常州市初中数学反比例函数经典测试题附答案

常州市初中数学反比例函数经典测试题附答案
常州市初中数学反比例函数经典测试题附答案

常州市初中数学反比例函数经典测试题附答案

一、选择题

1.反比例函数k

y x

=

的图象在第二、第四象限,点()()()1232,,4,,5,A y B y C y -是图象上的三点,则123,,

y y y 的大小关系是( )

A .123y y y >>

B .132y y y >>

C .312y y y >>

D .231y y y >>

【答案】B 【解析】 【分析】

根据反比例函数图像在第二、四象限,反比例函数图像在第二、四象限,y 随x 的增大而增大,再根据三点横坐标的特点即可得出结论. 【详解】

解:∵反比例函数k

y x

=

图象在第二、四象限, ∴反比例函数图象在每个象限内y 随x 的增大而增大, ∵-2<4<5,

∴点B 、C 在第四象限,点A 在第二象限, ∴23y y <<0,10y > , ∴132y y y >>. 故选B. 【点睛】

本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答本题的关键.

2.如图,反比例函数1

1k y x

=

的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( )

A .0<x <2

B .x >2

C .x >2或-2<x <0

D .x <-2或0<x <2

【答案】D 【解析】 【分析】

先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.

【详解】

∵反比例函数与正比例函数的图象均关于原点对称,

∴A、B两点关于原点对称.

∵A(2,1),

∴B(-2,-1).

∵由函数图象可知,当0<x<2或x<-2时函数y1的图象在y2的上方,

∴使y1>y2的x的取值范围是x<-2或0<x<2.故选D.

3.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()

A.B.

C.D.

【答案】A

【解析】

【分析】

根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于

圆锥的母线长得到2πr=270

180

l

π??

,整理得l=

4

3

r(r>0),然后根据正比例函数图象求

解.【详解】

解:根据题意得2πr=270

180

l

π??

,所以l=

4

3

r(r>0),

即l与r为正比例函数关系,其图象在第一象限.故选A.

【点睛】

本题考查圆锥的计算;函数的图象.

4.函数

k

y

x

=与y kx k

=-(0

k≠)在同一平面直角坐标系中的大致图象是()

A .

B .

C .

D .

【答案】C 【解析】 【分析】

分k>0和k<0两种情况确定正确的选项即可. 【详解】

当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;

当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误, 故选:C. 【点睛】

此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.

5.如图,一次函数1y ax b =+和反比例函数2k

y x

=

的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )

A .20x -<<或04x <<

B .2x <-或04x <<

C .2x <-或4x >

D .20x -<<或4x >

【答案】B 【解析】 【分析】

根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可. 【详解】

观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<, 故选B . 【点睛】

本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.

6.如图,过反比例函数()0k

y x x

=

>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ?=,则k 的值为( )

A .2

B .3

C .4

D .5

【答案】C 【解析】 【分析】

根据2AOB S ?=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号. 【详解】

解:由AB x ⊥轴于点B ,2AOB S ?=,得到1

22

AOB S k ?== 又因图象过第一象限, 1

22

AOB S k ?==,解得4k = 故选C 【点睛】

本题考查了反比例函数系数k 的几何意义.

7.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数y=

k

x

(x>0)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,若△OAB 的面积为3,则k 的值为 ( )

A .

13

B .1

C .2

D .3

【答案】D 【解析】 【分析】

连接OC ,如图,利用三角形面积公式得到S △AOC =12S △OAB =3

2

,再根据反比例函数系数k 的几何意义得到12|k|=3

2

,然后利用反比例函数的性质确定k 的值. 【详解】 连接OC ,如图,

∵BA ⊥x 轴于点A ,C 是线段AB 的中点, ∴S △AOC =12S △OAB =32, 而S △AOC =1

2

|k|, ∴

12|k|=32

, 而k >0, ∴k=3. 故选:D . 【点睛】

此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=

k

x

图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.

8.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )

A .气压P 与体积V 的关系式为(0)P kV k =>

B .当气压70P =时,体积V 的取值范围为70

C .当体积V 变为原来的一半时,对应的气压P 也变为原来的一半

D .当60100V 剟

时,气压P 随着体积V 的增大而减小 【答案】D 【解析】 【分析】

A .气压P 与体积V 表达式为P= k

V

,k >0,即可求解; B .当P=70时,6000

70

V =

,即可求解; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,即可求解; D .当60≤V≤100时,气压P 随着体积V 的增大而减小,即可求解. 【详解】

解:当V=60时,P=100,则PV=6000, A .气压P 与体积V 表达式为P= k

V

,k >0,故本选项不符合题意; B .当P=70时,V=

6000

70

>80,故本选项不符合题意; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,本选项不符合题意; D .当60≤V≤100时,气压P 随着体积V 的增大而减小,本选项符合题意; 故选:D . 【点睛】

本题考查的是反比例函数综合运用.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,进而根据字母代表的意思求解.

