不等式的性质(含字母参数)及整数解问题

不等式的性质(含字母参数)及整数解问题
不等式的性质(含字母参数)及整数解问题

1、解不等式2(x ﹣2)≤6﹣3x ,并写出它的正整数解.

2、求不等式x ﹣(3x ﹣10)≥6的非负整数解. 3

、解不等式

,并求出它的正整数解.

4、分别解不等式235(3)x x --≤和1116

3

y y -+->,并比较x ,y 的大小.

5、(2013?凉山州)已知x=3是关于x

的不等式的

解,求a 的取值范围.

6.如果不等式1ax <,两边除以a 后变成1x a

>,那么a 的取值

范围是_____.

7.已知关于x 的不等式23x a ->-的解集如下图所示,则a 的值是( )

A.0 B.1- C.1 D.2

8、关于不等式﹣2x+a ≥2的解集是x ≤﹣1,a 的值是( )

9、不等式(x ﹣m )>3﹣m 的解集为x >1,则m 的值为

. 10.已知不等式x+8>4x+m (m 是常数)的解集是x <3,则m= .

11.如果关于x 的不等式(a ﹣1)x <a+5和2x <4的解集相同,则a 的值为 .

于(

13.已知关于x 的不等式2x+m >﹣5的解集如图所示,则m 的值为( )

14.关于x 的不等式2x ﹣a ≤﹣1的解集如图所示,则a 的取值是( )

的值为()

16.3个连续自然数的和小于15,这样的自然数共有()A.2组B.3组C.4组D.5组

17.(本题10分)已知方程120

ax+=的解是3

x=,求不等式

(2)6

a x

+<-的解集.

18.已知方程组:的解x,y满足2x+y≥0,则m的取值范围是()

19已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.

含字母参数的一元一次不等式

含字母参数的一元一次不等式(组) 1、关于x 的不等式3x >m 的解集为x >6 ,则m 的值为 . 2、关于x 的不等式-2x +a ≥2的解集如图所示,则a 的值为 . 3、关于x 的不等式组24x a x b +? 的解集是-3??>?的解集是x > a,则a 的取值范围是 . 5、若关于x 的不等式组???>+>3 1x m x 的解集为x >3,则m 的取值范围是 . 6、关于x 的不等式组2x x m ≤??+-m x x 032无解,则m 的取值范围是 . 9.若关于x 的不等式组x m n x m n +?的解集是-2?无解,则m 的取值范围是 . 11.若关于x 的不等式组0x a x ≤??>? 只有3个正整数解,则a 的取值范围是_ __. 12、关于x 的不等式2x -a >0的负整数解为-1,-2,则a 的取值范围 . 13、关于x 的不等式x -4≤a 的正整数解为1, 2,3,则a 的取值范围 . 14、若关于x 的不等式组? ??->-≥-1230x a x 的整数解共有5个,则a 的取值范围是_ __. 15、关于x 的不等式组???≤->0 3x a x 有三个整数解,则a 的取值范围是_ __.

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法 不等式恒成立问题,在高中数学中较为常见。这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。 不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。 下面我们一起来探讨其中一些典型的问题 一、一次函数型——利用单调性求解 例1、若不等式对满足的所有实数m都成立,求x的取值范围。 若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。 分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。 解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立, 设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有: 此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。 给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于 ⅰ),或ⅱ) 可合并成 同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按 x 2项的系数 a 的符号分类,即 a 0,a 0,a 0; 例 1 解不等式: ax 2 a 2 x 1 0 分析: 本题二次项系数含有参数, a 2 2 4a a 2 4 0 ,故只需对二次项 系数进行分类讨论。 2 解 :∵ a 2 2 4a a 2 4 0 a 2 a 2 4 a 2 a 2 4 ∴当 a 0时,解集为 x|x a 2 a 4 或x a 2 a 4 2a 2a 当 a 0 时,不等式为 2x 1 0, 解集为 x| x 1 例 2 解不等式 ax 2 5ax 6a 0a 0 分析 因为 a 0, 0 ,所以我们只要讨论二次项系数的正负。 解 a(x 2 5x 6) a x 2 x 3 0 当 a 0时,解集为 x|x 2或x 3 ;当 a 0时,解集为 x|2 x 3 、按判别式 的符号分类,即 0, 0, 0 ; 例 3 解不等式 x 2 ax 4 0 分析 本题中由于 x 2 的系数大于 0, 故只需考虑 与根的情况。 解: ∵ a 2 16 ∴当 a 4,4 即 0 时,解集为 R ; 解得方程 2 ax 2 a 2 x 1 0 两根 x 1 a 2 a 2 4 2a , x 2 a 2 a 2 4 2a 当 a 0时 , 解集为 x| a 2 a 2 4 2a x a 2 a 2 4 2a

