好氧发酵生物干化一体化污泥处理处置工艺

好氧发酵生物干化一体化污泥处理处置工艺
好氧发酵生物干化一体化污泥处理处置工艺

好氧发酵生物干化一体化污泥处理处置工艺(请点击图片进入阅读界面)

一、企业基本情况

(一)湖南省九方环保机械有限公司

湖南省九方环保机械有限公司(以下简称“九方环保公司”)是一家专注于城市污泥处理处臵和资源利用,集污泥处理设备研发、生产、销售、系统设计、安装和项目投资、运营于一体的高新技术环保企业。公司总部坐落于湖南省长沙市(国家级)经济技术开发区,是湖南省高新技术企业、湖南省城市建设行业协会排水分会副会长单位,获得了湖南省守合同重信用单位、长沙市守合同重信用单位、长沙纳税先进单位等荣誉,是湖南省政府重点支持的环保企业之一。以“一种新型圆柱多棱多层发酵塔”和“一种好氧堆肥法”等自有专利技术处于行业领先地位,在湖南省内污泥处理行业属于龙头骨干企业。

九方环保公司拥有四项发明专利和十余项实用新型专利技术,其中污泥处理处臵技术具有处臵彻底、能耗低、运行成本低、占地少、自动化程度高等优点,实现了污泥处理处臵的“减量化、稳定化、无害化、资源化”的要求。

2012年,该技术装臵通过了湖南省科技厅组织的成果鉴定,鉴定意见为:“居国内领先水平”;同时纳入湖南省战略性新兴产业项目。2013年,列入湖南省十大低碳环保节能技术推广名录。

2011年,该公司在株洲建成20吨/日污泥处理处臵示范工程,已连续稳定运行近三年;2013年9月在平江县投产运行30吨/日污泥处理处臵BOT工程; 2012年住建部城建司张悦司长到九方环保污泥处理项目现场考察时给予了高度认可和评价。现省内长沙、衡阳、怀化、

涟源和周边省份如贵阳、珠海等多个重要城市已与九方环保达成污泥处理处臵建设意向。

今年9月由九方环保和华北市政设计院联合主办的全国污泥处理处臵技术论坛会议将在长沙召开。

(二)湖南福天兴业投资集团有限公司

湖南福天兴业投资集团成立于2002年,现发展为集环保产业、房地产投资与开发、农业产业化及食品深加工于一体的大型集团企业。集团公司2013年实现销售收入80多亿元,利税近20亿元,资金实力雄厚、各种资质齐全。

2012年-2014年,福天兴业集团出资收购了三家技术领先、资质完备的环保企业:湖南省九方环保机械有限公司、湖南恒凯环保科技投资有限公司、湖南省新九方环保药剂公司。其中,九方环保专注于城市污泥处理与资源化处臵,是湖南省政府重点支持的环保企业;恒凯环保公司具有环保工程设计、施工、运营、机动车环保检测等资质,致力于污水处理、重金属治理和汽车尾气的监测与处理;湖南省新九方环保药剂公司致力于水、土壤氧化、还原改造以及重金属污染治理和环境修复。

二、工艺情况

1、多棱多层发酵塔污泥生物干化处理处置一体化装置工艺

多棱多层发酵塔污泥生物干化处理装置工艺分为:脱水污泥好氧发酵生物干化处理工序、污泥干燥处理工序和污泥焚烧处置工序。

1)脱水污泥好氧发酵生物干化处理工序:

利用调理剂和污泥的理化、生物在发酵中所具有的互补特性和作用,改善脱水污泥的质量、粘度、湿度,密度,孔隙率等理化特性,调整碳氮比,采用圆柱型多棱多层发酵塔,实行多层发酵,分层布风供氧,零能耗重力翻堆,逐层除湿,两次发酵,完成好氧发酵生物干化处理工序。

2)污泥干燥处理工序:

选择本公司专利技术一种复合长效精制有机肥机械化生产工艺中烘干工序,利用污泥本身作为热风炉的供热燃料,利用自燃焚烧热量对好氧发酵污泥进行干燥。含水率为40-45%的二次发酵料从干燥机一端进入干燥筒内,在内筒均布的抄板翻动下,二次发酵料被均匀分布与分散,加快干燥传热、传质推动力,同时与并流的烟气充分接触。在干燥过程中,二次发酵料在带有一定角度的抄板和筒体回转的作用下,运动至干燥机的另一端排出,含水率降至10%以下。

3)污泥焚烧处置工序

城镇污泥经上述工序处理后,灰熔点高,热值在2000大卡左右,燃点在260℃左右,适合自燃焚烧。利用风送系统将干燥细料送入热风炉膛内燃烧,经燃烧后的灰渣排出打包;热量随烟气进入干燥系统。通过自燃焚烧的污泥只剩下3%的灰烬,含钾和磷较丰富,可进行园林绿化利用,实现城镇园林绿化消化城镇污泥的目的。

生物干化一体化工艺采用的工艺路线是:生物好氧发酵干化 + 干燥、焚烧工艺。

第一步是生物好氧发酵干化处理。即将脱水车间含水率80%的污泥与调理剂混合进入生物干化塔,利用驯化后的优势生物菌种对污泥进行降解,通过生物菌种新陈代谢产生高温,杀灭病原菌等微生物实现无害化,促进污泥中的有机物转化为稳定的腐殖质实现稳定化,同时使污泥的含水率降至45%左右。

第二步是污泥干燥处理。利用污泥焚烧产生的热量,对生物发酵干化后含水率45%的污泥进行干燥,将污泥含水率降至15%以下。

第三步是污泥焚烧处置。将干燥后含水率15%以下的污泥本身作为热风炉的燃料焚烧,只剩下3%的灰渣。同时将焚烧产生的热量,随烟气进入干燥系统,用做污泥干燥处理的热量来源。

通过该工艺的稳定运行,有以下技术优势有:

1)减量化显著,处理处置彻底,可实现污泥零排放。经过该装置处理后的污泥单位重量减少约97%,最终剩余的3%灰渣可实现资源化利用,实现零排放。

2)彻底实现了污泥处理的无害化、稳定化和资源化。最终产物含钾、磷成分丰富,资源化途径广泛,可用于园林绿化等。现成功应用于株洲沿江风光带、神农城和省住建厅办公绿化用地等地的绿化用肥。

3)运行能耗低省、运行成本低。利用污泥自身的生物质热能实现污泥脱水干化,无需外供热能,大幅降低能源消耗,同时实现“双废(污泥+添加料)”的循环利用;

4)占地面积少。处理处置每吨污泥占地面积约30-50平米,生产用地约20平米/吨污泥。

5)环保效果好,无二次污染。臭气和烟气处理效果好,现场无臭味(据华测检测公司检测抽查烟气和灰渣,各项指标均符合(远低于)国家标准);

6)自动化程度高,用工省,无需化学添加剂,能源环保效应显著。

2、工艺特点:

1)污泥好氧发酵生物干化处理工艺特点

城镇污泥在塔内升温迅速,进入中温区,使嗜温性微生物旺盛繁殖,真菌、放线菌活跃,降解放热强烈,利用生物降解放热产生热能和40℃热空气供氧,零能耗翻堆,二次发酵污泥,除湿干化效果明显。

2)污泥干燥处理、焚烧处置工艺特点

城镇污泥和调理剂混合经好氧堆肥处理后,具有的燃点低、灰熔点高,有3000kcal左右的高位热值等理化优越条件,将含水率在10%干燥料作为干燥热源燃料,采用热风炉高温燃烧空气,烟气蓄热除尘,使燃料在1000℃高温区时间保持在2S以上,排出的尾气不会产生二恶英,烟气和发酵后的污泥混合并流干燥,尾气采用热交换器回收热量,布袋除尘,洗涤排出;无二次污染,减量达97%以上,剩下3%残留物是一种富钾磷肥,通过园林绿化处置,达到了城鎮污泥无害化,减量化,资源化,稳定化的目的。

3)综上所述多棱多层生物干化污泥处理处置方法完全实现了污泥处理、处置整体联合,形成一体化,污水厂污泥实现零排放的技术路线。即在污水场内建设多棱多层发酵塔生物干化处理污泥设施,含水率80%脱水污泥,经好氧发酵生物干化,滚筒干燥到污泥含水率10%以下,热

