电力电子变换器的EMC-张波

电力电子课程设计Boost变换器

电力电子技术课程设计 班级 学号

目录 一.课程设计题目 (2) 二.课程设计容 (2) 三.所设计电路的工作原理(包括电路原理图、理论波形) 2四.电路的设计过程 (3) 五.各参数的计算 (3) 六.仿真模型的建立,仿真参数的设置 (3) 七.进行仿真实验,列举仿真结果 (4) 八.对仿真结果的分析 (6) 九.结论 (7) 十.课程设计参考书 (7)

一.课程设计题目 Boost 变换器研究 二.课程设计容 1. 主电路方案确定 2. 绘制电路原理图、分析理论波形 3. 器件额定参数的计算 4. 建立仿真模型并进行仿真实验 6. 电路性能分析 输出波形、器件上波形、参数的变化、谐波分析、故障分析等 三.所设计电路的工作原理(包括电路原理图、理论波形) 分析升压斩波电路的工作原理时,首先假设电路中电感L 值很大,电容C 值也很大。当可控开关V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为I1,同时电容C 上的电压向负载R 供电。因C 值很大,基本保持输出电压u ?为恒值,记为U O 。设V 处于通态的时间为on t ,此阶段电感L 上积累的能量为on t EI 1。当V 处于断态时E 和L 共同向电容C 充电并向负载R 提供能量。设V 处于断态的时间为off t , 则在此期间电感L 释放的能量为 ()off t I E U 10-。当电路工作于稳态时, 一个周期T 中电感L 积蓄的能量与释放的能量相等,即 ()off on t I E U t EI 101-= 化简得 E t T t t t U off off off on = +=

电力电子技术在汽车工业领域的技术应用

电力电子技术在汽车工业领域的技术应用 摘要 本文阐述了电力电子技术在燃油汽车发动机控制系统、电动汽车控制系统及汽车安全系统等方面的开发与应用,综述了电力电子技术在汽车工业电子化发展过程中不可低估的作用。 关键字:电力电子技术;燃油汽车;发动机控制;电动汽车;汽车安全;

1 绪论 现代社会中,汽车已不仅是代步工具,而且具有娱乐、办公和通讯等多种功能。伴随汽车工业与电子信息产业加速融合,汽车开始向电子化、多媒体化和智能化方向发展,由以机械产品为主向高级机电一体化产品方向演变,电子装置占汽车整车价值量的比重逐步提高。 为了满足人们对汽车的动力性[1]、操作稳定性、安全性、舒适性、燃油经济性、对环境的友好性等各方面不断提高的要求, 各种电子装置不断地被应用于汽车, 使现代汽车成了一个广泛的电气系统, 包含大量的电气设备。在汽车电气系统中, 电力电子技术正起着越来越重要的作用, 不仅如此, 电力电子技术也是一项对未来开发出具有新特性和功能设备十分有用的技术。汽车工业的发展和大量的汽车电子设备的出现, 将给电力电子带来广阔的应用前景。本文将从以下几个方面探讨电力电子技术在汽车工业中的应用。 1 电力电子技术在燃油汽车发动机控制系统中的运用[2] 采用电子装置系统控制汽车发动机, 能够提高汽车的经济性, 满足汽车快速、排污净化的需求。 1.1 汽油发动机电力电子控制系统的控制原则 以电脑为控制核心, 以空气流量和发动机转速为控制参数, 以喷油器、点火器和怠速[3]空气调节器为控制对象, 保证获得与发动机各种工况相匹配的最佳空燃比和最佳点火时刻。发动机电子控制系统

一般由进气系统、燃油系统、点火系统和控制系统等四个部分组成,如图所示。 图1 进气系统框图 图2 燃油供给系统框图 1.2 汽油发动机电力电子技术控制系统的工作原理 车载计算机控制系统根据发动机中各种传感器送来的信号控制喷油时间、点火时刻等。 电脑通过空气流量计的信号对气量进行采样, 根据进气量和转速计算出荃本喷油[4]持续时间。然后进行温度、海拔高度、节气门开度等各种工作参数的修正, 得到发动机在这一工况下运行的最佳喷油持续时间, 精确地控制喷油量。

