s后撤去拉力,又经t2=1s 箱子停下来。sin37°=0.6,cos37°=0.8,g=10m/s2。求: (1)拉力F大小;(2)箱子在水平面上滑行的位移x。

相关文档
最新文档