值由原脱水污泥的负热值变成约2000kcal/kg,干燥污泥可直接进入热风炉燃烧,产生高温烟气作为滚筒干燥污泥的热源,经燃烧后的残留污泥灰烬是一种富钾磷肥,实行园林绿化利用。

九方环保公司专利技术“圆柱多棱多层生物发酵塔-生物干化处理处臵一体化工艺”,污泥首先通过带式脱水机将含水率降至80%后,经生物好氧发酵将含水率降至45%左右,再经过干燥转筒干燥含水率降至15%左右,然后部分混合料进入热风炉焚烧,剩余部分混合料返回调理剂料仓回用。该工艺处理处臵最终为少量灰渣,经过处理、检测后已做园林绿化、花卉用肥。

该工艺主要特点:一是处理处臵彻底,减量化效果显著,可实现污泥零排放;二是运行能耗低,运行成本较低。充分利用污泥自身的生物质热能实现污泥脱水干化,无需外供热能,同时实现“双废(污泥+添加料)”的循环利用;三是彻底实现了污泥处理的无害化、稳定化和资源化。最终产物含钾、磷成分丰富,资源化途径广泛,可用于园林绿化、建材利用、路基土等;四是可节能减排。达200吨处理规模的项目可配套蒸汽发电设备,供厂自用,400吨以上可供上网外用,符合国家节能减排、废物焚烧发电补贴政策;五是环保效果好。臭气和烟气处理效果好,现场基本无异味(据华测检测公司检测抽查烟气,数据均远低于国家标准,符合政策要求);六是占地面积较少。占地面积约为50平米/吨;七是用工省,现场管理规范,实现自动化生产。存在的不足有:一、主体工艺设备非标制造、略显粗糙。由于受当时投标投资价格控制和九方环保建设时资金困难影响(当时湖南福天还未投资控股九方

环保),大多工艺设备均采用国产二线品牌产品(可提升设备配臵档次);

二、由于可用地较少,现场基本无绿化用地,现场略显拥挤(需规划园林绿化用地);

3、技术指标

1)处理前污泥技术参数

脱水污泥含水率80%,酸碱度6.5~8.5,有机质(以干基计)≥25%,生物菌个数≥2500个/g。

2)装置运行工艺参数

?·发酵塔工作温度45℃~75℃;

?·干化后二次发酵料含水率45~40%;

?·干燥后干燥料含水率15~10%;

?·蛔虫卵存活数10-1~10-2;

?·大肠菌的死亡率95~100%;

?·二次发酵料的高位发热值2500-3000大卡以上;

?·减重97%;

?·减容95%;

三、与其它工艺的比较

1、传统好氧发酵堆肥工艺

好氧发酵通常是指高温好氧发酵,是通过好氧微生物的生物代谢作用,使污泥中有机物转化成稳定的腐殖质的过程。代谢过程中产生热量,可使堆料层温度升高至55℃以上,可有效杀灭病原菌、寄生虫卵和杂草种籽,并使水分蒸发,实现污泥稳定化、无害化、减量化。污泥好氧

发酵处理工艺既可作为土地利用的前处理手段,又可作为降低污泥含水率,提高污泥热值的预处理手段。

好氧发酵工艺过程主要由预处理、进料、一次发酵、二次发酵、发酵产物加工及存贮等

工序组成。污泥发酵反应系统是整个工艺的核心。

发酵堆体结构形式主要分为条垛式和发酵池式。供氧方式有自然通风、强制通风、强制抽风、翻堆、强制通风加翻堆。

工艺缺点:

1)占地面积大。一般占地面积需150~200 m2/ t 污泥(60%含水率);2)工艺流程时间较长。整个工艺流程时间一般需要20-30天以上;3)作业环境差,劳动强度高;

4)运行成本较高。考虑人工、能耗、调理剂、药剂、设备折旧、维修等因素,运行成本大致为120~160 元/ t污泥(含水率60%)。

2、深度脱水工艺

深度脱水工艺即利用板框压滤机通过添加药剂改性和机械压滤方式把含水率80%的脱水污泥或含水率97%左右的浓缩污泥一次性降低至50%以下。干化后的污泥可以满足填埋的含水率要求,如进行其他资源化利用需进一步干化处理。

化学改性剂是深度脱水技术的核心,较常用的污泥调理剂有FeCl3、CaO。污泥通过调理,以蛋白质为基础的细胞壁被破坏,释放污泥中的结合水和吸附水,细胞内水,克服污泥比阻,大幅度降低污泥粘性,从而实现脱水效果。

化学改性剂中含有的石灰存在结垢问题,氯化铁则对设备有腐蚀。经深度脱水工艺处理后的污泥送入水泥厂掺烧,会对水泥窑产生腐蚀。石灰药剂渣量非常大,费用也较高,并且会相应增加最终的污泥产量。脱水过程会产生高浓度氮磷废水,滤布易损耗寿命短,需经常更换,设备的维护费用较高。

添加化学改性剂后,污泥中的有机质并未得到降解,没有达到真正稳定化,而且深度脱水后的污泥含水率仍然较高,如送入填埋厂处置,将产生大量的高含氯离子的渗滤液,加重了垃圾渗滤液处理系统的负荷。

工艺特点:

板式高压压滤机优势在于能直接一步到位将97%左右水分的污泥直接脱水至50%水分以内,且在低浓阶段脱水效率很高,能耗较低。

工艺缺点:

1)含水率约为80%的污泥粘性大,需要加水稀释后再进入板框压滤机;

2)压榨时间较长,不能连续出料,单台设备处理能力不大,设备所需数量较多;

3)板框压滤机滤布采用采用PP或聚酰胺制造,使用寿命不长;

4)板框压滤机自动卸饼装置无法全部完成自动化,目前需借助人工卸料,劳动强度大;

5)需要添加化学药剂,运行成本高,并增加污泥中的化学成分,不属于环保处理类型;

6)脱水后含水率只能降至50%左右,减量效果较少,仍需进行后需处理和处置;

7)只实现了减量化,未能实现无害化和稳定化,不属于国家推荐技术路线,只适合做临时或应急处理措施。

3、热干化工艺

污泥干化是靠热量将水从污泥中蒸发出来从而进一步降低含水率的污泥脱水功率,一般可达20%以下。在蒸发过程中,污泥中的部分有机物也得到分解。污泥干化后的颗粒物体积减少了4至5倍,储存方便,生物相也相当稳定,基本达到无恶臭、无病原菌。污泥干化最大的优点是产品的广泛实用性,可进行污泥土地利用、填埋及建材利用。

工艺特点:

1)显著兼容各种污泥,经过烘干处理后的污泥其含水率可减至5%-20%,体积可减少4-5倍,因此降低了运输成本,减少了占地空间;

2)形成颗粒或粉状稳定产品,污泥性状大大改善,可长期保存;

3)在干燥过程中,可以有效的杀灭各种有害菌,其产品无臭和无病原体,使处理后的污泥更易被接受;

4)产品适用于多种途径的最终处置,可根据泥质情况,用于制作复合肥、建筑材料、土壤改良剂、工程回填土、替代能源等。

工艺缺点:

5)热干化处理过程中会产生一定的臭气,对环境影响较大;

6)热干化技术需要外界热能干化,每公升水蒸发量最低需要620大卡,还要加上一定的效率损失,运行能耗高;

7)操作工程中安全隐患较大;

8)干化前需作预处理,解决污泥成团后才可干化;干化后的污泥遇水会产生较为明显的反溶现象。

4、厌氧消化工艺

厌氧消化技术主要是利用污泥回收生物质能(沼气),该技术适用于大中型的污水处理厂(日处理污泥能力50吨以上),目前在我国建成正常运行的工程只有几个,绝大部分处于停运或运行不良,主要受我国污泥有机质含量较低的制约(雨污不能分离),应用受限,该技术的主要缺陷在于:

(1)设备投资高(仪表电机等依赖进口),设备维护运行管理难度大,运营成本较高;