电力电子技术课程设计范例

电力电子技术课程设计 题目:直流降压斩波电路的设计 专业:电气自动化 班级:14电气 姓名:周方舟 学号: 指导教师:喻丽丽

目录 一设计要求与方案 (4) 二设计原理分析 (4) 2.1总体结构分分析 (4) 2.2直流电源设计 (5) 2.3主电路工作原理 (6) 2.4触发电路设计 (10) 2.5过压过流保护原理与设计 (15) 三仿真分析与调试 (17) 3.1M a t l a b仿真图 (17) 3.2仿真结果 (18) 3.3仿真实验结论 (24) 元器件列表 (24) 设计心得 (25) 参考文献 (25) 致 (26) 一.设计要求与方案 供电方案有两种选择。一,线性直流电源。线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电源进行稳压。线性电源体积重量大,很难实现小型化、损耗大、效率低、输出与输入之间有公共端,不易实现隔离,只能降压,不能升压。二,升压斩波电路。由脉宽调制芯片TL494为控制器构成BOOST原理的,实现升压型DC-DC变换器,输出电压的可调整与稳压控制的开关源是借助晶体管的开/关实现的。因此选择方案二。 设计要求:设计要求是输出电压Uo=220V可调的DC/DC变换器,这里为升压斩波电路。由于这些电路中都需要直流电源,所以这部分由以前所学模拟电路知识可以由整流器解决。MOSFET的通断用PWM控制,用PWM方式来控制MOSFET的通断需要使用脉宽调制器TL494来产生

汽车电力电子技术

汽车电力电子技术 摘要:介绍汽车电力电子技术产生的背景,详细阐述汽车电力电子技术的研究对象及其在汽车各个层面的主要研究课题。汽车电力电子技术是各类电动汽车深入发展的技术理论基础,推动了电动汽车的飞速发展。 一、前言 汽车电力电子技术产生的背景20世纪90年代以前,在汽车领域中的电力传动,主要是直流电力传动,只用于重型矿用自卸汽车。1990年美国加利福尼亚州为严格控制大气污染,颁布零排放汽车ZEV(Zero Emission Vehicle)法规,并规定了7家主要汽车制造公司(都是在加州有汽车销售的公司)从1998年起的销售义务:1998年所销售的汽车中,ZEV车必须占2%;2003年必须达到10%。从此美、日汽车制造公司便掀起一场制造纯电动汽车的竞争热潮,并很快在开发高性能铅酸蓄电池、交流电动机、交流传动和逆变器(Converter)等方面取得了进展。虽然在行驶性能方面,初期的纯电动汽车要比传统的往复式汽油机汽车还优秀,可是却由于它在每次充电后的续行距离、充电设施以及整车制造和使用成本等方面存在严重问题而无法普及。于是各公司开始将精力转到混合动力汽车HEV(Hybrid Electrical Vehicle)和燃料电池汽车FCV(Fuel Cell Vehicle)的研发。 1997年,丰田公司率先推出实现了批量生产的第一代普锐斯(Prius)牌(NHW10型)混合动力汽车。从此,交流电力传动被正式引入到乘用汽车传动中,于是电力技术领域中有关电能的产生、变换、传输、存储等过程的技术以及控制这些过程的技术与装置也就随之进入汽车技术领域。与传统的往复式内燃机汽车不同,电动汽车电路已不再是只含有几个功率1kW左右直流电机的12V/14V单一电压的“弱电”电路,而是发展为含有2~6个电压为500~650V、功率高达20~60kW、转速高达15000r/min的永磁式交流同步伺服电机的电动轮或驱动电动机,高压动力蓄电池组(201.6V)以及逆变器组成的(500~650)V/201.6V两种电压的“强电”电力电路,再加上以下6个控制系统。 a.电源控制系统包括驱动电动机/发电机、蓄电装置、整流与逆变装置的控制系统。 b.与发动机、底盘各总成有关的控制系统具有高数据传送率(传送速率具有百数十kb/s~1Mb/s)的控制器局域网CAN(Controller Area Network)、本地互联网LIN(Local Interconnect Network)总线系统。 c.与车身总成各控制系统有关的控制系统具有低数据传送率(传送速率只有十数~100kb/s)的CAN、LIN总线控制系统。 d.与通讯系统相关的控制系统MOST(数据传送速率为24Mb/s)或IEEE1394(数据传送速率分别为100Mb/s、200Mb/s、400Mb/s)的光纤通讯控制系统。

电力电子技术课程设计报告

电力电子课程设计报告题目三相桥式全控整流电路设计 学院:电子与电气工程学院 年级专业:2015级电气工程及其自动化 姓名: 学号: 指导教师:高婷婷,林建华 成绩:

摘要 整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要同时也是应用得最为广泛的电路,不仅用于一般工业,也广泛应用于交通运输、电力系统、通信系统,能源系统及其他领域,因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用,因此调试三相桥式可控整流电路的相关参数并对不同性质负载的工作情况进行对比分析与研究具有一定的现实意义。 关键词:电力电子,三相,整流