9.如图,点P 是反比例函数y =

k

x

(x <0)图象上一点,过P 向x 轴作垂线,垂足为M ,连接OP .若Rt △POM 的面积为2,则k 的值为( )

A .4

B .2

C .-4

D .-2

【答案】C 【解析】 【分析】

根据反比例函数的比例系数k 的几何意义得到S △POD =1

2

|k|=2,然后去绝对值确定满足条件的k 的值.

解:根据题意得S△POD=1

2

|k|,

所以1

2

|k||=2,

而k<0,所以k=-4.故选:C.【点睛】

本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=k

x

图象中任取一点,过

这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.

10.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=k

x

(k>0)的图象

上,则y1、y2、y3的大小关系是()

A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B

【解析】

【分析】

反比例函数y=k

x

(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y

随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】

∵反比例函数y=k

x

(k>0)的图象在一、三象限,

∴在每个象限内y随x的增大而减小,

∵A(-3,y1)、B(-1,y2)在第三象限双曲线上,∴y2<y1<0,

∵C(1,y3)在第一象限双曲线上,

∴y3>0,

∴y3>y1>y2,

故选:B.

此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.

11.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8

y x

=-的图象上,则y 1,y 2,y 3的大小关系是( ) A .123y y y << B .213y y y <<

C .132y y y <<

D .321y y y <<

【答案】D 【解析】 【分析】

由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较. 【详解】

解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8

y x

=-的图象上, ∴1881y =-=-,2842y =-=-,383

y =-, 又∵8

483

-

<<, ∴321y y y <<. 故选:D . 【点睛】

本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.

12.如图所示,已知()121,,2,2A y B y ?? ???

为反比例函数1

y x

=

图象上的两点,动点()

,0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ?的面积是 ( )

A .

12

B .1

C .

32

D .

52

【答案】D

【分析】

先根据反比例函数解析式求出A,B的坐标,然后连接AB并延长AB交x轴于点P',当P 在P'位置时,PA PB AB

-=,即此时AP BP

-的值最大,利用待定系数法求出直线AB的解

析式,从而求出P'的坐标,进而利用面积公式求面积即可.

【详解】

1

2

x=时,2

y=,当2

x=时,

1

2

y=,

11

(,2),(2,)

22

A B.

连接AB并延长AB交x轴于点P',当P在P'位置时,PA PB AB

-=,即此时AP BP

-的值最大.

设直线AB的解析式为y kx b

=+,

11

(,2),(2,)

22

A B代入解析式中得

1

2

2

1

2

2

k b

k b

?

+=

??

?

?+=

??

解得

1

5

2

k

b

=-

?

?

?

=

??

∴直线AB解析式为

5

2

y x

=-+.

当0

y=时,

5

2

x=,即

5

(,0)

2

P',

1155

2

2222

AOP A

S OP y

'

∴=?=??=

V

故选:D.

【点睛】

本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP

-何时取最大值是解题的关键.

13.如图,点A,B是双曲线

18

y

x

=图象上的两点,连接AB,线段AB经过点O,点

C为双曲线

k

y

x

=在第二象限的分支上一点,当ABC

V满足AC BC

=且:13:24

AC AB=时,k的值为().

A.

25

16

-B.

25

8

-C.

25

4

-D.25

-

【答案】B

【解析】

【分析】

如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出

2

()

COF

AOE

S OC

S OA

?

?

=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2

()

COF

AOE

S OC

S OA

?

?

==

25

144

,因为S△AOE=9,可得S△COF=

25

16

,再根据反比例函数的几何意义即可解决问题.

【详解】

解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.

∵A、B关于原点对称,

∴OA=OB,

∵AC=BC,OA=OB,

∴OC⊥AB,

∴∠CFO=∠COA=∠AEO=90°,

∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,

∴∠COF=∠OAE,

∴△CFO∽△OEA,

2

()COF AOE S OC S OA

??=, ∵CA :AB =13:24,AO =OB , ∴CA :OA =13:12, ∴CO :OA =5:12, ∴

2()COF AOE S OC S OA ??==25144

, ∵S △AOE =9, ∴S △COF =25

16

, ∴

||25

216

k =, ∵k <0, ∴258

k =-

故选:B . 【点睛】

本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.