(2)对泥质要求高。我国污水处理系统未能进行雨污分离(BOD、COD浓度指标较低且不稳定),造成污水处理厂的污泥有机质含量较低且不稳定,产气量低。

(3)污泥厌氧消化是一种中间处理过程,沼渣和沼液仍需处理。虽有能源产出,但自身热量需求、有机质比例、降解率、硫化氢浓度、投资都会大幅度影响项目运行的经济效果。

(4)生产场所属于重大危险源,存在安全隐患、

(5)对环境温度敏感,导致产气量波动大。

(6)进泥和出泥以及干化段除臭处理困难,环境较差。

5、增钙工艺

污泥增钙热干化是通过添加石灰双组分发热剂,利用转鼓式污泥高

效干燥系统对污泥进行干燥、脱水、灭菌及改性处理,干化后的污泥渣结合水泥回转窑烧制出水泥产品,实现了污泥的稳定化、无害化、减量化及资源化利用。

工艺特点:

1)通过添加生石灰双组分发热剂,使污泥与添加剂混合后,短时间内大量水蒸气蒸发,达到干燥、脱水及杀菌的目的。

2)通过余热回用系统将干化主机尾部排出的废弃蒸汽回收后,采用诱导式高周波加热技术将其制备成高温蒸汽,压送回干化主机,对污泥实施进一步干燥。

3)系统添加200~250公斤的石灰双组份添加剂,装置出口处污泥的含水率可降至40%左右,自然堆放7-9天。

工艺缺点:

1)由于生石灰来源于石灰石烧制,其能耗及碳排放巨大,应在能量平衡中综合考虑;

2)采用生石灰会有加热的效能,但污泥含固率必须大于20%,且添加比例需在干基污泥重量的100%以上,才会有类似的加热效果,且仅是开始产生加热效果;

3)干燥物料在堆取料及皮带运输过程中,工作环境扬尘较大;

4)增钙热干化后污泥干基总量增加,减容不明显。

5)没有实现最终的处置和去路,在后续处置上包括运输、临时存储、配套工艺设施与处理过程中多方关系的协调的工作的实施

6、运行效果比较

典型处理处置方案本公司

技术

传统好氧

堆肥+土地

利用

深度脱+

填埋

工业窑

炉协同

焚烧

厌氧消+土

地利用

技术经济价值建设费

较低较高低

较高占地少较多多少较少运行

费用

低较低低高较低

能耗物耗价值能耗价低较低低高低物耗价低较高高高低

含水率0 40% 50% 0 残渣和消化液

减量化100% 约67% 60% 100% 40%-50% 自动化程度自动化半机械化机械化机械化半自动化人员配置(人/吨)0.1-0.2 15 5 15 15

资源循环利用价值资源循

环利用

效率评

高较高无低高

环境安全性价值

污染

因子

恶臭

病原微生

恶臭

重金属

恶臭

烟气

恶臭

病原微生物注:表中数据源于《城镇污水处理厂污泥处理处置技术指南(试

行)》建科[2011]34号;《湖南省城镇污水处理处置技术与政策引导》湘建城[2011]273号。

方式项目生物干化处理处置一体化工

艺(A)

增钙热干化(B)

运行效果简述

通过生物好氧发酵一体化

处理处置装置,对污泥进行减

量化、无害化、稳定化和资源

化处理处置,最终实现污泥零

排放。

通过添加石灰双组份发热

剂对污泥进调理,再通过

干燥系统,可实现污泥部

分减量,但减量后仍需外

运,增加了运输成本、处

置成本和管理难度。

A优

添加剂组分吨湿污泥消耗调理剂约60公

斤,调理剂为谷壳、锯木屑等

有机废物;

吨湿污泥需添加剂

20%~25%,约200-250公斤。

添加剂为生石灰等高能耗

产品。

A优

减量化污泥减量约97%,最终每吨污

泥只剩30公斤灰渣,且可作

有机肥的基肥。

增量法。减量减容不明显,

每吨还有800公斤处理物。

A优

无害化/稳定化通过高温,完全实现无害化和

稳定化

可实现无害化,不能实现

稳定化

A优

资源化做富钾磷肥,用于园林绿化;

或建材利用、填埋场覆盖土。

可实现彻底处置,实现零排

放。

可与水泥厂协同处置,但

增加了处置量,处置费用

会增加。

A优

投资较高一般B优运行成本低较高A优占地面积小小—

对环境的二次污染处理全过程无化学添加剂,全

封闭处理,无污水排放和空气

污染。

需添加生石灰及硫酸铝等

化学调理剂,脱水后还需

二次处置。

A优

四、政策与手册

环保部[2010]HJ-BAT-002——《城镇污水处理厂污泥处理处置污染防治最佳可行技术指南》推荐的污泥处理处置的最佳可行技术为:污泥处理技术为污泥好氧发酵和污泥厌氧消化;污泥处置技术为土地利用和污泥焚烧。

建科[2011]34号——城镇污水处理厂污泥处理处置技术指南(试行)第2条典型污泥处理处置方案——2..1厌氧消化后进行土地利用、2..2好氧发酵后进行土地利用、2..3工业窑炉协同焚烧、2..4机械热干化后进行焚烧、2..5石灰稳定后进行填埋。

建科[2011]34 号——城镇污水处理厂污泥处理处置技术指南(试行)第三节1.1鼓励将城镇生活污水产生的污泥经厌氧消化或好氧发酵处理后,严格按照国家相关标准进行土地利用。

《国务院办公厅关于印发“十二五”全国城镇污水处理及再生利用设施建设规划的通知》国办发〔2012〕24号。由国家发展改革委、住房城乡建设部、环境保护部编制。2.技术要求。

鼓励将污泥经厌氧消化产沼气或好氧发酵处理后严格按国家标准进行土壤改良、园林绿化等土地利用,不具备土地利用条件的,可在污泥干化后与水泥厂、燃煤电厂等协同处置或焚烧。作为近期的过渡处理处置方式,可将污泥深度脱水和石灰稳定后进行填埋处置。

中华人民共和国住房和城乡建设部、中华人民共和国国家发展和改革委员会文件建科[2011]34 号《城镇污水处理厂污泥处理处置技术指南》2.6 脱水污泥直接填埋(过渡阶段方案)

该方案有以下具体操作方案:

深度脱水→填埋;

脱水→添加粉煤灰或陈化垃圾对污泥进行改性处理→填埋。

该方案占用土地量大,且导致大量碳排放。当污泥中有毒有害污染物质含量较高,污水处理厂内建设用地紧张,而当地又有可供填埋的场地时,该方案可作为阶段性、应急或备用的过渡阶段处置方案。

1979年美国EPA出版的《污泥处理处置工艺设计手册》第6.4章用了28页篇幅对石灰法处理污泥进行了详尽的描述,对石灰法处理的定义限制在简单的“化学调质”层面,建议在三种条件下采用这种工艺:1)作为已有的污泥处理设施的备用措施;2)作为过渡措施,如果下一步污水厂可能被拆除;3)为已有设施改善臭味而采取的扩展办法。石灰稳定技术只能作为阶段性、应急或备用的过渡阶段处置方案。

五、技术应用成熟度:

1、污泥生物干化一体化处理处置技术:

2011年8月通过湖南省住建厅组织的专家评审:工艺原理合理,技术先进,出料含水率低,减量化显著,最终处置途径广泛;解决了常规好氧发酵占地大,环境恶劣的难题,具有占地少,能耗低、处理费用省等特点;

2012年7月通过湖南省科技厅组织专家对本装置进行成果鉴定,鉴定结论为:该装置技术在城镇污水处理厂污泥处理领域居国内领先水平;

2012年12月列为湖南省战略新兴产业科技攻关项目,获得湖南省政府的政策和资金支持;

2013年3年列为湖南省二型办十大清洁环保节能产品推广名录;

2011年11月株洲龙泉污水处理厂污泥处理处置示范项目正式运行,现已连续稳定运行近二年,先后接待住建部、环保部、省各主管厅、委、设计院、污水处理厂近四十批次领导、专家和客户,得到了一致好评;

2013年8月平江污泥处理处置BOT项目(生物干化处理处置一体化工艺)正式投产运行;

2013年6月污泥生物好氧发酵零排放处理技术成功预中标江西宜春市50吨/天污泥处理处置设计项目,由湖南省建筑设计院负责设计;

2012-2013年宁远、常宁等项目先后通过省发改委审批,现已进入初步设计和施工图设计;