目录 1 设计的目的和意义………………………………………1 2 设计任务与要求 (1) 3 设计方案 (1) ?3.1三相全控整流电路设计 (1) 3.1.1三相全控整流电路图原理分析 (2) ?3.1.2整流变压器的设计 (2) ?3.1.3晶闸管的选择 (3) 3.2 保护电路的设计 (4) 3.2.1变压器二次侧过压保护 (4) ?3.2.2 晶闸管的过压保护………………………………………………4 3.2.3 晶闸管的过流保护………………………………………………5 3.3 触发电路的选择设计 (5) 4 实验调试与分析 (6) 4.1三相桥式全控整流电路的仿真模型 (6)

4.2仿真结果及其分析……………………………………………7 5 设计总结 (8) 6 参考文献 (9)

1 设计的目的和意义 本课程设计属于《电力电子技术》课程的延续,通过设计实践,进一步学习掌握《电力电子技术》,更进一步的掌握和了解他三相桥式全控整流电路。通过设计基本技能的训练,培养学生具备一定的工程实践能力。通过反复调试、训练、便于学生掌握规范系统的电子电力方面的知识,同时也提高了学生的动手能力。 2 设计任务与要求 三相桥式全控整流电路要求输入交流电压2150,10,0.5U V R L H ==Ω=为阻 感性负载。 1.写出三相桥式全控整流电路阻感性负载的移相范围,并计算出直流电压的变化范围 2.计算α=60°时,负载两端电压和电流,晶闸管平均电流和有效电流。 3.画出α=60°时,负载两端 d U 和晶闸管两端 1 VT U 波形。 4.分析纯电阻负载和大电感负载以及加续流二极管电路的区别。 5.晶闸管的型号选择。 3 设计方案 3.1三相全控整流电路设计

电力电子-降压斩波电路设计..教学总结

1.引言 随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低成本化使电源向轻,薄,小和高效率方向发展。开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用IGBT作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。

2.方案确定 电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。 根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。 图1降压斩波电路结构框图 在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。通过控制开关的开通和关断来控制降压斩波电路的主电路工作。控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。

电力电子变换器模型方法综述

电力电子变换器模型方法综述 1前言 直流—直流变换器(DC-DC变换器)是构建许多其他类型电能变换器的基本组成部分。然而为了有效实现各种电能变换功能,并使系统安全、平稳的运行,直流—直流变换器必须与其他模块相互配合,组成一个控制系统,这种系统也称为开关调压系统。 为了更好的控制这个系统,使变换器工作在最优状态,变换器的建模分析就显的尤为重要。直流—直流变换器的模型按其传输信号的种类可以分为稳态模型、小信号模型和大信号模型等,其中稳态模型主要用于求解变换器在稳态工作时的工作点;小信号模型用于分析低频交流小信号分量在变换器中的传递过程,是分析与设计变换器的有力工具,具有重要意义;大信号模型目前主要用于对变换器进行仿真,有时也用于研究不满足小信号条件时的系统特性。 由于变换器中的有源开关元件和二极管都是在其特性曲线的大范围内工作,从而使得变换器成为一个强非线性电路。针对这一特性,通常的建模思路如下:首先将变换器电路中各个变量在一个开关周期内求平均,以消除开关纹波的影响;其次将各个平均变量表达为对应的直流分量与交流小信号分量之和,消去直流分量后即可得到只含小信号分量的表达式,达到分离小信号的目的;最后对只含小信号分量的表达式作线性处理,从而将非线性系统在直流工作点附近近似为线性系统,为将线性系统的各种分析与设计方法应用于直流—直流变换器做好准备[2]。 2电路平均法 GW Wester 提出的电路平均法是从变换器的电路出发,对电路中的非线性开关元件进行平均和线性化处理。该方法的最大优点是等效电路与原电路拓扑一致,但当电路元件增多,要得出平均后的拓扑结构需要很大的运算量[3]。 电路平均法主要有:三端开关器件模型法、时间平均等效电路法、能量守恒法。 2.1三端开关器件模型法 1987 年提出了三端开关器件模型法,将变换器的功率开关管和二极管作为整体看成一个三端开关器件。用其端口的平均电压、平均电流的关系来表征该模型,然后将它们适当地嵌入到要讨论的变换器中,变成平均值等效电路。既可以进行稳态分析,又可以进行动态分析,建模方法灵活、简单[4],但需预知开关变换器的直流稳态特性。当采用不同的端口定义,其平均开关模型也不同。若考虑开关器件的导通损耗与开关损耗,亦可得到更精确的平均开关模型。 2.2时间平均等效电路法 1988 年提出的(TAEC)建模方法,其关键点是在建模之初,就利用电路理论中的替代定理将开关变换器中的开关元件用受控电压源和/或受控电流源进行替代变换,得到开关变换器的等效平均电路,受控电压源或受控电流源的值是周期内的时间平均值,从而用常规方法就可进行开关变换器的DC 稳态和AC 小信号分析[5]。该方法只需对开关变换器进行简单的等效变换处理即可获得等效平均电路,所得结果以等效电路形式出现,具有直观、物理意义明确的优点。

