质量流量计工作原理

质量流量计工作原理
质量流量计工作原理

质量流量计工作原理

(未知) 2007-11-8 21:13:00

科里奥利质量流量计(以下简称CMF)是利用流体在直线运动的同时处于一旋转系中,产生与质量流量成正比的科里奥利力原理制成的一种直接测量质量流量的仪表。

20世纪70年代后期商品化实用性CMF由美国Micro Motion公司首先推向市场,到80年代中后期各国仪表厂相继开发。迄1995年,世界已有40家以上推出各种结构的CMF,世界范围装用量估计在18万~20万台之间。1995年世界年销售量估计在4万~4.5万台之间。

在我国CMF应用起步较晚,从80年代中期引进成套装置附带进口少量仪表开始,到技术改造所需单台进口,迄1997年估计装用量在3500~4500台之间。1997年我国已有4家制造厂自行开发CMF供应社会,如太行仪表厂已有完整的LZL系列,还组建有几家合资企业引进国外技术生产系列仪表。

1. 原理与结构

如图1所示,当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力:

图1 科里奥利力

①法向加速度,即向心加速度αr,其量值等于ω2r,朝向P轴;

②切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。

当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δχ的管道将受到一个切向科里奥利力ΔFc ,

ΔF c=2ωVρAΔx (1)

式中A--管道的流通截面积,由于质量q m=ρVA,所以

ΔF c=2ωq mΔx (2)

因此,直接或间接测量在旋转管中流动流体的科里奥利力就可以测得质量流量。

然而,通过旋转运动产生科里奥利力是困难的,目前CMF均代之以管道振动产生,即由二端固定的薄壁测量管,在中点处以测量管谐振或接近谐振的频率(或其高次谐波频率)所激励,在管内流动的流体产生科里奥利力,使中点前后两半段产生方向相反的桡曲,用电磁学(或光学),方法检测桡曲量以求得质量流量。

图2 科里奥利质量流量传感器

A--驱动线圈;B--检测探头

又因流体密度会影响测量管的振动频率,而密度与频率有固定的关系,因此CMF也可测量流体密度。

CMF由流量传感器和转换器(或流量计算机)两部分组成。图2为流量传感器一例,主要由测量管及其支撑固定桥架,测量管振动激励系统中线圈A或检测探头B,修正测量管材料杨氏模量温度影响的测温元件等组成。转换器主要由振动源单元、信号检测和信号处理单元等组成;流量计算则还有组态设定、工程单位换算、信号显示和与上位机通信等功能。

2. 优点

(1)直接测量质量流量,有很高的测量精确度。

(2)可测流体范围广,包括高粘度液的各种液体,含有固形物的浆液,含有少量均匀分布气体的液体,有足够密度的气体(压力较高的气体)。

(3)测量管的振幅小,可视作非活动部件;测量管内无阻碍件或活动件。

(4)对迎流流速分布不敏感,因而无上下游直管段要求。

(5)流量测量值对流体粘度不敏感,流体密度对流量测量值的影响极微。

(6)一台CMF可作多参数测量。测质量流量的同期可测流体密度和温度,还可衍生测量体积流量、溶质浓度、液固双相流体(或不相溶双组分液体)异相(或异成分)的含量。

3. 缺点

(1)有相当一部分CMF设计流速很高,产生较大的压力损失。有些型号CMF的压力损失比容积式仪表大100%。

(2)当前CMF的最大口径为150mm,不能用大管径测量。相当部分型号CMF的重量和体积较大。

(3)只能用于中高压气体,不能用于低压气体。一般认为现有CMF气体压力不能低于0.1MPa。因为低压气体密度很低,质量流量很小,不能达到产生足够可检测的科里奥利力。

(4)液体中气泡含量超过某一界限会显著影响测量值。

(5)对外界振动干扰较敏感。为防止管道振动影响,相当一部分型号CMF的流量传感器安装要求较高。

(6)价格较贵。

4. 分类

CMF发展到现在已有30余系列,其主要区别在于流量传感器测量管结构上的创新;提高仪表精度、稳定性、灵敏度等性能;增加测量管桡度、改善应力分布、降低疲劳损坏;加强抗振动干扰能力等。因而,测量管出现了多种形状结构,因此本节仅就不同角度作分类和讨论:

按测量管形状分类,有弯曲形和直形;

按测量管段数分类,有单管型和双管型;

按双管型测量管段的连接方式分类,有并联型和串联型;

按测量管流体流动方向和工艺管道流动方向间布置方式分类,有平行方式和垂直方式。

4.1 按测量管形状分类

(1)弯曲形:首先投入市场是U字型,现在已开发并继续生产的形状有Ω字型、S字型、B字型、圆环型、长圆环型等。设计成弯曲形状是为了降低刚性,与直形管相比可以采用较厚管壁;但易积存气体和残渣而引起附加误差。

(2)直形:直形测量管CMF不易积存气体及便于清洗。垂直安装测量浆液时,固体颗粒不易在暂停运行时沉积于管内。流量传感器尺寸小,重量轻,但管壁相对较薄,测量值受磨蚀影响相对显著。但近年原制造弯曲形CMF的企业纷纷开发直管形,直管形系列有增加的趋势。

4.2 按测量管段数分类

这里所指测量管段是流体通过各自振动并检测科里奥利力划分的独立测量管。

(1)单管型:初期开发的产品是单管型,因易受外界振动干扰影响,后多趋向于双管型以相互抵消振动影响。但近年开发新型号又有转向单管的趋势。

(2)双管型:双管型可降低外界振动的敏感性,容易实现相位差的测量。

4.3 按双管型测量管段的连接方式分类

(1)并联型:流体流入传感器后经上游管道分流器(mainfold)分成两路进入并联的两根测量管段,然后经与分流器形状相同的集流器进入下游管道。分流器要尽可能等量分配,但使用过程中分流器沉积粘附异物或磨损会改变原流动状态,引起零点飘移,产生附加误差。