2013年至今湖南省多地区污泥项目均将生物干化处理处置一体化工艺作为可研设计首推技术;

2、技术安全性能

(1)政策安全性:好氧发酵技术为污泥处理最佳首选技术路线,也是目前国内应用案例最多的技术。2010年2月环境保护部发布的《城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)》(HJ-BAT-002)指出:

1)污泥处理技术

城镇污水处理厂污泥减容、减量、稳定以及无害化的过程称为污泥处理。本指南中污泥处理技术指污泥厌氧消化和污泥好氧发酵。

2)污泥处置技术

经处理后的污泥或污泥产品在环境中或利用过程中达到长期稳定,并对人体健康和生态环境不产生有害影响的最终消纳方式称为污泥处置。本指南中的污泥处置技术指污泥土地利用和污泥焚烧。

(2)卫生的安全性:污泥处理过程不需要添加化学添加剂、化学药剂,发酵后污泥的灭菌完全,其大肠菌值约每克1~2个,蛔虫卵死亡率高达95~100%,自燃焚烧处置彻底。

(3)环境的安全性:无污水排放和空气污染;臭气浓度小于30无量纲,自燃焚烧烟气和干燥过程尾气排放达标。

(4)能源安全性:整个污泥处理处置全部利用污泥本身的生物能供热,实现污泥生物质能100%利用;处理和处置形成一体化,达到污泥处理和处置过程零交通运输,不受燃料资源和石油资源制约。

(5)运行管理安全性:污泥处理、处置形成一体化,污泥经自燃焚烧处置,热量回收利用后仅剩余约3%灰烬残留物,由本公司收集统一加工成富钾磷肥,实现完全资源化的可持续发展目标;污水处理和污泥处理处置形成一个完整的工业体系,运行管理由现有污水厂内部自身控制,不受市场、区域、其它下游生产条件的限制。

(6)装置安全性:本装置技术是经参与国家九五污泥攻关技术人员不懈努力,结合十几年的有机废物处理和综合利用的实际经验,经过在生猪养殖场粪尿零排放处理八年的应用和污泥处理处置多处示范检验:体现装置占地小、运行可靠,操作简单,维护方便、不受气候条件制约,处置彻底。

污泥石灰稳定干化工艺

污泥石灰稳定干化工艺 2011-9-14 11:36:09 北京梅凯尼克环保科技有限公司 字号:【字号大中小】点击:504 打印转发 【导读】污泥石灰稳定干化工艺是现今国内新开发出的一种运用添加剂对城市污水处理厂污泥进行干燥、稳定化和资源化处理的方法。该技术具有无二次污染、安全性高、投资少、污泥干化后产品可资源化利用的优点。 工艺概述: 污泥石灰稳定干化工艺是现今国内新开发出的一种运用添加剂对城市污水处理厂污泥进行干燥、稳定化和资源化处理的方法。采用生石灰发热剂,通过污泥高效干燥系统对有机酸腐污泥进行干燥、脱水、改性后,向稳定化无机材料转化。干化后的污泥渣可以替代水泥原料中的石灰石,实现污泥的资源化,并解决污泥处理过程中的二次污染问题。另外,根据氢氧化钙脱水变成氧化钙这一原理,处理物经高温煅烧后,添加剂可回收反复使用,实现了原材料的循环使用。该技术具有无二次污染、安全性高、投资少、污泥干化后产品可资源化利用的优点。 工艺原理: 化合反应:污水厂脱水污泥与固化材料混合搅拌后,污泥中的水分与固化材料中的生石灰反应后生成消石灰并释放大量热,掌握适当的添加量,在处理过程中可以使污泥迅速升温至100度以上,短时间内大量水蒸汽被蒸发,达到干燥、脱水及杀菌的目的。 工艺流程: 含水率80%的污泥由螺旋输送机送至料仓暂存,通过计量输送装置使污泥和生石灰按质量比4:1的配比分别送入物料反应系统。在物料反应系统内,污泥和生石灰发生化合反应,使系统内的温度迅速升高到100度,污泥中的水份被大量蒸发,完成污泥的干燥、脱水过程。干化后的污泥通过双螺旋混合器输送至室

外堆置棚进行堆置贮存。为防止污泥干化工程中产生二次污染,可以通过添加除尘、除臭设备实现对排放出的石灰粉尘和恶臭气体的处理。 工艺特点: 1、成本低,占地面积小 2、自动化设备,操作管理简单; 3、提高污泥含固率,使操作、运输更方便; 4、可以有效除臭除味,减少带菌物; 5、可以有效消灭细菌原体,且无细菌原体再生的风险; 6、干化产物富含含大量氢氧化钙、氧化硅、碳酸钙等物质,可以作为建筑材料的基材、道路基础辅 7、料、垃圾填埋场的垫层土、道路施工用的回填土等使用。 处理效果: 污泥经生石灰稳定干化处理后,含水率可迅速降低至40%左右,堆置8天后,含水率可降至5%,有机物含量可由45%降至8%,TN含量降至1%,大肠杆菌及粪大肠杆菌可完全消除。 主要工艺设备: 混合进料系统: 混合进料系统的主要设备为定量输送装置。污泥螺旋输送机及固化材料输送机分别将脱水后的污泥及固化材料输送至物料反应系统料仓,料仓内设双螺旋搅拌器,污泥和固化材料在双螺旋反向旋转推动的作用下混合均匀并进入物料反应系统。 物料反应系统: 物料反应系统的主要设备为物料反应器。在反应器内,污泥及固化材料随螺旋一起旋转,充分混合并发生化合反应,释放大量热能,使污泥中的水份被大量蒸发,达到干化的目的。反应器封闭式设计,使干化过程中产生的废气及粉尘便于收集处理,无二次污染的问题。污泥输送系统:污泥输送系统的主要设备为无轴螺旋输送机。干化后的污泥由螺旋输送机送至室外堆置。整个输送过程中无掉渣掉料现象,保持环境清洁。 废气、粉尘收集处理系统: 该系统主要设备为湿式除尘装置。污泥在干化过程中逸出的大量臭气和粉尘通过管道收集进入除尘装置,可以有效去除异味、降低粉尘浓度,其中粉尘的去除率可以达到80%以上。

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,

通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为 4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。

废水好氧生物处理工艺生物膜法水处理教案

第四章废水好氧生物处理工艺(2)——生物膜法 第一节生物膜法的基本原理 生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力; 主要的生物膜法有:①生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等; ②生物转盘;③生物接触氧化法;④好氧生物流化床等。 一、生物膜的结构 1、生物膜的形成 生物膜的形成必须具有以下几个前提条件:①起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体;②供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质;③作为接种的微生物。 (1) 生物膜的形成: 含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。 (2) 生物膜的成熟: 在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。 生物膜从开始形成到成熟,一般需要30天左右(城市污水,20 C) 2、生物膜的结构 生物膜的基本结构如图1所示。 图1 生物膜结构示意图

(1) 生物膜的性质: ①高度亲水,存在着附着水层; ②微生物高度密集:各种细菌以及微型动物,这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物)的食物链。 (2) 生物膜降解有机物的过程: 3、生物膜的更新与脱落 (1) 厌氧膜的出现: ①生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态;②成熟的生物膜一般都由厌氧膜和好氧膜组成;③好氧膜是有机物降解的主要场所,一般厚度为2mm。 (2) 厌氧膜的加厚: ①厌氧的代谢产物增多,导致厌氧膜与好氧膜之间的平衡被破坏;②气态产物的不断逸出,减弱了生物膜在填料上的附着能力;③成为老化生物膜,其净化功能较差,且易于脱落。 (3) 生物膜的更新: ①老化膜脱落,新生生物膜又会生长起来;②新生生物膜的净化功能较强。 (4) 生物膜法的运行原则: ①减缓生物膜的老化进程;②控制厌氧膜的厚度;③加快好氧膜的更新;④尽量控制使生物膜不集中脱落。 二、生物膜处理工艺的特点 1、微生物方面的特征 (1) 微生物种类多样化: ①相对安静稳定环境;②SRT相对较长;③丝状菌也可以大量生长,无污泥膨胀之虞;④线虫类、轮虫类等微型动物出现的频率较高;⑤藻类、甚至昆虫类也会出现;⑥生物膜上的生物:类型广泛、种属繁多、食物链长且复杂。 (2) 生物膜上微生物的食物链较长: ①动物性营养者所占比例较大,微型动物的存活率较高;②食物链长;③污泥产量少于活性污泥系统(仅为1/4左右)。

污泥干化焚烧处理技术.