电力电子技术在汽车中的应用

电力电子技术在汽车中的应用 目录: 前言 第1章汽车电子技术概述 第2章汽车电子技术基础 第3章汽车中直流电动机驱动控制 第4章汽车自动缓速器的驱动控制 第5章汽车电磁执行机构的驱动控制 第6章汽车交流发电机 第7章汽车电子点火系统 第8章汽车动力转向系统 第9章汽车照明系统 第10章汽车电源系统 样章: 1.2.1汽车电子技术的应用现状 汽车电子技术经过两个阶段的发展,现正处在第三个阶段。第一阶段的汽车电子设备主要采用分立电子元件组成电子控制器,并开始由分立电子元件产品向集成电路产品过渡;第二阶段则主要采用集成电路和8位微处理器开发汽车专用的独立控制系统;第三阶段开始于20世纪90年代,汽车电子设备广泛采用16位或32位微处理器进行控制,控制技术向智能化、网络化方向发展。在该阶段出现了很多新的技术研究领域和研究热点,这里就其中几个典型的方面进行简单介绍。 1.2.1.1线控(Control By By——wire)技术 汽车的各种操纵系统正向电子化、自动化方向发展,传统的汽车机械操纵系统将变成通过高速容错通信总线与高性能CPU相连的电气系统。如汽车将采用电动机和电子控制信号来实现线控驾驶(steer by—wire)、线控制动(brake by—wire)、线控油门(throttle by—wire)和线控悬架(suspension by—wire)等,采用这些线控系统将完全取代现有系统中的液压和机械控制。X-By-Wire也称为Anything-By-Wire,它的全称是“没有机械和液力后备系统的安全相关的容错系统”。“X”表示任何与安全相关的操作,包括转向、制动等。“By-Wire”表示X-By-Wire是一个电子系统。在X-By-Wire系统中,所有元件的控制和通信都通过电子来实现。X-By-Wire系统是没有机械和液力后备系统的,传统的机械和液力系统由于结构(间隙、运动惯量等)的原因,从控制指令发出到指令执行会有一定的延迟,这在极限情况下是不能允许的。X-By-Wire系统用电来控制,会大大地减小延迟,为危险情况下的紧急处理赢得了宝贵的时间。 X-By-Wire系统主要由三部分组成:控制系统、执行系统、通信系统。控制系统的功能是根据驾驶员的意图和车辆行驶状况,对执行器给出执行的设定值。执行系统的功能是在控制系统的控制下,完成具体的执行动作(转向、制动等)。通信系统的功能是实现控制系统和执行系统内部及它们之间的信息传输。 使用线控技术的优点很多,比如使用线控制动无需制动液,保护生态,减少维护;重量轻;性能高(制动响应快);制动磨损最小(向轮胎施力更均匀);安装测试更简单快捷(模块结构);更稳固的电子接口;隔板间无机械联系;简单布置就能增加电子控制功能;踏板特性一致;比液压系统的元件更少等。

电力电子降压斩波电路课程设计

电力电子降压斩波电路课程设计

《电力电子技术》课程设计说明书 直流降压斩波电路的设计与仿真 院、部:电气与信息工程学院 学生姓名:刘贝贝 指导教师:胡小娣职称助教 专业:电气工程及其自动化 班级:电气本1305 学号: 完成时间: 6月

湖南工学院《电力电子技术》课程设计课题任务书 学院:电气与信息工程学院专业:电气工程及其自动化

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路. 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键字:直流斩波,降压斩波

ABSTRACT DC chopper as DC into another fixed voltage DC voltage or adjustable in DC converter, and DC - regenerative power transmission system, charging circuit, switch power, power electronics device and all sorts of electrical equipment transformation in ordinary application. Then appeared such as step-down chopper, booster chopper, lift pressure chopper composite chopper, etc.. the commutation circuit DC chopper technology has been widely used in switching power supply and DC driver, make its smooth acceleration control, and obtain the fast response, managing electric energy effect. All-controlling power electronics device IGBT in traction power transmission and transformation of power transmission and active filter etc widely application. Keywords: DC chopping; Buck chopper