14.若反比例函数()2

2

21m y m x -=-的图象在第二、四象限,则m 的值是( )

A .-1或1

B .小于

1

2

的任意实数 C .-1 D .不能确定

【答案】C 【解析】 【分析】

根据反比例函数的定义列出方程221m -=-且210m -<求解即可. 【详解】

解:2

2

(21)m

y m x -=-Q 是反比例函数,

∴221m -=-,210m -≠,

解之得1m =±.

又因为图象在第二,四象限, 所以210m -<, 解得1

2

m <

,即m 的值是1-. 故选:C . 【点睛】

对于反比例函数()0k

y k x

=

≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.

15.当0x <时,反比例函数2

y x

=-

的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大 C .在第三象限,y 随x 的增大而减小 D .在第四象限,y 随x 的增大而减小

【答案】B 【解析】 【分析】 反比例函数2

y x

=-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】

解:Q 反比例函数2

y x

=-

中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;

又0x

∴图象在第二象限且y 随x 的增大而增大.

故选:B . 【点睛】

本题主要考查的是反比例函数的性质,对于反比例函数()0k

y k x

=

≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.

16.在函数()0k

y k x

=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )

A .123y y y <<

B .132y y y <<

C .321y y y <<

D .231y y y <<

【答案】B 【解析】 【分析】

根据反比例函数图象上点的坐标特征得到11y k ?=,21y k -?=,32y k -?=,然后计算出1y 、2y 、3y 的值再比较大小即可. 【详解】

解:(0)k

y k x =

11y k ∴?=,21y k -?=,32y k -?=,

1y k ∴=,2y k =-,31

2

y k =-,

而k 0<, 132y y y ∴<<.

故选:B . 【点睛】

本题考查了反比例函数图象上点的坐标特征:反比例函数k

y x

=

(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.

17.已知反比例函数2

y x

=-,下列结论不正确的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2

【答案】B 【解析】 【分析】

此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断. 【详解】

解: A 、把(-1,2)代入函数解析式得:2=-2

1

-成立,故点(-1,2)在函数图象上,故选项正确;

B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;

C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;

D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确; 故选B . 【点睛】

本题考查反比例函数的图像与性质.

18.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k

y k x

=

≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )

A .3

B .4

C .25

D .6

【答案】B 【解析】 【分析】

设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,) ,求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值. 【详解】

设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ), 在mn

y x =

中,令2y n =,解得:2

m x =, ∵1CDE S =V , ∴

111,12222

m m n m n -=?=g 即 ∴4mn = ∴4k = 故选:B 【点睛】

本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.

19.如图,Rt ABO ?中,90AOB ∠=?,3AO BO =,点B 在反比例函数2

y x

=的图象上,OA 交反比例函数()0k

y k x

=

≠的图象于点C ,且2OC CA =,则k 的值为( )

A .2-

B .4-

C .6-

D .8-

【答案】D 【解析】 【分析】

过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得

21

()9

BOF OAD S OB S OA ==V V ,24

()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.

【详解】

解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴 ∴CE ∥AD ,∠CEO=∠BFO=90° ∵90AOB ∠=?

∴∠COE+∠FOB=90°,∠ECO+∠COE=90° ∴∠ECO=∠FOB ∴△COE ∽△OBF ∽△AOD 又∵3AO BO =,2OC CA = ∴

13OB OA =,

2

3

OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24

()9COE AOD S OC S OA ==V V ∴

4COE

BOF

S S =V V ∵点B 在反比例函数2

y x

=的图象上 ∴212

BOF S =

=V ∴4COE S =V

42

k

,解得k=±8 又∵反比例函数位于第二象限, ∴k=-8 故选:D .

【点睛】

本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.

20.如图,Rt △AOB 中,∠AOB=90°,AO=3BO ,OB 在x 轴上,将Rt △AOB 绕点O 顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2

x

的图象上,OA'交反比例函数y=k x 的图象

于点C ,且OC=2CA',则k 的值为( )

A .4

B .

7

2

C .8

D .7

【答案】C 【解析】 【详解】

解:设将Rt △AOB 绕点O 顺时针旋转至Rt △A'OB'的旋转角为α,OB=a ,则OA=3a , 由题意可得,点B′的坐标为(acosα,﹣asinα),点C 的坐标为(2asinα,2acosα),

∵点B'在反比例函数y=﹣2

x

的图象上,

∴﹣asinα=﹣

2

acosα

,得a2sinαcosα=2,

又∵点C在反比例函数y=k

x

的图象上,

∴2acosα=

k

2asinα

,得k=4a2sinαcosα=8.

故选C.

【点睛】

本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.