污泥干化焚烧处理技术 公司简介: 华西能源工业股份有限公司(原东方锅炉工业集团有限公司)位于四川省自贡市,是我国大型电站锅炉、大型电站辅机、特种锅炉研发制造商和出口基地之一。华西能源一直专注于各类大中型电站锅炉以及世界先进动力技术的研发、设计和制造,开发了具有国内领先水平的以煤粉、煤矸石、水煤浆、油页岩、石油焦、油气、高炉煤气及工业废弃物与生活废弃物等为燃料的高新锅炉技术,并发展成为我国专业从事电站锅炉、碱回收锅炉、生物质燃料锅炉、垃圾焚烧锅炉、油泥砂锅炉、高炉煤气锅炉、工业锅炉以及其它各类特种锅炉研发、设计、制造的大型骨干企业。 污泥干化焚烧技术来源 华西能源和韩国HANSOL EME等国外知名公司合作,可以提供湿污泥直接焚烧系统、污泥干化焚烧系统、污泥全干化系统及污泥半干化系统的设计、供货、建设、运营、维护的全方位服务,也可提供技术咨询、工艺设计、核心及配套设备集成供货等多种形式服务。

污泥热处理的优势 焚烧 (最大程度的 细菌和微生

污泥处理技术 干化: 间接水平转碟式干化机 焚烧: 具有高效能量回收的流化床炉 污泥含水率和有机物含量对燃烧的影响 我国污水处理厂机械脱水污泥含水率多在80~83%(含固率在17~20%),有机物含量大多数在60%以下。从污泥的含固率和有机物含量对燃烧的影响曲线可以看到,污泥直接焚烧不能依靠自身的热量维持燃烧温度,要自持燃烧,污泥的含水率要小于70%。

污泥含固率和有机物含量对燃烧的影响曲线 “全干化”和“半干化”的选择 ?“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。 ?将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。但全干化对干化系统的安全监测和措施要求更高,同样处理能力的干化机换热面积更大。这是因为污泥在不同的干燥条件下失去水分的速率是不一样的,当含湿量高时失水速率高,相反则降低。 ?含固率的选择要根据最终处置目的。对于干化焚烧,根据能量平衡和燃烧温度计算,一般采用半干化较为经济。 污泥干化焚烧 污泥干化焚烧系统组成

水解酸化、好氧生物处理工艺1

水解-好氧生物处理工艺 目录 第一节水解(酸化)工艺与厌氧工艺 (3) 一、基本原理 (3) 二、水解-好氧工艺的开发 (4) 三、水解(酸化)工艺与厌氧发酵的区别 (5) 第三节水解-好氧生物处理工艺特点 (7) 1、水解池与厌氧UASB工艺启动方式不同 (7) 2、水解池可取代初沉池 (8) 3、较好的抗有机负荷冲击能力 (9) 4、水解过程可改变污水中有机物形态及性质,有利于后续好氧处理 (9) 5、在低温条件下仍有较好的去除效果 (10) 6、有利于好氧后处理 (10) 7、可以同时达到对剩余污泥的稳定 (11) 第四节水解-好氧生物处理工艺的机理 (11) 一、有机物形态对水解去除率的影响 (11) 二、有机物降解途径 (12) 三、水解池动态特性分析 (13) 四、难降解有机物的降解 (14) 第五节水解工艺对后续好氧工艺的影响 (19) 1、有机物含量显著减少 (19) 2、B/C比值和溶解性有机物比例显著增加 (20) 3、BOD5降解动力学 (20) 4、污泥和COD去除平衡 (21) 第六节水解工艺的污泥处理 (22) 一、传统污泥处理的目的和手段 (23) 二、污泥有机物的降解表 (24)

三、污泥脱水性能及处理 (24) 第七节水解池的启动和运行 (26) 一、水解池的启动方式 (26) 二、配水系统 (28) 三、排泥 (31) 四、负荷变化对水解池处理效果的影响 (32) 第八节水解工艺的进一步开发和应用 (33) 一、芳香类化合物的去除 (34) 二、奈的去除 (34) 三、卤代烃的去除 (34) 四、难生物降解工业废水处理的实际应用 (34) 五、高悬浮物含量废水的水解处理工艺 (35) 六、水解工艺的适用范围及要求 (36) 第九节水解-好氧工艺技术经济分析 (38) 一、厌氧处理应用的经济分析 (38) 二、水解-好氧系统设计参数 (39) 第十节水解-好氧生物处理工艺设计指南 (41) 一、预处理设施 (41) 二、水解池的详细设计要求 (41) 三、反应器的配水系统 (42) 四、管道设计 (45) 五、出水收集设备 (45) 六、排泥设备 (46)

全封闭污泥干化技术与设备

全封闭污泥干化技术与设备 一、污泥干燥焚烧 污泥焚烧工艺依照焚烧方式又分为直截了当焚烧和干燥焚烧两种。 污泥的直截了当焚烧是将高湿污泥在辅助燃料作为热源的情形下直截了当在焚烧炉内焚烧。由于污泥的含水量大、热值低,只有加入辅助燃料(煤、重油、柴油等)的情形下,污泥才能燃烧,耗费大量能源。由于污泥含水量大,焚烧后的尾气量也比较大,后续尾气处理需要庞大的设备,操作操纵难度大,相应造成后续喷淋塔、除雾塔等设备处理量大大增加,同时使设备投资和系统运行费用大大提高。 为了降低污泥处理运行费用和提高污泥焚烧效率,将污泥的直截了当焚烧改造为污泥经干燥后焚烧,因此需要配套污泥干燥设备系统。 污泥的干燥焚烧目的是高效、安全的实现污泥的完全矿化。在焚烧工艺前面采纳污泥干燥工艺的目的是实现污泥的减量化,节约后续焚烧处置的费用。污泥中大量的水分在干燥时期被除去,后续的焚烧炉将比直截了当燃烧时的体积减小,尾气处理系统在设备体积减小的同时,由于水蒸气含量的减少,处理难度会降低而效率会增加。 污泥干燥焚烧把污泥中的水分进行干燥处理后,配以适当比例的煤灰,焚烧产生热能发电。尽管一次性投资稍高,但由于它具有其它工艺不可代替的优点,专门在污泥量的消减上,卫生化,最终出路上,处置占地面积上,都有其他工艺无法比拟的优势,是一种污泥最终出路的解决方法,在污泥的最终处置方面将有着广泛的前景。 污泥的干燥最早是在二十世纪四十年代开发的,通过几十年的进展,污泥干燥的优点正逐步显现出来:干燥后的污泥与湿污泥相比,能够大幅度减小体积,从而减小了储存空间,以含水的湿污泥为例,干燥至含水30%时,体积能够减小;形成颗粒或粉状的稳固产品,使污泥形状大大改善;最终产品无臭且无病原体,减轻了污泥的有关负面效应,使处理的污泥更容易被同意;干化后的高热值污泥也能够替代能源,实现变废为宝。 1、污泥干燥的机理 干燥是为了去除水分,水分的去除要经历两个要紧过程: (1)蒸发过程:物料表面的水分汽化,由于物料表面的水蒸气压低于介质(气体)中的水蒸气分压,水分从物料表面移入介质。 (2)扩散过程:是与汽化紧密相关的传质过程。当物料表面水分被蒸发掉,形成物料表面的湿度低于物料内部湿度,现在,需要热量的推动力将水分从内部转移到表面。 上述两个过程的连续、交替进行,差不多上反映了干燥的机理。