当 a 4即Δ=0时,解集为 x x R 且x a ; 当 a 4 或 a 4 即 0, 此时两根分别为 x 1 a a 16 , x 2 2 x 1 x 2 , a a 2 16 a a 2 16 x 或 x 〈 22 例 4 解不等式 m 2 1 x 2 4x 1 0 m R 2 2 2 2 解 因 m 2 1 0, ( 4)2 4 m 2 1 4 3 m 2 当 m 3或 m 3 ,即 0 时,解集为 R 。 2 三、按方程 ax bx c 0 的根 x 1 , x 2的大小来分类,即 x 1 x 2,x 1 x 2 ,x 1 x 2; 1 例 5 解不等式 x 2 (a )x 1 0 (a 0) a 1 分析: 此不等式可以分解为: x a (x ) 0 ,故对应的方程必有两解。本题 a 只需讨论两根的大小即可。 11 解: 原不等式可化为: x a (x ) 0 ,令 a ,可得: a 1 aa 11 ∴当 a 1或 0 a 1时, a ,故原不等式的解集为 x |a x ; a 1 当 a 1 或 a 1 时, a , 可得其解集为 ; a 11 当 1 a 0或a 1时, a ,解集为 x| x a a 例 6 解不等式 x 2 5ax 6a 2 0 , a 0 分析 此不等式 5a 2 24a 2 a 2 0 ,又不等式可分解为 x 2a (x 3a) 0 ,故 所以当 m 3 ,即 0 时,解集为 x| x 1 2 当 3 m 3 ,即 0 时,解集为 2 3 m 2 x 或 x m 2 1 2 m 2 1 3 m 2 ; ; a a 2 16 a a 16 ,显然 ∴不等式的解集为

求一元一次不等式(组)中字母参数取值范围专题(作业)教学提纲

精品文档 精品文档 求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253-??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>?? >?x x a 的解集为>x a 则a 的取值范围是_______ 17、若不等式组3>?? ≥?x x a 的解集为3>x ,则a 的取值范围是_______

不等式恒成立或有解问题的解决策略

不等式恒成立或有解问题的解决策略 恒成立与有解问题的解决策略大致分四类: ①构造函数,分类讨论; ②部分分离,化为切线; ③完全分离,函数最值; ④换元分离,简化运算; 在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界. 一般地,不等式恒成立、方程或不等式有解问题设计独特,试题形式多样、变化众多,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,有一定的综合性,属于能力题,在提升学生思维的灵活性、创造性等数学素养起到了积极的作用,成为高考的一个热点. 【考点突破】 【典例1】(2018届石家庄高中毕业班教学质量检测)已知函数()()()121x f x axe a x =-+-. (1)若1a =,求函数()f x 的图象在点()0,(0)f 处的切线方程; (2)当0x >时,函数()0f x ≥恒成立,求实数a 的取值范围. 【解析】(Ⅰ)若1a =,则)12(2)(--=x xe x f x ,4)('-+=x x e xe x f 当0=x 时,2)(=x f ,3)('-=x f , ………﹝导数的几何意义的应用﹞ 所以所求切线方程为23+-=x y 。 (Ⅱ)思路一:()()()121x f x axe a x =-+-,)1(2)1()('+-+=a e x a x f x , 由条件可得,首先0)1(≥f ,得01 1 >-≥ e a , 令()'()(1)2(1)x h x f x a x e a ==+-+,则 '()(2)0x h x a x e =+>恒为正数,所以()'()h x f x =单调递增,………﹝高阶导数的灵活应用﹞ 而02)0('<--=a f ,0222)1('≥--=a ea f ,所以)('x f 存在唯一根0(0,1]x ∈,使得函数)(x f 在),0(0x 上单调递减,在)(0∞+x 上单调递增, ………﹝极值点不可求,虚拟设根﹞