初中反比例函数经典例题

初中反比例函数习题集合(经典) (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2 x y =-⑥13y x = ; 其中是y 关于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x = ≠) 的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1; x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致是( ) (10)正比例函数2x y = 和反比例函数2 y x =的图象有 个交点. (11)正比例函数5y x =-的图象与反比例函数(0)k y k x =≠的图象相交于点A (1,a ), 则a = . (12)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. x y O x y O x y O x y O A B C D

(word完整版)初二数学反比例函数测试题

反比例函数测试题 一、选择题 1.反比例函数y =-4x 的图象在 ( ) A .第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 2.已知关于x 的函数y =k (x +1)和y =-k x (k ≠0)它们在同一坐标系中的大致图象是(? ) 3.已知反比例函数y =x k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 4.函数x k y =的图象经过点(-4,6),则下列各点中在x k y =图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 5.正比例函数kx y =和反比例函数x k y =在同一坐标系内的图象为( ) B 6.在同一直角坐标平面内,如果直线x k y 1=与双曲线x k y 2= 没有交点,那么1k 和2k 的关系一定是( ) A 、1k <0,2k >0 B 、1k >0,2k <0 C 、1k 、2k 同号 D 、1k 、2k 异号 7.已知 一次函数y=kx+b 的图像经过第一二四象限 则反比例函数x kb y =的图像在( ) A 第一二象限 B 第三 四象限 C 第一三象限 D 第二三象限 y o y o y o y o

二、填空题:(3分×10=30分) 1、y 与x 成反比例,且当y =6时,31=x ,这个函数解析式为 ; 2、当路程s 一定时,速度v 与时间t 之间的函数关系是 ;(填函数类型) 3、函数2x y - =和函数x y 2=的图象有 个交点; 4、反比例函数x k y =的图象经过(-23,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ; 5、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限; 6、已知y 与x -2成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 7、右图3是反比例函数x k y 2-= 的图象,则k 的取值范围是 . 8、函数x y 2-=的图象,在每一个象限内,y 随x 的增大而 ; 9、反比例函数x y 2=在第一象限内的图象如图,点M 是图象上 一点,MP 垂直x 轴于点P ,则△MOP 的面积为 ; 10、()522--=m x m y 是y 关于x 的反比例函数,则m 值为 ; (三)解答题 1、已知一次函数b kx y +=与反比例函数x m y = 的图像交于A (—2 ,1) B (1 ,n )俩点。求 ⑴ 反比例函数和一次函数的表达式? ⑵ 求△AOB 的面积? y O P M

人教版初中数学反比例函数经典测试题含答案

人教版初中数学反比例函数经典测试题含答案 一、选择题 1.已知反比例函数k y x =的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ?的面积为 3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命 题个数是( ) A .0 B .1 C .2 D .3 【答案】D 【解析】 【分析】 根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ?? ?∈-≤???? ,y 2=2k x , 然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数k y x =的图象分别位于第二、第四象限, ∴k<0, ∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ?? ?∈-≤? ??? ,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k , ①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1 OC?AC 2=11x ?y k =322 =, ∴6k =-,故①正确; ②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()12121212 0k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.

(完整版)初中数学反比例函数知识点及经典例题

反比例函数 、基础知识 k ..…............................................ k 1. 正义:一般地,形如y -(k为常数,k o)的函数称为反比例函数。y - x x 还可以写成y kx 1 2. 反比例函数解析式的特征: ⑴等号左边是函数y,等号右边是一个分式。分子是不为零的常数k (也叫做 比例系数k),分母中含有自变量x ,且指数为1. ⑵比例系数k 0 ⑶自变量x的取值为一切非零实数。 ⑷函数y的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ①列表(应以。为中心,沿O的两边分别取三对或以上互为相反的数) ②描点(有小到大的顺序) ③连线(从左到右光滑的曲线) .._ .. .. ._ .. … k. ⑵反比例函数的图像是双曲线,y - (k为常数,k 0)中自变量x 0, x 函数值y 0,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐 靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是y x或y x)。 .. .. ................................. k .... 一… ... . .. ...................... k ⑷反比例函数y - ( k 0)中比例系数k的几何怠义是:过双曲线y - x x (k 0)上任意引x轴y轴的垂线,所得矩形面积为|k。 4. 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点 的坐标即可求出k 6. “反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数 一 .一 .. ...... ... k ..