(2)串联型:流体流过第一测量管段经导流块引入第二测量管段。本方式不会产生因分流变化所引起的缺点,适用于对切变敏感的流体。

4.4 按测量管流体流动方向和工艺管道流动方向间布置方式分类

(1)平行方式:测量管的布置使流体流动方向与工艺管道流动方向平行,采用这种方式的型号较多。

(2)垂直方向:测量管道布置得与工艺管道垂直,流量传感器整体不在管道振动干扰作用的平面内,抗管道振动干扰的能力强。

5 应用概况和选用考虑要点

5.1 应用概况

CMF主测量参量是质量流量,第二测量参量是流体密度,还有附加测量参量流体温度。此外,从质量流量和流体密度衍生出测量体积流量,双组分溶液中溶质的浓度或不相溶第二组分浓度,液固双相流中固相含量。CMF应用最多的是需要考核质量(不是品种的质量,是mass)为目标的计量总量或控制/测量流量,具体说有:贸易结算交接计量或企业内部核算计量;批量生产(batch process)材料的分批计量(替代以前费工费时的称重计量);管道混合(blending)的控制。文献[1]例举若干具体应用实例。

密度是CMF测量的第二参量,在生产过程中做品质指标控制,如溶液稀释程度,交接时防止卖方有意稀释;在溶液中求取溶质浓度,测量溶液中溶质流量或总量,如油井中流出油水混合液中油的产量;辨别流动中液体种类,分路发送,如区分管系成品液和清洗液交替流动,分送下游不同管道。

CMF早期仅用于液体,然后扩展应用于高压气体,到90年代初才有适用于中压气体的仪表。据

Micro Motion公司称:迄1997年该公司已有7500台CMF应用于气体,其中服务于压缩天然气汽车加注站的CMF有6000台①。

CMF应用于高压天然气汽车加注站已趋成熟,渐成共识。OIML(国际法制计量组织)为此制订“国际计量规程”,2000年1月发出第1稿委员会草案征求意见。在我国中国测试技术研究院开发的CMF亦于1996年试用于汽车加注站,迄1999年已装用了数十台。

国外一市场分析公司对CMF应用于各产业分布的估计:石油化工占57%,能源和公用事业18%,食品饮料和医药工业14%,其他11%,其中食品医药占有相当比例。在国内应用较多的产业是资金雄厚的石油、化工、能源等业,而食品工业用得很少。

5.2 仪表性能方面的考虑

5.2.1 测量精确度

(1)基本误差、零点稳定度、重复性误差

CMF大部分以“量程误差加零点不稳定性”的方式表述基本误差。这既不是引用误差(常以%FS 表示),又不是相对误差的另一种表达方式,易使用户产生精确度很高的错觉;若是零点不稳定性较差的仪表,实际上在低流量或接近下限流量时,常有零点不稳定性超过量程误差许多倍,误差较大,选用时应予注意。

测量液体时,基本误差中的量程误差通常在±(0.1~0.5)%R之间,重复性误差一般为基本误差的1/4~2/3。同一仪表用于测量气体时,测量精确度低于测量液体。例如测量液体时基本误差为

(±0.1%R+零点不稳定性)的Elite系列CMF,制造厂声称测量气体时为±0.5%R①,但有试验报告结论却称,测量误差优于±2%R,从报告附图可见,在测量较低压气体时测量误差接近或略超过1%,是零点不稳定度起主要作用[2]。液体流量范围度大部分在(10:1)~(50:1)之间,有些则高达(100:1)~(150:1)。用于测量低压气体应注意到可测上限流量将大为降低,例如CMF100型(口径

25/40mm)在测0.175MPa压缩空气时最大流量仅为约4%原额定流量②。

通常用于气体的CMF不用气体校验,仍用水校准的仪表常数,通常认为两者之间差别不大。实际还是有些差别,文献[2]认为CMF100型在流体密度从1000kg/m3(水)到2 kg/m3(0.175MPa空气)的范围内,用制造厂校准的仪表常数,精确度优于2%,大部分误差小于±0.5%③。

零点不稳定性常以%FS或流量值kg/min表示,一般在±(0.01~0.04)%之间。若零点不稳定性±0.04%FS和20:1范围度的仪表,下限流量时因零点不稳定性的误差可能达到该测量点流量的±0.8%。

(2)静压变化影响量

CMF使用早期人们认为流量测量值不受液体静压影响,随着应用领域的扩展和使用径验的积累,证明是受流体静压影响。实际上流体压力增加,增强了(测量)振动管绷紧(stiffening)效应和弯曲振动管的布尔登效应(Bourdon effect),影响仪表常数。虽然影响量并不太大,但对高精确度CMF 是不能忽视。

例如Micro Motion公司的D300/D600型静压影响约为-(0.135~0.075)%/105Pa;

CMF100/200/300型则较小,约为-(0.003~0.09)%105Pa④。影响量是单向的,可作补偿。

(3)流体温度影响量

流体温度影响测量管材料的弹性模量和缚贴元件于测量管的粘合剂与绷带的阻尼性,前者影响仪表常数(量程),后者影响零点。虽然CMF均置有温度传感器按弹性模量的温度系数补偿弹性模量的变化,然而温度系数是平均统计值,因制造和热处理上差异,与实际温度系数间存在补偿不足或过度的问题,形成温度影响量。影响量是双向的。

例如,Micro Motion公司的D系列的温度影响量为额定流量的±(0.01~0.1)%/10℃,CMF系列则较小,为±(0.0025~0.01)%/10℃④。