欧洲污泥干化焚烧处理技术的应用与发展趋势

欧洲污泥干化焚烧处理技术的应用与发展趋势 黄凌军 杜 红 鲁承虎 黄国民 提要 介绍了德国、意大利、奥地利、比利时及荷兰欧洲五国共八个代表性的污泥处理处置厂的工艺要点及运行状况,分析论述了欧洲污泥处理处置方式的发展趋势。结合我国国情特点及个人工程经验,对污泥干化焚烧技术在我国的应用从技术路线发展、工艺选择、规划、建设等方面进行了具体的探讨。 关键词 污泥处理 干化焚烧 应用 欧洲 污泥干化焚烧技术在欧洲应用已有20多年。该技术是多学科与技术应用领域的交叉融合,主要利用热力学与流体力学的原理,结合机械与材料技术,进行污泥处置,可以很好地达到“减量化、无害化、资源化”的污泥处理处置目标。本文针对德国、意大利、奥地利、比利时及荷兰欧洲五国的八个污泥处理处置厂的情况,介绍污泥干化焚烧技术在欧洲的应用及欧洲污泥处理处置方式的发展前景,对该技术在我国的应用进行了探讨。1 污泥处理处置厂介绍 目前污泥干化焚烧的主要工艺有:对流方式传热的流化床(WABA G)、转鼓干燥器(Andritz),传导加热方式的立式转盘(SEGHERS)、卧式转盘(Atlas2 stord),对流与传导加热相结合的涡轮薄膜干化(VOMM)及INNO二级干化(Schwing)。用于污泥处理的焚烧炉主要是流化床焚烧炉。以下介绍采用上述工艺在欧洲污泥处理处置厂的应用与运行状况。 八个厂的基本情况见表1。 表1 污 泥 处 理 处 置 厂 概 况 序号名 称国家处理能力主要设备投产时间设备制造商最终处置 1CONSORZIO CUOIO DEPUR S1P1A1 意大利100tDS/d涡轮薄膜干燥器 一期1996 二期2001 意大利VOMM公司填埋 2Graz2G ossendorf Sewage Sludge Drying Plant 奥地利约33tDS/d转鼓干燥器1997奥地利Andritz焚烧 3PVS Wien奥地利115tDS/d 薄膜蒸发器+带 式干燥器 2001美国Schwing焚烧 4Aquafin N.V. Dijkstraat8-B-2630 Aartselaar 比利时10000tDS/a流化床2001德国WABA G焚烧 5WWWTP Stuttgart德国84tDS/d 转盘式干燥机, 流化床焚烧炉 Ⅰ线1984 Ⅱ线1992 德国BAMA G公司总包, 干化设备分别由Atlas2 stord与WUL FF提供。 灰分填埋 6Aquafin N1V1 Waterzuiveruing W1Z1K1 比利时20000tDS/a 硬颗粒造粒机, 流化床焚烧炉 造粒机2001 焚烧炉1985 比利时SEGHERS表面覆土 7Aquafin N1V1 RWZI Deurne Antwerpen 比利时10000tDS/a硬颗粒造粒机1998比利时SEGHERS焚烧 8SNB N.V.Slibverwerking Noord Brabant 荷兰365tDS/d 转盘式干燥机, 流化床焚烧炉 1997 德国BAMA G总包 焚烧炉THYSSEN 干燥器Atlas2stord 建筑材料 给水排水 V ol129 N o111 200319

废水好氧生物处理工艺其它工艺水处理教案

第五章 废水好氧生物处理工艺(3)——其它工艺 第一节 氧化沟工艺 氧化沟也称氧化渠,又称循环曝气池,是活性污泥法的一种变形;是20世纪50年代荷兰的Pasveer 首先设计的;最初一般用于日处理水量在5000m 3以下的城市污水。 一、氧化沟的工作原理与特征 1、氧化沟的工艺流程 图1 氧化沟及氧化沟系统平面图 图2 以氧化沟为主的废水处理流程 2、氧化沟的特征 ① 池体狭长,(可达数十米甚至上百米);池深度较浅,一般在2米左右; ② 曝气装置多采用表面机械曝气器,竖轴、横轴曝气器都可以; ③ 进、出水装置简单; ??构造上的特征 ④ 氧化沟呈完全混合?推流式;沟内的混合液呈推流式快速流动(0.4~0.5m/s ),由于流速高,原废水很快就与沟内混合液相混合,因此氧化沟又是完全混合的; ⑤ BOD 负荷低,类似于活性污泥法的延时曝气法,处理出水水质良好; ⑥ 对水温、水质和水量的变动有较强的适应性; ⑦ 污泥产率低,剩余污泥产量少; ⑧ 污泥龄长,可达15~30d ,为传统活性污泥法的3~6倍; ⑨ 世代时间很长的细菌如硝化细菌能在反应器内得以生存,从而使氧化沟具有脱氮的功能。 二、氧化沟的几种典型的构造型式 原废水 格栅 氧 化 沟 出水

目前主要的氧化沟形式有:Carrousel氧化沟、Orbal氧化沟、交替工作式 氧化沟、曝气—沉淀一体化氧化沟等四种。 1、Carrousel 式氧化沟(图3) Carrousel 式氧化沟又称平行多渠形氧化沟;是60年代末荷兰DHV公司开 创的。采用竖轴低速表面曝气器;水深可达4~4.5m,沟内流速达0.3~0.4m/s; 混合液在沟内每5~20min循环一次;沟内混合液总量是入流废水量的30~50倍; BOD5去除率可达95%以上,脱氮率可达90%,除磷效率可达50%;应用广泛,最大规模为650000m3/d;在国内主要有昆明兰花沟污水处理厂、上海龙华肉联厂、桂林市东区废水厂等。 2、Orbal氧化沟(图4) Orbal氧化沟又称同心圆型氧化沟,其主要特点如下: ①圆形或椭圆形的沟渠,能更好地利用水流惯性,可节省能耗; ②多沟串联可减少水流短路现象; ③最外层第一沟的容积为总容积的60~70%,其中的DO接近于 零,为反硝化和磷的释放创造了条件; ④第二、三沟的容积分别为总容积的20~30%和10%,而DO则 分别为1和2mg/l; ⑤这种沟渠间的DO浓度差,有利于提高充氧效率; Orbal氧化沟在国内的主要工程实例有:①抚顺石油二厂废水处理站(28,800m3/d);②北京燕山石化公司新建废水处理厂(60000m3/d);③成都市天彭镇污水处理厂。 3、交替工作氧化沟 交替工作氧化沟由丹麦Kruger公司所开发的,有二沟和三沟式两种形式;其主要特点是其中的每一条沟均交替用做曝气池和沉淀池,而无需二沉池和污泥回流装置;但其中的曝气转刷的利用率较低,D型二沟只有40%,三沟式则提高到了58%; 图5:VR型氧化沟图6:D型氧化沟

吨污泥干化方案

15吨污水厂污泥处置方案 一、我们推荐的污泥处理工艺技术路线 1、我们的工艺路线: 我们认为《国家城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行) 》中提出“最佳”与“可行技术”是符合目前中国污泥处置工业国情的,中国在一定时期内的技术、经济发展水平和环境管理要相适应。在经济和技术许可的条件下要因地制宜,在考虑成本和综合效益的前提下,综合整体地考虑污泥处置方案。通过技术和管理措施使污染污泥处理能够实现达标排放,同时达到高水平的整体的环境保护效果。 2、我们建议的污泥处置出处: 污泥中含有具有潜在利用价值的有机质,氮、磷、钾和各种微量元素,寄生虫卵、病原微生物等致病物质,铜、锌、铬等重金属,以及多氯联苯、二噁英等难降解有毒有害物质,如不妥善处理,易造成二次污染.我们认为处理后的污泥或污泥产品在环境中或利用过程中达到长期稳定,并对人体健康和生态环境不产生有害影响才是最终消纳方法。 对于一些污水厂所在地区的工业经济比较发达而且没有空余土地消纳污泥的可以采取对污泥进行适当处理后作为生产水泥的辅助燃料或电厂补充燃料。 3、我们推荐电渗透污泥干化方法的理由。 污水厂污泥是市政污泥,市政污泥的细胞水含量多且具有发热量,低位发热量约为2000-3400大卡/吨干污泥。如卖给发电厂做燃料每吨干泥可以产生2000-3300大卡的热量,现在5500大卡的热量的燃煤在中国买到800元/吨左右,而且用量每天很大,火电厂都有烟气和粉尘处理设施,如把干燥后的污泥(90%含固率)作为燃料送到发电厂,不仅可以产生效益,而且合理利用电厂环保设施