(完整版)正比例函数、反比例函数测试题(经典)

初二数学练习 班级 姓名 一、填空 1、已知正比例函数图像上一点到x 轴距离与到y 轴距离之比为1︰2,则此函数解析式是 2、2 3 (2)m y m x -=-是正比例函数,则m= 3、已知正比例函数x a y )21(-=,如果y 的值随着x 的值增大而减小,则a 的取值范围是 4、如果正比例函数y=kx (k ≠0)的自变量增加5,函数值减少2,那么当x=3时, y= 5、若反比例函数2 32k x k y --=)(,则k = ,图象经过 象限 6、已知反比例函数x k y =的图像经过点)4,5(-A 、)5,(a B ,则a = 7、函数21 a y x += (x>0),当x 逐渐增大时,y 也随着增大,则a 的范围 。 8、已知A(x 1,y 1)和B (x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1____y 2?;(填“>”, “<”或“=”) 9、直线 x 21= y 与双曲线 x y 2 = 的交点是 10、已知函数x x x f 2 2)(-=,则=)2(f 11、若函数12,1 1 21-=-= x y x y ,则函数y =y 1+y 2中,自变量x 的 取值范围是 12、如图:A 、B 是函数x y 1 =图象上关于原点O 对称的任意两点, AC 平行于y 轴,BC 平行于x 轴,则△ABC 的面积是 . 二、选择 13、下列语句不正确的是 ( ) (A) 1+x 是x 的函数 (B )速度一定,路程是时间的函数 (C )圆的周长一定,圆的面积是圆的半径的函数 (D )直角三角形中,两个锐角分别是x 、y ,y 是x 的函数

反比例函数经典编辑中考例题

反比例函数经典中考例题解析一 一、 填空题(每空3分,共36分) 1、任意写出一个图象经过二、四象限的反比例函数的解析式:__________ 2、若正比例函数y =mx (m ≠0)和反比例函数y =n x (n ≠0)的图象有一个交点为点(2,3),则m =______,n =_________ . 3、已知正比例函数y=kx 与反比例函数y= 3 x 的图象都过A (m ,1)点,求此正比例函数解析式为________,另一个交点的坐标为________. 4、已知反比例函数2k y x -=,其图象在第一、三象限内,则k 的值可为 。 (写出满足条件的一个k 的值即可) 5、已知反比例函数x k y = 的图象经过点)2 1 4(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________ 6、已知双曲线x k y = 经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b . 7、函数y=x 2的图象如图所示,在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平 移2个单位后,那么所得直线与函数y= x 2 的图象的交点共有 个 8、已知函数y kx =- (k≠0)与y=4x -的图象交于A 、B 两点,过点A 作AC 垂直于y轴,垂足为点C ,则△BOC 的面积为____ (第9题)

9.如图,11POA V 、 212P A A V 是等腰直角三角形,点1P 、2P 在函数4 (0)y x x =>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________. 10. 两个反比例函数x y 3= ,x y 6 =在第一象限内的图象如图 所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数x y 6 = 图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作 y 轴的平行线,与x y 3 = 的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则 y 2 005= . 二、选择题(每题3分,共30分) 11、反比例函数k y x = 与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反比例函数的解析式为( ) A .2y x = B .12y x = C .2y x =- D .12y x =- 12、如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x 1 (C )y = x 2 (D) y = 1x 13、若点(3,4)是反比例函数2 21m m y x +-=图象上一点,则此函数图象必须经过点 ( ). O x y (第12题) 第10

反比例函数练习题及答案最新

反比例函数练习题 一、填空题(每空3分,共42分) 1.已知反比例函数()0≠= k x k y 的图象经过点(2,-3) ,则k 的值是_______,图象在__________象限,当x>0时,y 随x 的减小而__________. 2.已知变量y 与x 成反比,当x =1时,y =-6,则当y = 3时,x=________。 3.若反比例函数y=(2m-1)22 m x - 的图象在第一、三象限,则函数的解析式为___________. 4.已知反比例函数x m y )23(1 -= ,当m 时,其图象的两个分支在第一、三象限 内;当m 时,其图象在每个象限内y 随x 的增大而增大; 5.在函数(为常数)的图象上有三个点(-2,),(-1,),(,), 函数值,,的大小为 ; 6.已知111222(,),(,)P x y P x y 是反比例函数x k y = (k ≠0)图象上的两点,且12x x <<0时,12y y < ,则k________。 7.已知正比例函数y=kx(k ≠0),y 随x 的增大而减小,那么反比例函数y=k x ,当x< 0时,y 随x 的增大而_______. 8.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2, 1 2 ),则8k 1+5k 2的值为________. 9. 若m <-1,则下列函数:①()0 x x m y = ;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。 10.当>0,<0时,反比例函数的图象在__________象限。 x k y 22--=k 1y 2y 2 1 3y 1y 2y 3y k x x k y =