(4)实际测量精确度

评估实际工作条件下测量精确度可采用基本误差、压力影响量和温度影响量的均方根求得。

5.2.2 流量范围和压力损失

前文提到CMF流量范围度很大,实际上是由于上限流量定得很高所致,如按水密度计算名义口径流速高达8~12m/s,甚至高达15~16m/s。而容积式或涡轮式等其他流量仪表仅为3~5 m/s,约为CMF的1/3。CMF测量管内流速还要高,因此大部分型号CMF的压力损失较大,用于水等低粘度液体时为0.1~0.2MPa,选用时应予注意。

按使用条件选择CMF规格大小考虑的主要因素之一为估算仪表压力损失(或称压力降)是在管系允许值之内。在允许压力降情况下,为获得最佳测量精确度,使用的最大流量尽可能在流量范围内选得高些。通常CMF的名义口径小于(或等于)管径,很少有大于管径者。

CMF的压力降随着流体粘度增加而增加。图3所示是D150型(口径40/50mm)的不同粘度流体流量-压力降关系线列图①。μ=1mPa·s相当于常温水粘度,μ=0.01mPa·s相当于大部分气体的粘度。从图上可以看出粘度为500mPa·s液体的压力降为水的10倍。高粘度液体在仪表中流动呈层流状态,压力降Δp和流量q m间呈线性关系(即Δp=kq m n ,式中n=1,k为系数);低粘度时为湍流流动,呈平方关系(即n=2);中等粘度关系线为折线,小流量段呈层流,中高流量段为从层流转向湍流过渡区流动,n在1~2之间。

图3 降线列图

所使用液体的粘度在图示线列之间,有建议可采用比例内插法近似计算②,实际上只适用于高粘度液体层流流动区,不适用于呈指数关系的湍流区和过渡区。

以CMF替代原有管线上其他类型流量仪表的技术改造项目时,更要核算动力泵扬程能否满足CMF所增加压力损失,必要时调换较大扬程的泵。

5.3 流体物性方面的考虑

基于科里奥利力仅取决于质量流量而与流体物性和工况变化无关的工作原理,从而应用CMF的初期人们认为流体物性和工况不影响测量精确度。然而经验表明响应科里奥利力的测量变形受所测对象流程条件所干扰。流体物性和工况变化使测量管几何形状和性能出现某些变化,通常影响下列三个校准参量中一个或二个:①几何形状和材料性能的校准系数,②测量管材料弹性模量的温度修正量,③针对传感器不对称的零偏置。性能完善化的CMF设计,力图减少或消除这些影响,但还仍然存在。

5.3.1 流体温度

流体温度过高又可能损坏靠近测量管驱动线圈和检测探头。应用于流体易凝结的保温或加热管系,应防止在流量传感器处凝结,必要时选用保温型CMF。

制造厂所提供流体工作温度范围,并不意味着在此范围内可保持常温下校准的性能。流体温度或环境温度变化会改变测量管材料的杨氏模量和产生零飘。杨氏模量的温度影响经电子线路补偿,但也有可能残剩一些影响量,零飘是受测量管形状等非对称性变化所形成,是不能再现的,尚难减小或消除。市场上CMF受温度影响实际情况如何?

90年代初英国NEL(国家工程实验室)曾对多家制造厂CMF做过温度影响量实流试验[1]。水温变化范围5℃~40℃,每改变一次水温,在做流量试验前先调零,以后就不准再调。8台仪表中3台无影响,1台的仪表常数变化0.5%,2台变化1%~1.5%,2台变化1.5%~2%。5台有变化的仪表温度影响量范围为±(0.014~0.057)%/℃,还是相当大的。

5.3.2 流体压力

首先考虑流体压力不应超过规定工作压力,其次考虑静压变化影响的程度。压力变化影响测量管绷紧程度和布登效应的程度,以及破坏测量管不对称的原零点偏置。虽然仪表常数变动和零飘很小,但是使用时压力和校准时相差甚大时,对于高精确度仪表影响值还是不能忽视的。小口径仪表壁厚管径比大,影响小;大口径仪表壁厚管径比小,影响大。市场上CMF受压力影响的情况如何?

NEL对8台CMF所作压力试验结果如表1所示,影响最大为-1.75%/MPa,最小为-1%/MPa,平均为-1.4%/MPa[4]。

表1 压力影响

5.3.3 流体密度

流体密度变化改变流量测量系统的质量,从而流量传感器的平衡发生变化,导致零点偏移。如果测量某一特定液体,只要在实际使用的液体密度条件下调零,使用过程中的密度变化不大,一般不存在问题。但在一根管道上测量密度差别较大的几种液体时,会带来零点变动的附加误差。NEL对8台CMF作4种不同密度液体的密度影响试验,密度范围从(煤油)0.78到(乙二醇)1.11kg/L。有一台变化+0.5%(以煤油为基准)[4]。

5.3.4 流体粘度

CMF可测量液体粘度的范围很宽,并呈现良好的测量性能。虽有报告论及粘度影响测量精确度,但很少有试验数据。液体粘度会改变系统的阻尼特性,从而影响零偏置;在低流量时对流量测量值有一定程度的影响。

如前文所述,粘度增加会增加仪表的压力损失。

5.3.5 双相流体中异相含量

制造厂常称含有百分几体积比游离气体影响测量不大。当测量气泡小而分布均匀的液体,如冰淇淋和相似乳化液,可能是相对的。然而意大利计量院对7种型号CMF含气量影响试验表明:含气泡1%时有些型号无明显影响,有些型号误差为1%~2%,其中一台双管直管式则高达10%~15%;含气泡10%时,误差普遍增加到15%~20%,个别型号高达80%[5]。此外流体的压力、流速、粘度和气液混合方式的差异,所带来的影响也不一样。