资源,避免投资浪费(污水厂减少处理污泥的环保投入),高效环保的最终处置了污泥,而且污泥作为燃料发挥了自身最大化的利用率,真正做到了再生能源。 并且我们认为电能是今后发展的主要能源,而且风力发电、太阳能发电、潮汐发电、水力发电等不消耗矿产资源的绿色发电方法越来越多,2020年绿色电能将占我国总发电量的40%这样许多工业企业都将利用电能这种低成本绿色可持续能源作为主要生产能源,随着电力工业发展逐渐走向一条清洁高效环保之路,电费也随之降低。所以利用电能这种经济清洁能源作为污泥转化生产能源的这条路发展方向是正确的。 4、污泥低温燃料化 解决能源危机的途径 ⑴节能 《中华人民共和国节约能源法》1997通过,2007修订,2008年4月1日实施。2007年12月《中华人民共和国能源法》征求意见稿出台。 ⑵能源综合利用 上述2个方法无法避免世界一次能源必将枯竭的局面,未来能源的出路在哪里,资源要综合、循环利用才是出路。2005通过《中华人民共和国可再生能源法》

城市污泥干化处理课程设计

城市污泥干化处理课程设计 一、课程设计基础资料 广州污水处理厂污泥干化工程即将大规模启动,广州市水务局计划推动西朗污水厂、沥滘污水厂、京溪地下净水厂、大坦沙污水厂和猎德污水厂等污泥干化减量工程。按照计划,将要求相关污水处理厂建设污泥干化减量设施,再将干化污泥运输至水泥厂、电厂和垃圾焚烧厂直接焚烧。从而实现所有污泥都可以在广州本地处理,不再产生臭气扰民的同时还能够实现资源化利用。 某污水处理厂按照污水厂规模10万立方米/日(20万立方米/日、50万立方米/日),配套建设污泥处理系统,折合干基污泥约15吨/日(30吨/日、75吨/日)。将在厂内新建污泥脱水干化车间,配套物料分选系统、板框压滤系统、热干化系统、热源供给和回收系统、废气净化除湿系统,生物除臭系统,以及浓缩、调理、出料等相关辅助设备。污泥在厂内进行处理后,含水率从原来的80%以上,降低到30%~40%。 本课程设计的目的和要求:能够将数学、自然科学、工程基础和专业知识用于解决固体废物处理与资源化方面的复杂工程问题。运用深入的工程原理通过系统分析解决复杂工程问题,重点如下:1、设计多种技术、工程和其他因素,分析其中存在的冲突,做到扬长避短,尽量做到互相借鉴;2、通过建立合适的抽象模型解决工程问题,建模过程中需要体现出创造性(建立模型可理解为利用有关工程原理进行合理的情景分析和预测,提出解决思路);3、以常用的技术方法为基础,从多学科交叉和方法移用方面体现出创新性,以推动问题的解决;4、分析有关专业标准和规范中所涉及的因素是否全面,找出或发掘解决复杂问题的关键因素,并对标准和规范进行拓展;5、技术方法的确定方面,既要考虑处理效率和环保政策要求,又要考虑经济成本的可接受性,还需考虑短期和长远的发展预期;6、提出解决方案需要综合考虑经济、环境和社会效益,也需要采用综合性的解决思路和多学科工程技术的集成,还需考虑固体废物、废水、废气的全面有效处理,也需考虑技术的可行性、选用设备的处理能力和组合方式、工程应用的安全性等,即从多角度、多层次、多阶段、整体性等方面综合性解决。

污泥干化详细方案

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处理流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,中国南方大多数具有多雨潮湿季节的地区难以适用。另外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),能够采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。

1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,一般人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,经过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处理适用性好和灵活性高等优点。 污泥热力干化工艺一般有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后经过高强度机械压滤析出达到高干的目的。一般污泥

污泥干化系统方案市政污泥造粒循环冷却

污泥干化系统方案市政污 泥造粒循环冷却 The following text is amended on 12 November 2020.

北控环保工程技术有限公司污泥干化项目 初步技术方案 Turbo Thin Film Technology For Waste Treatment 世界领先的涡轮薄层干燥技术应用于环境废弃物处置

目录 1.项目概况.............................................. 错误!未定义书签。设计目的....................................................... 错误!未定义书签。 主要设计条件................................................... 错误!未定义书签。 2.设计数据................................................ 错误!未定义书签。供应方工作范围................................................. 错误!未定义书签。 工艺设计数据................................................... 错误!未定义书签。 辅助设施可用性................................................. 错误!未定义书签。 预期消耗....................................................... 错误!未定义书签。 排放........................................................... 错误!未定义书签。 3.方案工艺描述............................................ 错误!未定义书签。污泥处置系统工艺选择........................................... 错误!未定义书签。 工艺介绍和描述................................................ 错误!未定义书签。 工艺系统的特点................................................ 错误!未定义书签。 4 方案系统设计............................................ 错误!未定义书签。主要工艺设备清单............................................... 错误!未定义书签。 电气和自动化系统............................................... 错误!未定义书签。 仪器仪表....................................................... 错误!未定义书签。 管线系统....................................................... 错误!未定义书签。 系统平面布置................................................... 错误!未定义书签。 5.系统设备投资估算和活性污泥减量处置经济测算.............. 错误!未定义书签。 6.供应商简介.............................................. 错误!未定义书签。 7. 全球部分环保污泥处置业绩表............................. 错误!未定义书签。 8. 国内部分项目应用情况简介............................... 错误!未定义书签。

污泥干化焚烧处理的历程

自从有了污水厂,便产生了污泥。每万吨污水大约产生10吨左右污泥(含水率80%),从一万吨水的污染到10吨污泥的污染,不管从体积上还是政府所面临的压力大大地减少了,原来建设污水处理厂的时候,可能还没来得及考虑污泥的处理,随着人们生活水平的提高,对环境的要求越来越高,污泥处理也越来越迫切的摆在管理者的案上。 国家最早对污泥处理是提出了三化的标准,即“资源化、无害化、减量化”,后来又加上一个“稳定化”,变成了四化。没有对污泥处理技术提出标准,这样五花八门的技术路线到生搬硬套到四化身上,比如板框脱水,厌氧消化,热水解等。不可否认,这些技术在一定历史时期确实解决了城市管理者眼前的问题。但污泥始终还是污泥,比如说板框使污泥从一百吨变成了五十吨,厌氧消化从污泥中提取了一点沼气,污泥还是污泥,说好的处理处理,处理了吗?并且国内还有好多专家大师为这些技术摇旗呐喊,出于什么目的,当然大家心知肚明。 可喜的是这个状况从2018年开始有所转变,经过十几年污泥市场无序的发展,沿海城市的管理者发现污泥处理就不要再讲故事了,什么堆肥,热水解消化等技术,全部靠边站,一烧了之,个人认为这是市场发展的必然结果,特别是广州市政府发文要求城区污泥城区污泥全部要用干化焚烧工艺。 上海市原来的填埋场暂存的污泥也要挖出来焚烧,有这些一线城市做榜样,估计国内其他城市也会跟进,但这需要一个过程,跟城市财力分不开。 华天环保是一家从事环保事业发展的新型生产型、研发型企业。公司采用国际先进技术理念,在污泥处理、垃圾处理领域有着多项专业设备和技术专利,其中自主研发设计的热解气化装置可以有效稳定高效的处理各种污泥、工业垃圾等,在多个项目的运行中也得到业主的充分肯定,我们相信在以后的实践运行中这项

第二章 好氧生物处理(原理与工艺)