初中数学反比例函数知识点整理

反比例函数知识点整理 一、 反比例函数的概念 1、解析式:() 0≠= k x k y 其他形式:①k xy = ②1 -=kx y 例1.下列等式中,哪些是反比例函数 (1)3x y = (2)x y 2-=(3)xy =21(4)25+=x y (5)x y 23-=(6)31 +=x y 例2.当m 取什么值时,函数2 3)2(m x m y --=是反比例函数? 例3.函数2 2 )12(--=m x m y 是反比例函数,且它的图像在第二、四象限, m 的值是_____ 例4.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5 (1) 求y 与x 的函数关系式 (2)当x =-2时,求函数y 的值 2.反比例函数图像上的点的坐标满足:k xy = 例1.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 例2.下列函数中,图像过点M (-2,1)的反比例函数解析式是( ) x y A 2.= 2 .B y x =- x y C 21.= x y D 21.-= 例3.如果点(3,-4)在反比例函数k y x =的图象上,那么下列各点中,在此图象上的 是( )A .(3,4) B . (-2,-6) C .(-2,6) D .(-3,-4) 例4.如果反比例函数x k y =的图象经过点(3,-1),那么函数的图象应在( ) A . 第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 二、反比例函数的图像与性质 1、基础知识 0>k 时,图像在一、三象限,在每一个象限内,y 随着x 的增大而减小; 00时,y 随x 的增大而增大,求函数关系式 例2.已知反比例函数x k y 1 2+= 的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式 2、面积问题(1)三角形面积:k S AOB 2 1 =? 例1.如图,过反比例函数x y 1 = (x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 例2.如图,点P 是反比例函数1 y x = 的图象上任一点,PA 垂直在x 轴,垂足为A ,设OAP ?的面积为S ,则S 的值为 例3.直线OA 与反比例函数 的图象在第一象限交于A 点,AB ⊥x 轴于 点B ,若△OAB 的面积为2,则k = . 例4.如图,若点A 在反比例函数(0)k y k x =≠的图象上, AM x ⊥轴于点M ,AMO △的面积为3,则k = . 例5.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点 12345A A A A A 、、、、分别作x 轴的垂线与反比例函数的()2 0y x x = ≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、, 并设其面积分别为12345S S S S S 、、、、,则5S 的值为 . p y A x O 第4题

初中数学反比例函数经典测试题及答案

初中数学反比例函数经典测试题及答案 一、选择题 1.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数 b y x = 在同平面直角坐标系中的图象大致是( ) A . B . C . D . 【答案】D 【解析】 【分析】 直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】 ∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0, ∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0, ∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0, ∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=b x 图象分布在第二、四象限, 故选D . 【点睛】 此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键. 2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB

垂直于x 轴,顶点A 在函数y 1 =1 k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象 上,∠ABO=30°,则 2 1 k k =( ) A .-3 B .3 C . 1 3 D .- 13 【答案】A 【解析】 【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值. 【详解】 如图,设AB 交x 轴于点C ,又设AC=a. ∵AB ⊥x 轴 ∴∠ACO=90° 在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3 ∴点A 3a ,a ) 同理可得 点B 3,-3a ) ∴k 1332 , k 23a×(-3a )3a ∴ 213333k a k a ==-. 故选A. 【点睛】

反比例函数知识点归纳总结与典型例题(供参考)

反比例函数知识点归纳总结与典型例题 (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ;其中是y 关 于x 的反比例函数的有:_________________。 (2)函数2 2)2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)反比例函数(0k y k x = ≠) 的图象经过(—2,52, n ), 求1)n 的值; 2)判断点B (24,2- (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 3、增减性:(1)当k>0时,_________________,y 随x 的增大而________; (2)当k<0时,_________________,y 随x 的增大而______。 4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交 5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x 6 -)来说,它们是关于x 轴,y 轴___________。 例题讲解: 反比例函数的图象和性质: (1)写出一个反比例函数,使它的图象经过第二、四象限 . (2)若反比例函数 2 2 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =.

最新初中数学反比例函数图文解析

最新初中数学反比例函数图文解析 一、选择题 1.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋 转至△RtA'OB',其中点B'落在反比例函数y=﹣2 x 的图象上,OA'交反比例函数y= k x 的图象 于点C,且OC=2CA',则k的值为() A.4 B.7 2 C.8 D.7 【答案】C 【解析】 【详解】 解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα), ∵点B'在反比例函数y=﹣2 x 的图象上, ∴﹣asinα=﹣ 2 acosα ,得a2sinαcosα=2, 又∵点C在反比例函数y=k x 的图象上, ∴2acosα= k 2asinα ,得k=4a2sinαcosα=8. 故选C. 【点睛】 本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可. 2.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是() A.y=x2B.y=x C.y=x+1 D. 1 y x