电动汽车系统中的电力电子技术

汽车系统中的电力电子技术 汽车系统,诸如引擎控制、车身控制、照明以及车辆动力学等经过了数年的发展,改善了驾驶性能、舒适程度和燃油的经济性。1997年,平均每辆车中所采用的电子产品大约为110美元。到2001年,这一数字已增加到1800美元,预计到2015年它将达到车辆价值的30%。汽车系统中所采用的模拟和功率管理功能愈来愈多,为了响应此一趋势,快捷半导体将不断地开发出创新型的产品,以满足市场的需求。 历史回顾 汽车中使用电子产品的时间可追溯到20世纪初,当时厂商以电动启动器来取代手摇曲柄(hand crank)。到1960年代,随着固态电子产品的出现,汽车电子开始盛行起来。现今,我们观察到有几股趋势正在推动着汽车市场对电子产品的需求,尤其是对功率半导体组件的需求。这些趋势包含: (1)乘客对于舒适性和便利性功能的显着需求,例如:座椅加热和冷却,自动座椅定位,先进的照明功能以及多区的暖通空调(HVAC)。这些系统对电力提供和电源管理的需求明显地大幅增加。快捷半导体的整合式高侧开关等产品具有高效控制和管理上述功率负载的功能。 (2)先进的动力传动控制系统提高了燃油经济性,减少了车辆排放的废气。这些系统必须更精确地控制燃烧过程,连续且不间断地提供状态检查,同时需要使用中的电力提供和电源管理,及维持正常运作所需的电力和模拟控制功能。快捷半导体的40V和60V PowerTrenchR MOSFET组件,高侧开关以及智能点火产品能够满足这些要求。(3)越来越多原本采用机械式的动力转向(power steering)等成熟的辅助系统,转而采用电子式设计。随着发展,这些系统要求更大的电流密度和更低的功耗。快捷半

半桥式DC-DC变换器设计

半桥式DC-DC变换器设计 【摘要】近年来,随着电力电子器件、控制理论的发展和人们对电源性能要求的提高,电力电子技术引起了学者们的广泛关注。目前一些发达国家正逐渐把电力变换技术广泛应用于民用工业领域,我国在这一领域的研究起步较晚,但随着国民经济的发展,适合于不同要求的各种变换器越来越引起科研人员的关注。 本文通过对Buck变换器的电路结构和工作原理进行分析,设计出一种半桥式DC-DC变换器,并采用闭环控制方法,将恒定的400V直流输入变为稳定5V的直流输出,保证了系统的供电性能。最后利用Matlab工具对所设计的电路进行仿真,仿真结果验证了所设计系统的有效性。半桥式DC-DC变换器由于电路结构简单,功率器件少且功率管上受到的电压应力小,在中小功率场合得到了较为广泛的应用。本文为进一步研究和开发相关产品提供借鉴。 【关键词】Buck 半桥DC-DC MATLAB 【ABSTRACT】In recent years, with the development of power electronic devices,control theory and the increasing demand of high-quality power supply, power electronics technology has aroused widely attention from scholars. Power electronics technology is used gradually in civilian industrial areas in some developed countries. With the national economic development, the various converters for different requirements are developed and the related technology is studied by scientist and scholar.

电力电子技术课程设计分析解析

摘要 高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。 关键词:稳压电源;buck变换器

Abstract Has been widely used in the DC power supply, AC power supply, industry power supply of high frequency switching power supply, communication power supply, communication power supply, inverter power supply, computer power supply etc.. It can provide high power and coarse grid electricity, it is an important system of modern electronic equipment "the blood flow to the heart". BUCK converter is a switch for power supply the basic topology of BUCK converter, also called buck converter, a DC chopper for buck to input and output voltage, the output voltage is less than the input voltage, because of its variable function superior, therefore, it can be directly used for the need for direct step-down place. Keyword:regulated power supply;BUCK converter