异氧微生物 第二章 好氧生物处理(原理与工艺) 2. 1基本概念 2. 1。1好氧生物处理的基本生物过程 所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类; 所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。 好氧生物处理过程的生化反应方程式: ● 分解反应(又称氧化反应、异化代谢、分解代谢)(占1/3) CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +?+能量 (有机物的组成元素) ● 合成反应(也称合成代谢、同化作用)(占2/3) ● C 、H 、O 、N 、 + 能量 C 5H 7NO 2 ● 内源呼吸(也称细胞物质的自身氧化)(endogenous respiration ) C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 +?+能量 在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3 分解与合成的相互关系: 1) 二者不可分,而是相互依赖的; a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础; b .分解过程是一个产能过程,合成过程则是一个耗能过程。 2)对有机物的去除,二者都有重要贡献; 3)合成量的大小,对于后续污泥的处理有直接影响(污泥的处理费用一般占整个污水处理厂的40~50%)。 不同形式的有机物被生物降解的历程也不同: 一方面: ● 结构简单、小分子、可溶性物质,直接进入细胞壁; ● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作 用下被水解液化成小分子有机物,再进入细胞内。 另一方面:有机物的化学结构不同,其降解过程也会不同: 2. 1。2影响好氧生物处理的主要因素 1)溶解氧(DO ): 约1~2mg/l 2)水温:是重要因素之一, a . 在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快; b . 细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限 度时,会有不可逆的破坏; 最适宜温度 15~30?C ; >40?C 或< 10?C 后,会有不利影响。 3)营养物质: 细胞组成中,C 、H 、O 、N 约占90~97% 其余3~10%为无机元素,主要的是P 。 生活污水一般不需再投加营养物质; 而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1 投加N 和P 。 其它无机营养元素:K 、Mg 、Ca 、S 、Na 等; 微量元素: Fe 、Cu 、Mn 、Mo 、Si 、硼等; 4)pH 值: 一般好氧微生物的最适宜pH 在6.5~8.5之间; 微生物 异氧微生物

污水处理厂的污泥干化方式总结

污水处理厂的污泥干化方式总结 污泥所含的污染物一般均有很高的热值,但是由于大量水分的存在,使得这部分热值无法得到利用。如果焚烧高含水率的污泥,不但得不到热值,还需要大量补充燃料才能完成燃烧。 如果将污泥的含水率降到一定程度,燃烧就是可能的,而且,燃烧所得到的热量可以满足部分甚至全部进行干化的需要。同样的道理,无论制造建材还是其他利用,减少含水率是关键。因此,可以说污泥干化或半干化事实上是污泥资源化利用的第一步。 目前主要运用的污泥干化模式有: 自然干化、传统人工污泥干化和太阳能污泥干化。现分别叙述如下:自然干化: 污泥自然干化,即将污水厂湿污泥铺垫在自然地面上,一般为远离城市的荒地或戈壁等。通过太阳照射、风干等作用将污泥干化。这种方式可以节约能源,降低运行成本。但要求当地降雨量少、蒸发量大、可使用的土地多、环境要求相对宽松等条件,故受到一定限制。由于目前城市用地的紧张、环境保护要求的不断提高,这种方式已经越来越少使用了。 人工干化: 污泥人工干化,采用最多最普遍的是热干化,降低污泥的含水率。在我国大连开发区、秦皇岛、徐州等污水厂已经采用热干化工艺烘干污泥达到污泥减量效果,目前这些工程均运行良好。 但是污泥热干化工艺因消耗热量较大,一般应与利用余热相结合,利用工业余热、发电厂余热或其他余热作为污泥干化处理的热源;若采用优质一次能源作为主要干化热源,则会造成燃料消耗大、运行成本高以及投资过大等问题; 污泥热干化一般均需要专门的污泥干化设备,在生产过程中要严格防范热干化可能产生的安全事故,对设备技术要求及生产管理的要求很高。根据目前的运行经验,一般在大型集中式的污泥干化处理工程中采用此方式,小型干化处理工程极少采用。 太阳能干化:

污泥干化技术

污泥干化技术 污泥是污水处理过程中产生的固体废弃物,随着国内污水处理事业的发展,污水厂总处理水量和处理程度将不断扩大和提高,产生的污泥量也日益增加,目前在国内一般污水厂中其基建和运行费用约占总基建和运行费用的20%~50%。污水污泥中除了含有大量的有机物和丰富的氮、磷等营养物质,还存在重金属、致病菌和寄生虫等有毒有害成分。为防止污泥造成的二次污染及保证污水处理厂的正常运行和处理效果,污水污泥的处理处置在我国污水处理中占有的位置已日益突出。 一、原理 流化床污泥干燥机的结构从底部到顶部基本上由三部分组成: (一)风箱:在干燥机的最下面,用于将循环气体分送到流化床装置的不同区域,其底部装有一块特殊的气体分布板,用来分送惰性流化气体。该板具有设计坚固的优点,其压降可以调节,保证了循环气体能适量均匀地导向整个干燥机。 (二)中间段:在该段,热交换器内置于此. 使脱水污泥的水蒸发的所有能量均通过此热交换器送入。通常蒸汽或者热油可作为热交换的热介质. (三)抽吸罩:作为分离第一步, 用来使流化的干颗粒脱离循环气体,而循环气体带着污泥细粒和蒸发的水分离开干燥机通过流化床下部

风箱, 将循环气体送入流化床内。颗粒在床内流态化并同时混合。通过循环气体不断地流过物料层, 达到干燥的目的。 (四)其工艺流程图(如图1.1、1.2) 流化床干化系统—工艺流程图(图1.1)

流化床干化系统—工艺流程图(图1.2) 二、流化床干化系统的优点和污泥的特性比较 (一)优点 1.直接将脱水污泥送入流化床, 无需干颗粒循环和干湿泥混合造粒(返料系统) 2.最终产品: 无尘的, 含固率大于90%的干固体 3.低干化温度85°C 4.流化床内通过热交换器非直接供热 5.低排放不污染环境 6.干化系统气体惰性化, 氧含量< 3 Vol-% , 具有高安全性 7.很高的环境等级, 因为系统密闭制造、干化过程中剩余气体量低、臭气含量低 8.运行时间: 每天24 小时 9.已被证实为可靠的系统, 年运行时间超过8000 小时 10.全自动控制系统, 无需全天侯值班 11.污泥干化质量好

250吨每天污泥干化及焚烧处理工艺设计_毕业设计

本科毕业设计(论文) 250吨/天印染污泥干化及焚烧处理 工艺设计 学院环境科学与工程 专业环境工程

设计总说明 随着印染行业蓬勃发展,我国对印染废水处理力度在不断加大,每天处理污水产生相应大量污泥,污泥量日益增加,产生的污泥的组成成分日益复杂,如处理不当,必然会对自然环境造成二次污染,存在比较严重的环境安全隐患。 本设计要求处理250吨/天的印染污泥,原污泥为经过板框压滤机压滤过的含水率约82%的湿污泥。针对印染污泥的特点,结合国外处理污泥的成功经验以及国内对印染污泥的成熟工艺,决定选用先干化后焚烧的工艺。该工艺具有工艺成熟、稳定、节能、占地少、效率高等优点。基本工艺流程为:储泥室→回转烘干机→制砖机→焚烧炉→炉渣、煤灰等回收。 本设计所用的主要设备有Ф3.0×28m型回转烘干机、AB-200型焚烧炉、QTY8-15型砌块成型机、ppw64-7脉冲布袋收尘器、Ф1.5×16m脱硫塔、LXT-5型活性炭吸附塔。工程总投资为1305万元,每年的总运行费用为1264.34万元。 关键词:印染污泥干化焚烧回收利用

Design illuminate With printing and dyeing industry vigorous development, the printing and dyeing wastewater treatment in growing, every day to produce large amounts of sewage sludge, the sludge quantity increasing, the components of sludge produced by the increasingly complex, such as improper handling, is bound to cause secondary pollution to the natural environment, there are serious environmental safety hidden trouble. In this design, projects required to treat 250 tons/day printing and dyeing sludge. Moisture content of the original sludge,which has been pressed by the frame filter,is approximately 82%. Aiming at the characteristic of dyeing sludge, and in the light of the successful experience of external treatment of dyeing sludge and mature technology of internal treatment of that, we select drying and incineration technology. Such a technology has the advantage of mature, stable, energy-saving, small footprint and high efficiency. Basic process is: Stored mud room → Rotary dryer brick machine → Incinerator slag → Ash and other recycled. The main equipment used in the design is Ф3.0 × 28m Rotary Dryer, AB-200 type incinerator, QTY8-15 block making machine, ppw64-7 Pulse bag filter, Ф1.5 × 16m desulfurization tower, LXT-5-type activated carbon adsorption tower. The total investment is 13.05 million yuan, the total annual operating cost is 12,643,400 yuan Keywords:dyeing sludge mummification incineration recycle

相关文档
最新文档