【答案】D 【解析】 【分析】 需根据函数的性质得出函数的增减性,即可求出当x>0时,y随x的增大而减小的函数.【详解】 解:A、y=x2是二次函数,开口向上,对称轴是y轴,当x>0时,y随x的增大而增大,错误; B、y=x是一次函数k=1>0,y随x的增大而增大,错误; C、y=x+1是一次函数k=1>0,y随x的增大而减小,错误; D、 1 y x =是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确; 故选D. 【点睛】 本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键. 3.在同一平面直角坐标系中,反比例函数y b x =(b≠0)与二次函数y=ax2+bx(a≠0)的 图象大致是() A.B. C.D. 【答案】D 【解析】 【分析】 直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案. 【详解】 A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即 b<0.所以反比例函数y b x =的图象位于第二、四象限,故本选项错误; B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即

反比例函数经典中考例题解析二

反比例函数经典中考例题解析二 一、选择题(每小题3分,共30分) 1、反比例函数y = x n 5 图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 2、若反比例函数y = x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(- 2 1 ,2) C 、(-2,-1) D 、( 2 1 ,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y = x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y = x 1 于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 Q p x y o t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O A . B . C . D .

7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ= V m ,它的图象如图所示,则该 气体的质量m 为( ). A 、1.4kg B 、5kg C 、6.4kg D 、7kg 8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x 1的图象上,则y 1,y 2,y 3的大 小关系是( ). A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 1=y 2=y 3 D 、y 1<y 3<y 2 9、已知反比例函数y = x m 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <2 1 D 、m > 2 1 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ). A 、x <-1 B 、x >2 C 、-1<x <0或x >2 D 、x <-1或0<x <2 二、填空题(每小题3分,共30分) 11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式 为 . 12、已知反比例函数 x k y = 的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3 -和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m 2 - 10的图象分布在第二、四象限内,则m 的值为 .

初中数学反比例函数真题汇编含答案

初中数学反比例函数真题汇编含答案 一、选择题 1.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( ) A .气压P 与体积V 的关系式为(0)P kV k => B .当气压70P =时,体积V 的取值范围为70

初中数学反比例函数经典测试题附答案

一、选择题 1.已知反比例函数k y x =的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ?的面积为 3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命 题个数是( ) A .0 B .1 C .2 D .3 【答案】D 【解析】 【分析】 根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ?? ?∈-≤? ??? ,y 2=2k x , 然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数k y x =的图象分别位于第二、第四象限, ∴k<0, ∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ?? ?∈-≤? ??? ,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k , ①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1 OC?AC 2=11x ?y k =322 =, ∴6k =-,故①正确; ②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()12121212 0k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键. 2.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

初三数学反比例函数练习题及答案

初三数学反比例函数练习题及答案一,选择题姓名______________ 1,反比例函数y? kx ,经过则下列各点在这个反比例函数图象上的有 A,5个, B,4个, C,3个, D,2个。 2,已知反比例函数的图象经过点P,则这个函数的图象位于 A.第一、三象限 C.第二、四象限 B.第二、三象限 D.第三、四象限 3,已知甲、乙两地相距s,汽车从甲地匀速行驶到乙地,则汽车行驶的时间t与行驶速度v的函数关系图象大致是 A. 4,对于反比例函数y? k 2 v/ B. v/ C. v/ D. x ,下列说法不正确的是...

B. 点在它的图象上 D. y随x的增大而增大 A. 它的图象分布在第一、三象限 C. 它的图象是中心对称图形 5,已知反比例函数y= ax 的图象,在每一象限内,y的值随x值的增大而减少,则一次 函数y=-ax+a的图象不经过... A.第一象限B.第二象限 C.第三象限D.第四象限6,已知反比例函数y= 2 ,下列结论中,不正确的是...x A.图象必经过点 B.y随x的增大而减少 C.图象在第一、三象限内 D.若x>1,则y<2,一次函数y1=x-1 与反比例函数y2= 2x 的图像交于点A,B, 则使y1>y2的x的取值范围是 A. x> B. x>或-1<x<0 C. -1<x< D. x>或x<-1 8,函数y?

1?kx 的图象与直线y?x没有交点,那么k的取值范围是 A、k?1 B、k?1 C、k??1 D、k??1,若A,B两点均在函数y?系为 A.b?c 1x 的图象上,且a?0,则b与c的大小关 B.b?c kx C.b?c D.无法判断 10,若点在函数y=的图象上,且x0y0=-2,则它的图象大致是 x A.B. C. D. 二,填空题 11.已知反比例函数的图象经过点和则m的值为 12,如图是反比例函数y? m?2x 的图象,那么实数m的取值范围是 13,如图,在反比例函数y? 2x 的图象经过点A, B,,过点B作y轴的垂线,垂足为C.若△ABC的面积