电力电子技术的重要作用

1 电力电子技术的重要作用 电力电子是国民经济和国家安全领域的重要支撑技术。它是工业化和信息化融合的重要手段,它将各种能源高效率地变换成为高质量的电能,将电子信息技术和传统产业相融合的有效技术途径。同时,还是实现节能环保和提高人民生活质量的重要技术手段,在执行当前国家节能减排、发展新能源、实现低碳经济的基本国策中起着重要的作用。 电力电子器件在电力电子技术领域的应用和市场中起着决定性的作用,是节能减排、可再生能源产业的“绿色的芯”。电力电子半导体器件是伴随着以硅为基础的微电子技术一起发展的。在上世纪五十到六十年代,微电子的基本技术得到了完善,而功率晶体管和晶闸管则主导了电能变换的应用。从七十年代到八十年代,功率MOS技术得到了迅速发展并在很大程度上取代了功率晶体管。基于MOS技术的IGBT器件开始出现,并研发出CoolMOS。九十年代初以后,主要的研发力量集中在对IGBT器件性能的提高和完善。到了本世纪初,经过了若干代的连续发展,以德国英飞凌、瑞士ABB、美国国际整流器公司(IR)、日本东芝和富士等大公司为代表的电力电子器件产业已经拥有了趋于完美的IGBT技术,产品的电压覆盖300V到6.5kV范围。 电力电子器件与相关技术包括: (1)功率二极管; (2)晶闸管; (3)电力晶体管; (4)功率场效应晶体管(MOSFET); (5)绝缘栅双极型晶体管(IGBT); (6)复合型电力电子器件; (7)电力电子智能模块(IPM)和功率集成芯片(Power IC); (8)碳化硅和氮化镓功率器件; (9)功率无源元件; (10)功率模块的封装技术、热管技术; (11)串并联、驱动、保护技术。 2 电力电子技术发展现状和趋势 2.1电力电子器件发展现状和趋势 电力电子器件产业发展的主要方向: (1)高频化、集成化、标准模块化、智能化、大功率化; (2)新型电力电子器件结构:CoolMOS,新型IGBT ; (3)新型半导体材料的电力电子器件:碳化硅、氮化镓电力电子器件。 2.2 电力电子装置、应用的现状和趋势 (1)在新能源和电力系统中的应用 电力系统是电力电子技术应用中最重要和最有潜力的市场领域,电力电子技术在电能的发生、输送、分配和使用的全过程都得到了广泛而重要的应用。从用电角度来说,要利用电力电子技术进行节能技术改造,提高用电效率;从发、输配电角度来说,必须利用电力电子技术提高发电效率和提高输配电质量。 (2)在轨道交通和电动汽车中的应用 电力电子技术在轨道交通牵引系统中的应用主要分为三个方面:主传动系统、辅助传动系统、控制与辅助系统中的稳压电源。在电力电子技术的带动下,电传动系统由直流传动走向现代交流传动。电力电子器件容量和性能的提高、封装形式

电力电子电路设计与仿真

1 设计 1.1 总体设计 根据本课题需要,我们需要设计一个逆变电源装置。我们需要设计出输入输出滤波电路、逆变电路、驱动电路、检测电路、保护电路等模块并设计出其参数,其结构框图如Figure 1 所示。 Figure 1 总体结构框图 1.2 逆变电源装置的主电路设计 电网的交流电经过二极管不控整流电路将交流电转换成脉动的直流电,经过直流滤波电路,使脉动的直流电的电压波形变得更加平滑,变成有一定纹波的稳压电源,经过三相逆变电路后,输出为三相交流电,再通过隔离变换电路,滤除三相交流电的直流成分,再经过输出滤波器,此时输出的三相交流电就能很好带动负载并能很好的的满足课题的需求。 Figure 2 主电路原理框图

1.2.1 负载参数的计算 Figure 3 等效负载 Ⅰ 负载电阻最小值 Ⅱ 负载电感最小值

1.2.2 滤波电容参数的计算 滤波电容与负载并联,对逆变电路输出电流影响较大,所以设计滤波电路时,先选择设计滤波电容。首先取滤波电容容抗等于负载电感感抗的2倍 即 则有 我们取 。7个 250V 50HZ 交流电路用于60HZ时耐压降为60%。 即:250×0.6=150V > 110V

1.2.3 滤波电感参数的计算 滤波电感的作用是减小输出电压的谐波电压,保证基波电压的传输,即电感不可太大也不可以太小。选取的电感参数应满足以下几个条件:①滤波电路的固有频率应远离输出电压中可能出现的谐波频率,② 不应太大而接近于1,③ 应该较小 我们取 ,则有 实取L =1.6mH,则有 此时滤波电路的固有频率为