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

求一元一次不等式(组)中字母参数取值范围专题(作业)

求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253 -??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>?? >?x x a 的解集为>x a 则a 的取值范围是_______ 17、若不等式组3>??≥?x x a 的解集为3>x ,则a 的取值范围是_______ 18、已知a ,b 是实数,若不等式(2a ﹣b )x+3a ﹣4b <0的解是 ,则不等式(a ﹣4b )x+2a ﹣3b >0的解是 _________ .

含参数不等式恒成立问题的解题策略

解决“含参数不等式的恒成立”问题的基本方法 “含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想: 即一般地,若函数()x f 的定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥?min (()M x f ≥有解?M max )(x f ≤);()M x f ≤恒成立()M x f ≤?m a x (()M x f ≤有解?M x f ≤m i n )().因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论. 例一 定义在R 上的函数()x f 既是奇函数,又是减函数,且当?? ? ??∈2,0πθ时,有 () ()022s in 2c o s 2 >--++m f m f θθ恒成立,求实数m 的取值范围. 分析: 利用函数的单调性和奇偶性去掉映射符号f ,将“抽象函数”问题转化为常见的含参的二次函数在区间(0,1)上恒为正的问题.而对于()≥x f 0在给定区间[a ,b]上恒成立问题可以转化成为()x f 在[a ,b]上的最小值问题,若()x f 中含有参数,则要求对参数进行讨论。 【解析】由()()022sin 2cos 2>--++m f m f θθ得到:()()22sin 2cos 2--->+m f m f θθ 因为()x f 为奇函数, 故有()()22sin 2cos 2+>+m f m f θθ恒成立, 又因为()x f 为R 减函数, 从而有22sin 2cos 2+<+m m θθ对?? ? ??∈2,0πθ 设t =θsin ,则01222>++-m mt t 对于( )1,0∈t 恒成立, 在设函数()1222 ++-=m mt t t g ,对称轴为m t =. ①当0<=m t 时,()0120≥+=m g , 即21-≥m ,又0

2020高考数学复习--专题05 导数与函数不等式恒成立、有解(存在性)-用思维导图突破导数压轴题

专题05 导数与函数不等式恒成立、有解(存在性)(训练篇B ) -用思维导图突破解导数压轴题 1. 已知函数. (1)讨论的单调性; (2)当时,证明. 解 (1)的定义域为,. 若,则当时,,故在单调递增. 若,则当时,; 当时,. 故在单调递增,在单调递减. (2)由(1)知,当时,在取得最大值,最大值为 . 所以等价于,即. 设,则, 当时,; 当时,. 所以在单调递增,在单调递减.故当时,取得最大值,最大值为.所以当时. 从而当时,,即. 2. 已知函数,设. (1)求的极小值; ()2(1)2lnx ax a x f x =+++()f x 0a <3()24f x a ≤--()f x (0,)+∞'1(1)(21)()221x ax f x ax a x x ++= +++=0a ≥(0,)x ∈+∞()0f x '>()f x (0,)+∞0a <1(0,)2x a ∈- ()0f x '>x ∈1(,)2a -+∞()0f x '<()f x 1(0,)2a -1(,)2a -+∞0a <()f x 12x a =- 11()214)21(ln f a a a =----3(4)2a f x ≤--13(12441)2a ln a a ---≤--1(02121)a ln a -++≤()ln 1 g x x x =-+1()1g x x '= -(0,1)x ∈()0g x '>(1,)x ∈+∞()0g x '<()g x (0,1)(1,)+∞1x =()g x (1)0g =0x >()0g x ≤0a <10,2a ->1(02121)a ln a -++≤3(4)2a f x ≤--()()e x f x x a x a =-++()() g x f x '=()g x

含参数的一元二次不等式的解法以及含参不等式恒成立问题

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a Θ ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