初中数学求反比例函数解析式的六种方法

求反比例函数解析式的六种方法 名师点金: 求反比例函数的解析式,关键是确定比例系数k的值.求比例系数k的值,可以根据反比例函数的定义及性质列方程、不等式求解,可以根据图象中点的坐标求解,可以直接根据数量关系列解析式,也可以利用待定系数法求解,还可以利用比例系数k的几何意义求解.其中待定系数法是常用方法. 利用反比例函数的定义求解析式 1.若y=(m+3)xm2-10是反比例函数,试求其函数解析式. 利用反比例函数的性质求解析式 2.已知函数y=(n+3)xn2+2n-9是反比例函数,且其图象所在的每一个象限内,y随x的增大而减小,求此函数的解析式. 利用反比例函数的图象求解析式 3.【2017·广安】如图,一次函数y=kx+b的图象与反比例函数y=m x的图象在第一 象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6. (1)求函数y=m x和y=kx+b的解析式.

(2)已知直线AB 与x 轴相交于点C ,在第一象限内,求反比例函数y =m x 的图象上一点P ,使得S △POC =9. (第3题) 利用待定系数法求解析式 4.已知y 1与x 成正比例,y 2与x 成反比例,若函数y =y 1+y 2的图象经过点(1,2),??? ?2,12,求y 与x 的函数解析式. 利用图形的面积求解析式 5.如图,点A 在双曲线y =1x 上,点B 在双曲线y =k x 上,且AB ∥x 轴,C ,D 两点在x 轴上,若矩形ABCD 的面积为6,求点B 所在双曲线对应的函数解析式.

(第5题) 6.某运输队要运300 t物资到江边防洪. (1)求运输时间t(单位:h)与运输速度v(单位:t/h)之间的函数关系式. (2)运了一半时,接到防洪指挥部命令,剩下的物资要在2 h之内运到江边,则运输速 度至少为多少?

九年级数学反比例函数综合练习题精选

反比例函数综合练习题 一、选择题: 1、函数()9222--+=m m x m y 是反比例函数,则m 的值是( ) (A )24-==m m 或 (B )4=m (C )2-=m (D )1-=m 2、已知k ≠0,在同一坐标系中,函数y=k (x+1)与 y=x k 的图像大致是( ) 3、在函数y=x k (k >0)图象上有三点A 1(X 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)。已知x 1<x 2<0<x 3,则下列各式中,正确的是( ) A :y 1<y 2<y 3 B :y 3<y 2<y 1 C :y 2<y 1<y 3 D :y 3<y 1<y 2 4、下列说法正确的是( ) ①反比例函数y= x k 的图象与x 轴、y 轴都没有公共点.②反比例函数y=x k 1与y=x k 2(k 1≠k 2)的图象可能有交点. ③反比例函数y=x k 与一次函数y=kx+b 的图象可能没有交点 A 、① B 、② C 、①② D 、①③ 5.如图,已知双曲线(0)k y k x =<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( ) A .12 B .9 C .6 D .4 6、直线)0(<=k kx y 与双曲线x y 2-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为( ) A.-5 B.-10 C.5 D.10 D B A y x O C 5题 7题 9题 10题 11题 7、如图,反比例函数y =k x (x >0)的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC 相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为( ) A .1 B .2 C .3 D .4 8、若反比例函数11k y x = 和正比例函数22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是( ) A B C D E y x O M

人教版初中数学反比例函数知识点

人教版初中数学反比例函数知识点 一、选择题 1.如图,一次函数1y ax b =+和反比例函数2k y x = 的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( ) A .20x -<<或04x << B .2x <-或04x << C .2x <-或4x > D .20x -<<或4x > 【答案】B 【解析】 【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可. 【详解】 观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<, 故选B . 【点睛】 本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键. 2.如图,直线l 与x 轴、y 轴分别交于A 、B 两点,与反比例函数y =k x 的图象在第一象限相交于点C .若AB =BC ,△AOB 的面积为3,则k 的值为( ) A .6 B .9 C .12 D .18 【答案】C 【解析】 【分析】 设OB =a ,根据相似三角形性质即可表示出点C ,把点C 代入反比例函数即可求得k .

【详解】 作CD⊥x轴于D, 设OB=a,(a>0) ∵△AOB的面积为3, ∴1 2 OA?OB=3, ∴OA=6 a , ∵CD∥OB, ∴OD=OA=6 a ,CD=2OB=2a, ∴C(6 a ,2a), ∵反比例函数y=k x 经过点C, ∴k=6 a ×2a=12, 故选C. 【点睛】 本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键. 3.已知点A(﹣2,y1),B(a,y2),C(3,y3)都在反比例函数 4 y x 的图象上,且﹣ 2<a<0,则() A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 【答案】D 【解析】 【分析】 根据k>0,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,逐一分析即可. 【详解】 ∵反比例函数y=4 x 中的k=4>0,

相关文档
最新文档