1.2.4 逆变电路的输出电压 Figure 4 逆变输出后的等效图 Ⅰ 空载 Ⅱ ①额定负载

电力电子变换器-中文

电力电子变换器 电力是现代工业的动力,而电力电子学使得电力的应用更加智能化。电力电子学主要研究电能的处理。就电能自身来说,它对人类是无用的。他必须转换成可以被人类和社会直接利用的能量形式,比如热,光,声音以及机械能。电力电子学的重点在于电能的转换,转换的效力以及电能的控制。 从系统角度看电力电子变换器 图1.1显示了一个单输入单输出电力变换系统。电源提供电力,变换器把电力转换成适合接收器的可用的形式,接收器使用电力,即从系统中带走电力,电源既可以是一个直流的也可以是一个周期性的交流电压/电流源。接收器既可以是一个电负载电阻,电感或电容,也可以是其他形式的源或一个把电能转换成其他形式能量的设备,比如电机。VC是控制输出变量某一特定性能的信号。电能端和接收器端的电压和电流波形既可以是单相的,也可以是多相的(通常是3相的)。变换器系统由开关,电抗性元件电感,电容和变压器组成。开关包括双端器件如二极管和三端器件如晶体管或晶闸管(硅控整流器)。 一个较通用的电力电子变换器系统往往包含不止一个输入电源和一个或多个输出变量。 为简化变换器工作原理分析,假设开关和其他器件都是理想的,线性的,并在观测期间是不变的。假设开关具有电压或电流的传输容量。 基于电源的形式和理想的输出特性的种类,电力电子变换器可以分为4类: 1.直流-交流变换器 2.交流-直流变换器 3.直流-直流变换器 4.交流-交流变换器 交流-交流变换器 交流-交流变换器从一个交流电压或电流源中获取电力并传给负载。输出变量是低畸变的与输入交流源同频或不同频的交流电压或交流电流。变换也涉及从单相到多相的转换或反之。实际使用中的交流控制器通常使用工频50-60Hz的单相或多相电压源。输出频率低于电源频率的交流-交流变换器叫做交流-交流变频器,交流-交流变频器的输出频率就是电源频率的简单的分数值,比如1/3,1/5等。它们用于很大功率的工业应用中。频率不变的交流-交流转换器被称为交流控制器。 基本的交流-交流变换器拓扑如图1.6所示,该变换器的输出频率与电源频率相同。开关在电源波形每半周期的末尾关断。与交流电源波形相关的开关的导通时刻决定着输出电压波形的形状,这个形状接着决定输出端电压的有效值(均方根)。 可以通过把输入交流先转换成直流,再把直流转换成所期望的频率,幅值和相数的交流来实现更复杂的交流-交流转换。这样的变换器叫做直流链交流-交流变换器,在这种转换过程中,与电源频率相关的输出频率没有限制。 应用: 调光器交流电机速度控制 电压调节器电子分接开关 无功调节器固态继电器

电力电子课设 DCDC PWM控制电路的设计

学院 电力电子课程设计题目: DC/DC PWM控制电路的设计 小组成员: 学号: 学部(系):机械与电气工程学部 专业年级:电气133 指导教师: 2 年 12 月 16 日 - 1 -

目录 一、总体设计方案...................... 错误!未定义书签。 二、设计原理及各部分功能.............. 错误!未定义书签。 三、实验所得的各个波形................ 错误!未定义书签。 四、TL494及相关器件说明............... 错误!未定义书签。 五、总结及心得体会................................. - 9 - - 2 -

一、总体设计方案 ●题目 DC/DC PWM控制电路的设计 ●题目介绍 电力电子电路控制中广泛应用着脉冲宽度调制技术(Pulse Width Modulation, 简称PWM),将宽度变化而频率不变的脉冲作为电力电子变换电路中功率开关管的驱动信号,控制开关管的通断,从而控制电力电子电路的输出电压以满足对电能变换的需要。由于开关频率不变,输出电压中的谐波频率固定,滤波器设计比较容易。 本课程设计主要采用比较常用的PWM集成芯片TL494(也可用其它芯片)完成设计,让同学们初步掌握PWM控制电路的设计方法。 ●课设要求 1. 设计基于PWM芯片的控制电路,包括外围电路。按照单路输出方案进行设计,开关频率设计为10KHz;具有软起动功能、保护封锁脉冲功能,以及限流控制功能。电路设计方案应尽可能简单、可靠。 2. 实验室提供面包板和器件,在面包板或通用板上搭建设计的控制电路。 3. 设计并搭建能验证你的设计的外围实验电路,并通过调试验证设计的正确性。 4. 扩展性设计:增加驱动电路部分的设计内容。 - 3 -

电力电子的课程设计--BUCK变换器的设计

目录 一、设计要求 (2) 二、设计方案 (2) 三、电路的设计 (3) 四、主电路参数计算和元器件选择 (4) 1、IGBT (4) 2、二极管 (4) 3、电感 (4) 4、电容 (5) 五、各模块所选器件说明 (5) 1、变压器EI86 (5) 2、误差放大器UC3842 (5) 3、脉宽调制器SG3525 (6) 4、驱动器MC34152 (7) 5、三端正稳压器7815 (8) 六、电气原理总图及元器件明细表 (8) 七、课程设计心得 (10) 八、参考资料 (10)

汽车电力电子技术课程设计 ——BUCK变换器的设计 一、设计要求 设计一稳压直流电源,输入为交流220V/50HZ,输出为直流15V的直流稳压电源,如下图1所示,其中DC-DC变换时主要采用BUCK变换器,变换器主器件采用IGBT,控制方式采用PWM控制。 图1 总电路原理框图 二、设计方案 小功率直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,其原理框图如2所示。

图2 直流稳压电源原理框图 三、电路的设计 G a b c Vi 0WM V G d 图3 Buck 变换器电路及相关波形 Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。 为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设: a 、开关元件M1和二极管D1都是理想元件。它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零; b 、电容和电感同样是理想元件。电感工作在线性区而未饱和时,寄生电阻等于零。电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series

新能源汽车电力电子技术-新能源汽车电力电子技术-习题答案

新能源汽车电力电子技术-答案集 项目一新能源汽车电路基础 任务1 电流对人体的伤害 课前学习 1 √; 2 √; 3 √; 4 √; 5 × 任务实施 1、实训设备认知 实训板