1.1不等式的性质与解集

科 目数学授课 日期 课 时 4 教学 内容 1.1不等式的性质与解集班级 授 课 方 式 讲授法、练习法课型新授课 教学目的1、理解实数的大小与比较,会用数轴上的点表示实数 并比较大小 2、理解不等式的性质,并学会应用性质比较大小 3、理解集合的概念,掌握集合的表示方法,并学会表 示不等式的解集 教 具 多媒体 重点1、用数轴上的点表示实数并比较大 小 2、应用不等式性质比较大小 3、不等式解集的表示 难 点 应用不等式性质比较大小 课后 分析 说 明 审阅签名:年月日 教学环节教师活动学生活动设计意图及资源准备 组织教学10分钟1、师生互相问候 2、检查学生出勤 1、师生互相问 候 2、向教师报告 出勤情况 设计意图: 营造课堂气氛 资料准备: 多媒体课件

新课导入10分钟日常生活中,我们在考察事物的时候经常要进行大 小、轻重、长短的比较。在数学中常应用不等式 知识来研究这类问题。不等式是进一步学习数学 和其他科学的基础,在本章中,我们将学习不等式 的性质及其解法。 对问题进行思考 以及回答 设计意图: 导入本节课内容。 资料准备: 多媒体课件 讲授新课60分钟一、实数的大小 我们知道,实数与数轴上的点之间可以建立一一对 应关系 例如,点A与数2对应,点B与-3对应等,可以 看到,当数轴上一点P从左向右移动时,它对应的 实数就从小到大变化 数轴上的任意两点中,右边的点对应的实数比左边 的点对应 的实数大 例如,点A位于点B的右边,则点A对应的实数2 比点B 对应的实数-3大,即2>-3 在数轴上,如果点A在点B的右边,点A对应的实 数为a 点B对应的实数为b,则有a>b或b0?a>b a-b=0?a=b a-b<0?ab,那么a+m>b+m 如果ab且m>0,那么am>bm 如果a0,那么amb且m<0,那么ambm 1、学习实数的大 小 2、学习不等式的 性质 设计意图: 1、让学生掌握比较两个 实数大小的方法。 2、让学生了解并掌握集

求一元一次不等式(组)中字母参数取值范围专题(作业)说课讲解

求一元一次不等式(组)中字母参数取值范围 专题(作业)

求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253-??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>??>?x x a 的解集为>x a 则a 的取值范围是_______

不等式有解和恒成立问题

不等式有解和恒成立问题 Prepared on 24 November 2020

不等式有解和恒成立问题 知识点的罗列,文字不宜太多,简洁明了最好) ? 知识点一:不等式恒成立问题 ? 知识点二:不等式有解问题 分析该知识点在中高考中的体现,包含但不仅限于:考察分值、考察题型(单选、填空、解答题)、考察方式:考场难度、和哪些知识点在一起考察,参考中高考真题) 含参不等式的恒成立与有解问题是高考与会考考察不等式的一个重点内容,也是常考的内容,难度中等偏上,考察综合性较强,该知识点在填空选择解答题里都有涉及,经常和函数的最值问题在一起考察,需要同学对典型函数的值域求法有熟悉的掌握。 注意题目的答案,不要展示给学生看,这里答案和解析是帮助老师自己分析的) 一、不等式有解问题 例题:当m 为何值时,2211223 x mx x x +-<-+对任意的x ∈R 都成立 解法1:二次函数法: 移项、通分得: 又22230x x -+>恒成立,故知:2(2)40x m x -++>恒成立。 所以:2(2)160m ?=+-<,得到62m -<< 解法2:分离参数法: 注意到2(2)40x m x -++>恒成立,从而有:224mx x x <-+恒成立,那么: 注意到,在上式中我们用到了这样一个性质: 总结:解决恒成立问题的方法:二次函数法和分离参数法 变式练习:(初三或者高三学生必须选取学生错题或者学生所在地区的中高考真题或者当地的统考题目) 【试题来源】(上海2016杨浦二模卷) 【题目】设函数x x g 3)(=,x x h 9)(=,若b x g a x g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>?-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围. 【答案】:因为b x g a x g x f +++= )()1()(是实数集上的奇函数,所以1,3=-=b a . )1 321(3)(+-=x x f ,)(x f 在实数集上单调递增.