测量含有少量固体的液体时,各类型CMF都有较高的信赖度。当固体含量较多或固体具有强磨蚀性或软固体(如食品汤汁中的蔬菜块),应选用单管直管型或串联双管型。因为如用并联双管型,分流器上有可能粘附异物或磨损导致改变两路分流量,产生误差;更为严重者如一路堵塞可能不被立即发现。见到应用于固体含量20%~30%的浆液和含30%~80%200μm砂粒的报告[1]。

5.4 环境方面的考虑

5.4.1环境温度与湿度

环境温度变化会影响流体温度,流体温度变化影响如前文所述。此外环境温度会影响电子元件性能,亦会引起CMF零飘。如有必要安装仪表的电子部分于温度受控的环境中。因为仪表一般是密封的,可防范潮湿的环境气氛。

5.4.2 环境振动

CMF可以在振动环境下工作,但必须与振动隔离,例如与振动管间用柔性管连接和采用隔离振动的支撑架。但更应预防振动频率与CMF的工作频率或谐波频率相同。同一型号多台仪表串接安装或较接近地平行安装,尤其是装在同一支撑台架上,各CMF间工作频率振动会相互影响,引起异常振动,严重时会使仪表无法工作。在订购时可专门向制造厂提出,错开两串联CMF的工作频率。

5.5安装使用注意事项

5.5.1 管道应力

若连接流量传感器管道中心未对准(或不平行)或管道温度改变,管道应力会形成压力、拉力、或剪切力作用到CMF测量管间的对准,引起检测探头的不对称性,导致零点变动。CMF安装好后必须调零以消除或减小这一影响。若管道严重未对准,有可能无法调至零位。管道温度偏离安装时温度,管道产生的热膨胀(或收缩)力亦将作用到流量传感器。有些CMF设计在测量管进出口各有一个很重的分流器,可减小管道应力对测量管的影响。直形测量管CMF特别易受热膨胀力的影响,必要时可在管道装热膨胀隔离管件。

5.5.2 流量传感器安装的一般要求

各型号CMF结构上差异很大,必须遵循制造厂建议的安装方法和趋避禁止事项。若拟选型号样本的安装要求语焉不详,应向制造厂索取详细的安装使用说明书,再做分析选择。管道支撑件不直接连接流量传感器,也不要用流量传感器支撑流程管道。流量传感器不要靠近会产生强磁场的设备,以免干扰驱动器和检测探头正常工作。

5.5.3 流量传感器安装姿势和位置

测量管内残留固形物、潴留气体和管壁结垢均会影响测量精确度。一般说装于自下而上流动的垂直管道较为理想;但对于非直形测量管CMF则应按管道振动状况和应用条件决定垂直还是水平安装。测量液体不要装在管系的最高位置,以避免积聚气体;测量气体不要装在管系的最低位置,以避免积

存凝结水。

安装位置还必须使测量管内充满液体,例如水平管道流体流过CMF后直接排入容器而无背压,测量管往往不能充满,会使输出信号激烈波动。

5.5.4 截止阀和控制阀的安装

为使调零时没有流动,CMF上下游设置截止阀,并保证无洩漏。控制阀应装在CMF下游,CMF 保持尽可能高的静压,以防止发生气蚀和闪蒸(flashing)。

5.5.5 安装实例

质量流量计测量原理

科氏力质量流量计Coriolis flowmeters
Classification: Advanced Customer training 01/8/2010 Li jugang Slide 1
测量原理Measuring principle

FC010BPEA
本模块的学习目标
Objective of this learning module
参加人员能够理解: The participant understands… 这项技术的历史 …the history of the technology. 科氏力质量流量计的物理原理 …the physical principle of a Coriolis mass flowmeter. 科氏力流量计所能测量的过程参量 …what process values can be measured by a Coriolis flowmeter.
Classification: Advanced Customer training 01/08/2010 Li jugang Slide 2
科氏力流量计的一般设计 …the general design of a Coriolis flowmeter. 科氏力流量计的优点和局限 …the advantages and limitations of a Coriolis flowmeter.

FC010BPEA
科氏力流量计的历史 History of Coriolis flowmeters 1835年科里奥利(数学家)首次描述了科氏力的效应。 1835 – Gaspard Gustave de Coriolis (1792 – 1843) describes the Coriolis effect. 1851年费科通过科氏力效应演示了地球的自转-费科单摆 1851 – Jean Bernard Léon Foucault (1819 – 1868) demonstrates the earth rotation using the Coriolis effect (Foucault’s pendulum). 1977年Micromotion公司生产全球首台工业应用的科氏力流量计 1977 – MicroMotion Inc. introduces the first industrial Coriolis mass flowmeter. 1984年E+H公司生产了世界上第一台直管型科氏力流量计 1984 – Endress+Hauser Flowtec starts producing m-point, the first straight tube Coriolis flowmeter. 1994年E+H公司生产Promass系列产品。 1994 – Endress+Hauser introduces the Promass series.
Classification: Advanced Customer training 01/08/2010 Li jugang Slide 3

流量计的分类和工作原理

流量计的分类和工作原理 一.流量计的分类 按测量原理分有:力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按流量计的结构原理进行分类,即分为:容积式流量计、压差式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计、探针式流量计。 二.常用流量计的工作原理及应用 1.压差式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的集合尺寸来计算流量的仪表。 应用:差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作方面:常压、高压、真空、常温、高温、低温等;管径方面:从几毫米到几米;流动方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。 2.浮子流量计 浮子流量计又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力式由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。 应用:浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、微流量方面有举足轻重的作用 3.容积式流量计