3、识读电路图 串联 4、电路搭建与验证 (1)略;电压大小不变的情况下,人体接触电极的面积越大,人体的电阻越小,流经人体的电流越大 (2)略;电压大小不变的情况下,电流流经人体的距离越长,流经人体的电流越小 (3)略 (4)在没有构成回路;在没有构成回路 课后习题 1、选择题(1)D;(2)B;(3)D;(4)A;(5)B 2、判断题(1)×;(2)×;(3)×;(4)√;(5)√ 任务2 欧姆定律 课前学习

1 √; 2 √; 3 ×; 4 ×; 5 √任务实施 2、实训设备认知 实训板 实训板 实训板

3、识读电路图 电流表;电阻;串联;并联 5、电路搭建与验证 (1)115;204;300;略;略;电阻大小不变的情况下,电阻两端的电压越大,流过电阻的电流越大 (2);大;正比 (3)略;115,17;204,19.6;300,20;略;略;电阻两端电压大小与相应电流大小的比值等于电阻大小 课习题后 1、选择题(1)A;(2)B;(3)B;(4)A;(5)A 2、判断题(1)√;(2)√;(3)×;(4)×;(5)√ 项目二新能源汽车电力电子元件 任务1 超级电容原理与应用 课前学习 1 √; 2 ×; 3 √; 4 √; 5 × 任务实施

3、实训设备认知 实训板 3、识读电路图 (1)电容;(2)开关S1,电机;(4)串联;(5)并联;(6)S1 4、电路搭建与验证 (1)0.33,0.166;1.68,0.166;2.44,0.166;2.85,0.165; 3.36,0.165;3.72,0.165; 4.00,0.165;4.28,0.165;4.53,0.165; 4.70,0.159;4.81,0.146;4.81,0.130;4.82,0.118 画图略;负载,低,高,慢,4.85;高,低,快,0.3 (2)4.66,0.044;4.47,0.030;4.39,0.019;4.33,0.019;4.28,0.018;4.22,0.019;4.19,0.021;4.14,0.018;4.11,0.018; 4.07,0.018;4.05,0.006;4.01,0.017;3.98,0.018 (3)画图略;电源,高,低,慢,1;高,低,慢,0.005 课后习题 1、选择题(1)A;(2)A;(3)B;(4)A;(5)D

电力电子课程设计

《电力电子技术》课程设计说明书三相半波可控整流电路的设计与仿真 院、部:电气与信息工程学院 学生姓名:雍欣 指导教师:胡小娣职称助教 专业:电气工程及其自动化 班级:电气本1305 学号: 1330120532 完成时间: 2016年6月

湖南工学院《电力电子技术》课程设计课题任务书学院:电气与信息工程学院专业:电气工程及其自动化指导教师胡小娣学生姓名雍欣课题名称三相半波可控整流电路的设计与仿真 内容及任务一、设计任务 三相半波可控整流电路的设计与仿真 二、设计内容 1、主电路的设计、原理说明和器件的选择 2、各参数的计算 3、保护电路的设计 4、利用MATLAB软件对自己的设计进行仿真 三、设计要求 1、三相交流输入:50HZ三相交流,相电压有效值为220V 2、阻感负载;(R取32Ω,L取32mH) 3、触发电路采用锯齿波同步触发电路 4、输出电压平均值范围:0到240V 5、仿真出α分别为0°,30°,60°,90°的输出电压的波形 主要参考资料[1] 王兆安. 集成化是电力电子技术的发展趋势[J].变流技术与电力牵引,2009 [2] 陶彦辉. 基于双空间矢量调制方法分析矩阵变换器[J].电子设计工程,2011 [3] 张家胜,张磊.电力电子技术[M].东营:中国石油大学出版社,2004.6 [4] 林忠岳.电力电子技术[M].重庆:重庆大学出版社,1997 [5] 莫正康.电力电子技术.(第3版)[M].北京:机械工业出版社,2000 [6] 陈坚.电力电子变换和控制技术[M].北京:高等教育出版社,2002 教研 室意见教研室主任: 年月日

整流电路就是把交流电能转换为直流电能的电路。通常由主电路、滤波器和变压器组成。主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。 首先分析了三相半波可控整流电路的设计要求,确定了以晶闸管、变压器、电阻等一些元器件为主,外加触发电路和保护电路等单元电路设计成三相半波可控整流电路的总体方案,对主电路、触发电路、保护电路、等单元电路进行了设计和参数的计算。 由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simtlink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相半波整流电路进行建模,对不同控制角进行了仿真分析用以完成整个课程设计。 关键词:整流电路;触发电路;Matlab

相关文档
最新文档