一元一次不等式的含参问题

《含参数的一元一次不等式组的解集》教学设计 教材分析:本章内容在学习了《一元一次方程》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。教学准备(预习学案)

1、⑴不等式组? ??-≥>12x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组???≥≤14x x 的解集是 . ⑷不等式组???-≤>4 5x x 的解集是 . 2、关于x 的不等式组12x m x m >->+??? 的解集是1x >-,则m = . 3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是( ) A. 4 B. 5 C. 6 D. 7 4、不等式组? ??--≤-.32,281x >x x 的最小整数解是( ) A .-1 B .0 C .2 D .3 5、满足21≤<-x 的所有整数为___________ __. 6、满足21≤≤-x 的所有整数为________________ __. 7、请写出一个只含有三个整数1、2和3的解集为 。 预习要求: 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:同大取大;同小取小;大小小大(大于较小的数,小于较大的数)在中间;大大小小(大于较大的数,小于较小的数)不存在. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 教学步骤: 一、例题教学 例1、 1、关于x 的不等式3m-x<5的解集x>2,求m 的值。 2、不等式 mx-2<3x+4的解集是 , 则m 的取值范围是 变式1.如果不等式(m ﹣2)x >m ﹣2的解集为x <1,那么( ) A .m≠2 B.m >2

2021高三数学人教B版一轮学案:第二章第十二节第1课时不等式恒成立与有解问题含解析

第十二节导数破解疑难优质课 第1课时不等式恒成立与有解问题 1.“恒成立问题”与“有解问题”的区别 (1)两者在量词上的区别 恒成立问题中使用的量词是全称量词,如“任意、所有、全部、均、恒、总、都”等;而有解问题中使用的量词是特称量词,如“存在、至少一个、有解”等. (2)两者在等价转换上的区别 恒成立问题的转化: ①f(x)>0恒成立?f(x)min>0;f(x)<0恒成立?f(x)max<0. ②f(x)>a恒成立?f(x)min>a;f(x)g(x)恒成立?[f(x)-g(x)]min>0;f(x)0有解?f(x)max>0;f(x)<0有解?f(x)min<0. ②f(x)>a有解?f(x)max>a;f(x)g(x)有解?[f(x)-g(x)]max>0;f(x)

考向一 不等式恒成立问题 方法1 分离参数法 【例1】 (2020·石家庄质检)已知函数f (x )=ax e x -(a +1)(2x -1). (1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程; (2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 【解】 (1)若a =1,则f (x )=x e x -2(2x -1). 即f ′(x )=x e x +e x -4,则f ′(0)=-3,f (0)=2, 所以所求切线方程为3x +y -2=0. (2)由f (1)≥0,得a ≥1e -1 >0,则f (x )≥0对任意的x >0恒成立可转化为a a +1 ≥2x -1x e x 对任意的x >0恒成立. 设函数F (x )=2x -1x e x (x >0), 则F ′(x )=-(2x +1)(x -1)x 2e x . 当00; 当x >1时,F ′(x )<0. 所以函数F (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以 F (x )max =F (1)=1e . 于是a a +1≥1e ,解得a ≥1e -1 .

证明含参数的不等式恒成立解题模板

如何证明含参数的不等式恒成立 题型:已知含参数的函数()f x ,证明在某区间上()()()(x)f x g x f x g ><或恒成立(()g x 不含参数) 解题步骤: 第一步:构造函数()()()F x f x g x =-,将问题转化为()0()0F x F x ><或恒成立的问题,如果这里的()g x 不明显,我们先对含参函数进行讨论,找到合适的()g x 。 第二步:求出'()F x ,令'()0F x =,求出()F x 在区间上的最小值或最大值。 第三步:证明最小值大于0,或最大值小于0。 【例题】 1、(浙江高考)已知a R ∈,函数3()42f x x ax a =-+. (1)求()f x 的单调区间. (2)证明:当01x ≤≤时,()20f x a +->. 思路分析:()20f x a +->中含有绝对值,不方便求导,因此可考虑寻找函数()g x ,使 ()2()0f x a g x +-≥>. 解(1)由题意的' 2 ()122f x x a =- ①当0a ≤时,' ()0f x ≥恒成立,此时()f x 的单调增区间为(,)-∞+∞. ②当0a >时,' ()12()()f x x x =,此时函数()f x 的单调递增区间为 (,)-∞+∞和,单调递减区间为???. (2)证明:由于01x ≤≤,当2a ≤时,33 ()2=4x 224x 42f x a ax x +--+≥-+. 当2a >时,333 ()2=4x 2(1)24x 4(1)24x 42f x a a x x x +-+--≥+--=-+.