容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类,它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。 应用:容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。 4.涡轮流量计 涡轮流量计是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。一般它由传感器和显示仪器两部分组成,也可做成整体式。 应用:涡轮流量计在测量石油、有机液体、无机液、液化气、天然气和低温流体获得广泛应用。 5.电磁流量计 电磁流量计是根据法拉第电磁感应定律制成的一种测量导电性液体的仪表。 应用:电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。 6.涡街流量计 涡街流量计是在流体中安放一根非流线型游涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的游涡的仪表。当通过流截面一定时,流速与导容积流量成正比。因此,测量振荡频率即可测得流量。

质量流量计工作原理的学习

质量流量计工作原理的学习 质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。质量流量计是一种重要的流量测量仪表。质量流量计是采用感热式测量。 流体的体积是流体温度和压力的函数,它是一个因变量,而流体的质量是一个不随时间、空间温度、压力的变化而变化的量。如前所述,常用的流量计中,如孔板流量计、涡轮流量计、涡街流量计、电磁流量计、转子流量计、超声波流量计和椭圆齿轮流量计等的流量测量值是流体的体积流量。在科学研究、生产过程控制、质量管理、经济核算和贸易交接等活动中所涉及的流体量一般多为质量。采用上述流量计仅仅测得流体的体积流量往往不能满足人们的要求,通常还需要设法获得流体的质量流量。以前只能在测量流体的温度、压力、密度和体积等参数后,通过修正、换算和补偿等方法间接地得到流体的质量。这种测量方法,中间环节多,质量流量测量的准确度难以得到保证和提高。随着现代科学技术的发展,相继出现了一些直接测量质量流量的计量方法和装置,从而推动了流量测量技术的进步。 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P ?正比于2 qρ,如图1所示,密度计 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性 中国计量研究院流量室李旭 一、工作原理 如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在测量管上,在O点两边方向相反,大小相同,为: δFc = 2ωVδm 因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。 图1 科里奥利力的形成图2 早期科氏力质量流量计 二、结构 早期设计的科氏力质量流量计的结构如图2所示。将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。这种流量计只是在试验室中进行了试制。 在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。 我们常见的测量管的形式有以下几种:S形测量管、U形测量管、双J形测

量管、B形测量管、单直管形测量管、双直管形测量管、Ω形测量管、双环形测量管等,下面我们分别对其结构作一简单介绍。 1. S形测量管质量流量计 如图3所示,这种流量计的测量系统由两根平行的S形测量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。 图3 S形质量流量计结构 这种质量流量计的工作原理及工作过程,如图4所示。 图4 无流动时位移传感器的输出 当测量管中流体不流动时,两根测量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B 所示,由图中可以看出,两传感器测得的相位差为零。当测量管内流体以速度V 流动时,流体中任意值点的流速,可认为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx 保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动 速度Vx为零;

各种化工流量计工作原理

流量计是工业生产的眼睛,与国民经济、国防建设、科学研究有着密切的关系,在国民经济中占据重要地位与作用,可用于气体、液体、蒸汽等介质流量的测量。为了更好的展示流量计测量原理,小编采用动画演示的方法来给大家介绍流量计的工作原理! 1. 孔板流量计 孔板流量计 工作原理:流体充满管道,流经管道内的节流装置时,流束会出现局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。这种测量方法是以能量守衡定律和流动连续性定律为基准的。

工作特点:①节流装置结构简单、牢固,性能稳定可靠,使用期限长,价格低廉;②应用范围广,全部单相流皆可测量,部分混相流亦可应用;③标准型节流装置无须实流校准,即可投用;④一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。 2. 电磁流量计 电磁流量计

工作原理:基于法拉第电磁感应定律。在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁常当有导电介质流过时,则会产生感应电压。管道内部的两个电极测量产生的感应电压。测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。 工作特点:①具有双向测量系统;②传感器所需的直管段较短,长度为5倍的管道直径。③压力损失小④测量不受流体密度、粘度、温度、压力和电导率变化的影响⑤主要应用于污水处理方面。 3. 涡轮流量计 涡轮流量计 工作原理:在一定的流量范围内,涡轮的转速与流体的流速成正比。流体流动带动涡轮转动,涡轮的转速转换成电脉冲,用二次表显示出数据,反应流体流速。

电磁流量计工作原理

电磁流量计的工作原理 电磁流量计(Eletromagnetic Flowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表。电磁流量计是根据法拉第电磁感应定律制成的,电磁流量计用来测量导电液体体积流量的仪表。由于其独特的优点,电磁流量计目前已广泛地被应用于工业过程中各种导电液体的流量测量,如各种酸、碱、盐等腐蚀性介质;电磁流量计各种浆液流量测量,形成了独特的应用领域。 在结构上,电磁流量计由电磁流量传感器和转换器两部分组成。传感器安装在工业过程管道上,它的作用是将流进管道内的液体体积流量值线性地变换成感生电势信号,并通过传输线将此信号送到转换器。转换器安装在离传感器不太远的地方,它将传感器送来的流量信号进行放大,并转换成流量信号成正比的标准电信号输出,以进行显示,累积和调节控制。 电磁流量计的基本原理 (一)测量原理 根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B,L,u三者互相垂直,则 e=Blu (3-35) 与此相仿.在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时,导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极(图3—17)则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势: e=BD (3-36) 式中,为管道截面上的平均流速.由此可得管道的体积流量为: qv=πDUˉ=(3-37) 由上式可见,体积流量qv与感应电动势e和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关.这就是电磁流量计的测量原理. 需要说明的是,要使式(3—37)严格成立,必须使测量条件满足下列假定: ①磁场是均匀分布的恒定磁场; ②被测流体的流速轴对称分布; ③被测液体是非磁性的; ④被测液体的电导率均匀且各向同性。 图3-17电磁流量计原理简图 1-磁极;2-电极;3-管道 (二)励磁方式 励磁方式即产生磁场的方式.由前述可知,为使式(3—37)严格成立,第一个必须满足的条件就是要有一个均匀恒定的磁场.为此,就需要选择一种合适的励磁方式。目前,一般有三种励碰方式,即直流励磁、交流励磁和低频方波励磁.现分别予以介绍. 1.直流励磁 直流励磁方式用直流电产生磁场或采用永久磁铁,它能产生一个恒定的均匀磁场.这种直流励磁变送器的最大优点是受交流电磁场干扰影响很小,因而可以忽略液体中的自感现象的影响.但是,使用直流磁场易使通过测量管道的电解质液体被极化,即电解质在电场中被电解,产生正负离子.在电场力的作用下,负离子跑向正极,正离子跑向负极.如图3—18所示.这样,将导致正负电极分别被相反极性的离子所包围,严重影响电磁流量计的正常工作.所以,直流励磁一般只用于测量非电解质液体,如液态金属等. 图3-18直流励磁方式 2.交流励磁

简述各种流量计原理及特点

简述各种流量计原理及特点(1) 1. 简述 目前工程实际中,流量测量方法及流量仪表的种类繁多,至今为止,可供工业用的流量仪表种类多达数十余种。在流量仪表的家族中,每种产品都有它特定的适用性及使用局限性。按测量对象划分就有封闭管道和明渠两大类:按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 本文简要介绍目前最常用流量计分类法,主要有:差压式流量计、容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计质量流量计等分别简述各种流量计的原理及特点。 2. 差压式流量计 差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。 差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动压头式、动压头增益及射流式、以及离心式等几大类。 检测件有标准化型式或非标准两大类。标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。而非标型检测元件一般尚未列入国际标准中检测元件。差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。 主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟;(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。 主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1; (3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。

质量流量计工作原理

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计 ?正比于2 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合 v 构成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合

如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘测得的输出信号与流体体积流量 v 法运算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为 (1-3) 图2体积流量计和密度计组合图3 节流式流量计和其他体积流量计组合除上述几种组合式质量流量计外,在工业上还常采用温度、压力自动补偿式质量流量计。由于流体密度是温度和压力的函数,而连续测量流体的温度和压力要比连续测量流体的密度容易,因此,可以根据已知被测流体密度与温度和压力之间的关系,同时测量流体的体积流量以及温度和压力值,通过运算求得质量流量或自动换算成标准状态下的体积流量。但这种测量方式不适合高压或温度变化范围大的情形,因为在此条件下自动补偿检测出来的温度、压力很困难。 2.直接式质量流量计 直接式质量流量计的输出信号直接反映质量流量,其测量不受流体的温度、压力、密度变化的影响。直接式质量流量计有许多种形式。

电磁流量计工作原理

电磁流量计工作原理 电磁流量计(ElectromagneticFlowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表,目前,这种仪表多应用在自来水、生活用水、污水等方面,在我们的生活中发挥着巨大作用。那么,电磁流量计是怎样安装使用的呢?电磁流量计安装规范有哪些呢?今天我就在此为大家介绍电磁流量计安装及规范的相关知识,希望能够帮助到有这方面需求的朋友们! 【电磁流量计工作原理】 电磁流量计是根据法拉第电磁感应定律进行流量测量的流量计。电磁流量计的优点是压损极小,可测流量范围大。最大流量与最小流量的比值一般为20:1以上,适用的工业管径范围宽,最大可达3m,输出信号和被测流量成线性,精确度较高,可测量电导率≥5μs/cm 的酸、碱、盐溶液、水、污水、腐蚀性液体以及泥浆、矿浆、纸浆等的流体流量。但它不能测量气体、蒸汽以及纯净水的流量。 当导体在磁场中作切割磁力线运动时,在导体中会产生感应电势,感应电势的大小与导体在磁场中的有效长度及导体在磁场中作垂直于磁场方向运动的速度成正比。同理,导电流体在磁场中作垂直方向流动而切割磁感应力线时,也会在管道两边的电极上产生感应电势。感应电势的方向由右手定则判定,感应电势的大小由下式确定: Ex=BDv-----------------式(1) 式中Ex—感应电势,V; B—磁感应强度,T D—管道内径,m v—液体的平均流速,m/s 然而体积流量qv等于流体的流速v与管道截面积(πD2)/4的乘积,将式(1)代入该式得: Qv=(πD/4B)*Ex---------式(2) 由上式可知,在管道直径D己定且保持磁感应强度B不变时,被测体积流量与感应电势呈线性关系。若在管道两侧各插入一根电极,就可引入感应电势Ex,测量此电势的大小,就可求得体积流量。 据法拉第电磁感应原理,在与测量管轴线和磁力线相垂直的管壁上安装了一对检测电极,当导电液体沿测量管轴线运动时,导电液体切割磁力线产生感应电势,此感应电势由两个检测电极检出,数值大小与流速成正比例,其值为:

质量流量计工作原理精编版

质量流量计工作原理精 编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计连 ?正比于2 v 续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合构 v 成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合 如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘法运测得的输出信号与流体体积流量 v 算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为

流量计的分类和工作原理

流量计的分类和工作原 理 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

流量计的分类和工作原理 一.流量计的分类 按测量原理分有:力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按流量计的结构原理进行分类,即分为:容积式流量计、压差式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计、探针式流量计。 二.常用流量计的工作原理及应用 1.压差式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的集合尺寸来计算流量的仪表。 应用:差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作方面:常压、高压、真空、常温、高温、低温等;管径方面:从几毫米到几米;流动方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。 2.浮子流量计 浮子流量计又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力式由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。 应用:浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、