设3()221,01g x x x x =-+≤≤,则()2()f x g x ≥,要证()20f x a +->,只要证明 ()0g x >即可。 '2()626(g x x x x =-=- +则有 所以min ()10g x g ==>, 当01x ≤≤时,32210x x -+>,故3 ()24420f x a x x +-≥-+>,即证。 【练习】 1、已知函数21()2 x f x ae x =- . (1)若()f x 在R 上为增,求a 的取值范围; (2)若1a =,求证0x >时,()1f x x >+。 2、已知函数()ln(1),()ln f x x x g x x x =+-= (1)求函数()f x 的最大值; (2)设0a b <<,证明:0()()2()()ln 22 a b g a g b g b a +<+-<-

含参数不等式的解法

高中数学知识专项系列讲座 含参数不等式的解法 一、含参数不等式存在解的问题 如果不等式()0f x >(或()0f x <)的解集是D ,x 的某个取值范围是E ,且D E ≠?, 则称不等式在E 内存在解(或称有解,有意义). 例1.(1)不等式13x x a +--<的解集非空,求a 的取值范围; (2)不等式13x x a ++-<的解集为空集,求a 的取值范围. (分析:解集非空即指有解,有意义,解集为?即指无解(恒不成立),否定之后为恒成立,本题实质上是成立与恒成立问题) 解:(1)设41()13221343x f x x x x x x -<-?? =+--=--??>? ≤≤, 易求得()[4,4]f x ∈-, ()f x a <有解min ()f x a ?<, ∴4a >-为所求 (2)设22 1()134 13223x x g x x x x x x -+<-?? =++-=-??->? ≤≤, 易求得()[4,)g x ∈∞, ()g x a <无解()g x a ?≥恒成立min ()g x a ?≥ ∴4a ≤为所求 (注:①13x x +±-可理解为数轴上点x 到两定点1-和3的距离之和(或差),由几何意义,易得()f x 与()g x 的值域; ②不等式()a f x >有解(有意义或成立)min ()a f x ?>;不等式()a f x <成立(有 解或有意义)max ()a f x ?<;) 例2.关于x 的不等式组22202(25)50 x x x k x k ?-->?+++的解集(,1)(2,)A =-∞-+∞, 设不等式2 2(25)50()(25)0x k x k x k x +++-25->),2 5 (k B --=∴ 要使{|,}{2}x x A B x Z ∈∈=-如图, 易知3k -≤,∴3k -≥ 又2k ->-,得2k < ∴[3,2)k ∈-为所求 -52

学而思高中数学7恒成立与有解问题

【例1】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值范围是 _ . 【例2】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例3】 设函数2()1f x x =-,对任意23x ?? ∈+∞???? ,,2 4()(1)4()x f m f x f x f m m ??--+ ??? ≤恒成立,则实数m 的取值范围是 . 典例分析 恒成立与有解问题

【例4】 若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B .1 8 a >- C .18a > D .0a < 【例5】 已知不等式 ()11112log 1122123 a a n n n +++>-+++L 对于一切大于1的自然数n 都成立,试求实数a 的取值范围. 【例6】 若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 【例7】 2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤

【例8】 若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 【例9】 不等式210x ax ++≥对一切102x ?? ∈ ??? ,成立,则a 的最小值为( ) A .0 B .2- C .5 2 - D .3- 【例10】 不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为 ( ) A .(][)14-∞-+∞U ,, B .(][)25-∞-+∞U ,, C .[12], D .(][)12-∞∞U , , 【例11】 对任意[11]a ∈-,, 函数2()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围为 .

相关文档
最新文档