微流量方面有举足轻重的作用 3.容积式流量计 容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类,它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。 应用:容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。 4.涡轮流量计 涡轮流量计是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。一般它由传感器和显示仪器两部分组成,也可做成整体式。 应用:涡轮流量计在测量石油、有机液体、无机液、液化气、天然气和低温流体获得广泛应用。 5.电磁流量计 电磁流量计是根据法拉第电磁感应定律制成的一种测量导电性液体的仪表。 应用:电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。

各种流量计工作原理结构图

第一节节流式流量检测 如果在管道中安置一个固定的阻力件,它的中间是一个比管道截面小的孔,当流体流过该阻力件的小孔时,由于流体流束的收缩而使流速加快、静压力降低,其结果是在阻力件前后产生一个较大的压力差。它与流量(流速)的大小有关,流量愈大,差压也愈大,因此只要测出差压就可以推算出流量。把流体流过阻力件流束的收缩造成压力变化的过程称节流过程,其中的阻力件称为节流件。 作为流量检测用的节流件有标准的和特殊的两种。标准节流件包括标准孔板、标准喷嘴和标准文丘里管,如图9.1所示。对于标准化的节流件,在设计计算时都有统一标准的规定要求和计算所需的有关数据、图及程序;可直接按照标准制造、安装和使用,不必进行标定。 标准节流装置9.1 图 圆缺喷特殊节流件也称非标准节流件,如双重孔板、偏心孔板、圆缺孔板、1/4嘴等,他们可以利用已有实验数据进行估算,但必须用实验方法单独标定。特殊节流件主要用于特殊;介质或特殊工况条件的流量检测。目前最常见的节流件是标准孔板,所以在以下的讨论中将主要以标 准孔板为例介绍节测式流量检测的原理、设计以及实现方法等。一、检测原理

设稳定流动的流体沿水平管流经节流件,如刚在节流件前后将产生压力和速度的变化,流在截面 1处流体未受节流件影响,所示。9.2,流体静压力为p,束充满管道,管道截面为A11?是经节,流体密度为平均流速为v2。截面11,A流件后流束收缩的最小截面,其截面积为2?。图,流体密度为,平均流速为压力为Pv222中的压力曲线用点划线代表管道中心处静9.2流体的静压力压力,实线代表管壁处静压力。充分地反映和流速在节流件前后的变化情况,流体向中心在节流件前,了能量形式的转换。. 9.2 流体流经节流件时压力和流速变化情况图处,流束截面收缩到最小,流速达到最大,静压力最低。然后流束扩加速,至截面2处。由于涡流区的存在,导致流体能量张,流速逐渐降低,静压力升高,直到截面3?。P不等于原先静压力p,而产生永久的压力损 失损失,因此在截面3处的静压力13p设流体为不可压缩的理想流体,在流经节流件时,流体不 对外作功,和外界没有热 处沿管中心的流线、2能交换,流体本身也没有温度变化,则根据伯努利方程,对于截面1 有以下能量关系:22ppvv10201020???(9-1) ??2221?????。由于流速分布的不均匀,因为是不可压缩流体,则2处平均流速与截面1、21管中心的流速有以下关系:vCv,v?v?C) ( 9-222110120处流速分布不均匀的修正系数。1、2式中C,C为截面2112??v为能 量其损失的能量为,考虑到实际流体有粘性,在流动时必然会产生摩擦力,22损失系数。处的能量关系可写成:在考虑上述因素后,截面1、222?ppCC222102021v?v?v??) (9-3 212??222根据流体的连续性方程,有??vAvA? 9-4)(2211?,(9-2)-A 。/A ,收缩系数联解式=A/。又设节流件的开孔面积为A 定义开口截面比m=A 0210)可得式(9-421??p?pv?9-5)(20210?2222??mC?C?12的位置随流速而变,而实际取压点的位置是固定的;另外实际取2因为流束最小截面 压是在管壁取的,所测得的压力是管壁处的静压力。考虑到上述因素,设实际取压点处取??p

各种流量计的原理

一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。 (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1. 容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等. 2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量

质量流量计基本原理

质量流量计基本原理 质量流量计结构原理 在工业生产过程中,有时需要测量流体的质量流量,如化学反应的物料平衡、热量平衡、配料等,都需要测量流体的质量流量。质量流量是指在单位时间内,流经封闭管道截面处流体的质量。用来测量质量流量的仪表统称为质量流量计。 质量流量计由传感器,变送器及数字指示累积器等三部分组成。传感器根据科里奥利效应制成的,由传感管、电磁驱动器、和电磁检测器三部分组成。电磁驱动器使传感器以其固有频率振动,而流量的导入使u形传感器在科氏力的作用下产生一种扭曲,在它的左右两侧产生一个相位差,根据科里奥利效应,该相位差与质量流量成正比。电磁监测器把该相位差转变为相应的电平信号送入变送器,经滤波、积分、放大等电量处理后。转变成与质量成正比的4-20mA模拟信号和一定范围的频率信号两种形式输出。 质量流量计的测量原理以牛顿第二运动定律为基础 F=ma 式中F-流体作用力;m-被测介质质量;a-加速度。 当流体通过两个平行的测量管时,会产生一个与流速方向横向的加速度及相应的科里奥利力,该力使测量管振荡而发生扭曲,这一扭曲现象被称之为科里奥利现象。 根据牛顿第二运动定律,测量管扭曲量的大小是完全与流经测量管的质量流量的大小成正比的。当流体流过测量管时,流体就会受到科里奥利力的作用,测量管里流体所受科里奥利力的反作用,产生进口和出口的相位差。当流体为零

时,测量管在固有频率下振动,测量管不产生扭曲,流体进口和出口的相位差为零。当有流体流经测量管时进口处管子振动减速,出口处管子振动加速,进口与出口产生相位差。当质量流量增加时该相位差也增加。通过安装于进口和出口测量管上电磁信号检测器可测得相位差。 质量流量计的特点: 对示值不用加以理论的或人工经验的修正; 输出信号仅与质量流量成正比例,而与流量的物性(如温度、压力、粘度、密度雷诺数等)无关; 与环境条件(如温度、湿度、大气压等)无关; 只需检测、处理一个信号(即仪表的输出信号),就可进行远传和控制;只需一个变量对时间进行积分,所以流量的积算简单等等。

【精品】流量计种类及流量计工作原理

流量计种类及流量计工作原理 点击次数:899发布时间:2011-5-6 流量计种类及流量计工作原理 点击次数:820来源网站:流量计发布时间:2009-6-10 用以测量管路中流体流量(单位时间内通过的流体体积)的仪表.有转子流量计、节流式流量计、细缝流量计、容积流量计、电磁流量计、超声波流量计和堰等。 流量测量方法和仪表的种类繁多,分类方法也很多。至今为止,可供工业用的流量仪表种类达60种之多.品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表. 这60多种流量仪表,每种产品都有它特定的适用性,也都有它的局限性.按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置.因此,以严格意义来分流量计和总量表已无实

际意义。 按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等. 按照目前最流行、最广泛的分类法,即分为:容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计、探针式流量计,来分别阐述各种流量计的原理、特点、应用概况及国内外的发展情况。 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。 差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等. 二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等).

质量流量计工作原理

今天我们就来介绍质量流量计工作原理。 质量流量计工作原理:质量流量计是采用感热式测量,通过分体分子带走的分子质量多少从而来测量流量,因为是用感热式测量,所以不会因为气体温度、压力的变化从而影响到测量的结果。质量流量计是一个较为准确、快速、可靠、高效、稳定、灵活的流量测量仪表,在石油加工、化工等领域将得到更加广泛的应用,相信将在推动流量测量上显示出巨大的潜力。质量流量计是不能控制流量的,它只能检测液体或者气体的质量流量,通过模拟电压、电流或者串行通讯输出流量值。但是,质量流量控制器,是可以检测同时又可以进行控制的仪表。质量流量控制器本身除了测量部分,还带有一个电磁调节阀或者压电阀,这样质量流量控制本身构成一个闭环系统,用于控制流体的质量流量。质量流量控制器的设定值可以通过模拟电压、模拟电流,或者计算机、PLC提供。 质量流量计的工作原理和典型结构 科氏力式质量流量计一般由传感器和信号处理系成,而流量传感器又是一种基于科里奥利力效应的谐振式传感器。这种传感器的敏感元件——振动管,是处于谐振状态的空心金属管,又称测量管。科氏力式质量流量传感器的测量管有各种不同的结构形式,按照传感器测量管的数量可将其分为单管型、双管型和连续管型三种结构。单管型结构简单,不存在分流问题,管路清洗方便。一般地说,它对外来振动比较敏感。双管型结构容易实现相位差的测量,可以较好地克服外来振动的影响,并对提高振动系统的Q值有利。目前大多数产品均采用这种结构。但这种结构同时带来的问题是两测量管中流过的流量不可能做到绝对相等,其中的沉积物和磨蚀也不可能绝对一致,从而引起附加误差。而且在两相流工作状态下,难以作到两测量管中流体分布的均匀一致,以致影响振动系统的稳定性。随着单管型结构中测量管系统的振动不平衡问题的解决,单管型结构仍具有一定的发展前景。连续管型是一种特殊形式的单管.它以环绕两圈的单管结构试图集单、双管型的优点于-身。根据测量管的形状,又可分为直管型和弯管型两大类。直管型一般外形尺寸小且不易于积存气体,但由于其振动系统刚度大,谐振频率高,相位差为微秒级,电信号的处理就比较困难。为了不使谐振频率过高,管壁必须较薄,以致其耐磨及抗腐蚀性能较差。弯管型的振

各种流量计工作原理及优缺点讲解

各种流量计工作原理及优缺点讲解 测量流体流量的仪表统称为流量计或流量表.流量计是工业测量中重要的仪表之一.随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异.为了适应各种用途,各种类型的流量计相继问世。目前已投入使用的流量计已超过100种。 每种产品都有它特定的适用性,也都有它的局限性。按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按流量计的结构原理进行分类。有容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计。 按测量对象划分就有封闭管道和明渠两大类;按测量目的又可 分为总量测量和流量测量,其仪表分别称作总量表和流量计。总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。因此,以严格意义来分流量计和总量表已无实际意义。

一、按测量原理分类 1.力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 2.电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 3.声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 4.热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 5.光学原理:激光式、光电式等是属于此类原理的仪表。 6.原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表.

常见流量计的种类及特点

量测量方法和仪表的种类繁多,分类方法也很多。至今为止,可供工业用的流量仪表种类达60种之多。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。 这60多种流量仪表,每种产品都有它特定的适用性,也都有它的局限性。按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 流量计(16张)此外,按测量原理可分为如下几个大类: 1、力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 2、电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 3、声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 4、热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 5、光学原理:激光式、光电式等是属于此类原理的仪表。 6、原子物理原理:核磁共振式、核辐射式等是属于此类原理的仪表. 7、其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 本文按照目前最流行、最广泛的分类法分别来阐述各种流量计的原理、特点、应用概况及国内外的发挥在那情况: 1、差压式流量计差压式流量计是根据安装于管道中流量检测件与流体相互作用产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。 差压式流量计由一次装置(检测件)和二次装置(差压转换器和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。 二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。 差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。 检测件又可按其标准化程度分为二大类:标准的和非标准的。

相关文档
最新文档