数学建模竞赛习题

数学建模竞赛习题
数学建模竞赛习题

第一题: 解:

问题分析与模型建立:用y 表示各位经理人的人寿保险额,用1x 表示各位经理人的平均收入,由题目可以得到,经理的年收入和人寿保险额之间存在着二次关系,可以通过画y 对1x 的散点图进行验证。用2x 表示各位经理人的风险偏好度,它的数值越大,就越偏爱高风险。现在画出y 对1x 和2x 的散点图,观察各自的变化趋势,进行验证与趋势变化分析。

图1 人寿保险额与平均收入的关系

图2 人寿保险额与风险偏好度的关系

观察图1,随着1x 的增加,y 也有明显的线性增长趋势,可以建立线性模型

011y x ββ=+

观察图2,随2x 的增加,y 也随之增大,且向上弯曲趋势增长,可以建立二次函数模型:

2

01222y x x βββ=++

将上面两点进行结合,建立一个中体的回归模型如下:

2

0112232y x x x ββββε=++++

以上各式中,0123,,,ββββ叫做回归系数,12,x x 叫做影响y 的主要因素,主要因素是人能够进行控制的,同时y 还受到各种因素的影响,这些是人没有办法进行控制的,称为随机误差,记作ε。随机误差可以被看作是一个随机变量,在模型

选择合适的情况下,ε大致服从均值为零的正态分布。所以,模型可以完整的记做:

2

01122312

(0,)

y x x x N ββββε

εσ?=++++??∈?? y 对回归系数0123,,,ββββ是线性的,

满足线性回归条件,所以建立线性回归模型。 模型求解:

在matlab 中用命令regress 解决线性回归问题。使用格式如下: [b,bint,r,rint,stats]=regress(y',x);

其中,b 为回归系数0123(,,,)βββββ=的估计值;bint 是b 各项的显著水平为α的置信区间;stats 是检验回归模型的统计量。

其计算结果如下: b =

-113.9272 4.4587 -6.7432 1.1390

bint =

-153.5452 -74.3091 4.0434 4.8739 -16.6588 3.1723 0.2101 2.0678

stats =

0.9920 580.5290 0.0000 61.5420 画出的残差图如下:

所以回归模型结果为:2

122113.9272 4.4582 6.7432 1.1390y x x x =-+-+

结果分析:

由上表可以看出,2R =0.9920指因变量y (人寿保险额)的99.20%可以由模型确定;F =580.5290远远大于F 检验的临界值;P =0.0000远小于α=0.05;综上,所建立的模型大致可以反映实际情况。回归系数的置信区间只有2β的自置信区间包含零点,表明回归变量2x 对因变量y 的贡献是不显著的;而013

,,βββ的置信区间不包含零点,表明回归变量2

12,x x 对因变量y 的贡献是显著的,所以

可以将2x 仍保留在模型内,故得模型为:

2

122113.9272 4.4582 6.7432 1.1390y x x x =-+-+

现我们可以认定题目中的假设是成立的,即经理的年收入和人寿保险额之间存在

着二次关系,并有把握的认为风险偏好度对人寿保险额有线性效应。 模型的改进与分析求解:

(1) 假设风险偏好度(1x )对人寿保险额(y )是否有二次效应,将原模型可

以修改为:

22

011223142y x x x x βββββε=+++++

进行模型求解,输出结果如下:

b =

-60.8513 0.9230 4.4829 0.0360 0.1138

bint =

-72.5979 -49.1048 0.4293 1.4168 1.7085 7.2573 0.0310 0.0409 -0.1441 0.3717

stats =

1.0e+003 *

0.0010 8.2055 0 0.0033 将stats 中数据转化为长型: stats=

0.9996 8205.5 0 3.2905 画出的残差图如下:

由上表可以看出,2R =0.9996指因变量y (人寿保险额)的99.96%可以由模型确定;F =8205远远大于F 检验的临界值;P =0.0000远小于α=0.05;综上,所建立的模型大致可以反映实际情况。回归系数的置信区间只有4β的自置

信区间包含零点,表明回归变量2

2x 对因变量y 的贡献是不显著的;而0123

,,,ββββ的置信区间不包含零点,表明回归变量2121,,x x x 对因变量y 的贡献是显著的。相

对22x 而言21x ,21x 比22x 显著,所以可以剔除22x 求回归方程。进而说明风险偏好度

对人寿保险额的二次效应不显著。所以的回归方程为:

212160.85130.9230 4.48290.0360y x x x =-+++

(2) 假设年平均收入(1x )和风险偏好度(2x )对人寿保险额(y )有交互效

应。将模型修改为:

20112231241y x x x x x βββββε=+++++

进行模型求解,输出结果如下: b =

-119.7086 4.5624 -5.6875 -0.0261 1.2025

bint =

-171.2646 -68.1527 3.8576 5.2672 -17.4456 6.0706 -0.1663 0.1141 0.1790 2.2260

stats =

0.9921 409.3697 0.0000 65.4612 画出的残差图如下:

数据整理如下:

从上表可知,当加入12*x x 项后做的回归分析,得到12*x x 项的置信区间为[-0.1663 0.1141],包含零点,回归系数包含零点,因此可以得到假设年平均收入(1x )和风险偏好度(2x )对人寿保险额(y )有交互效应是不显著的,所以此种假设是不成立的。

(3) 由以上各模型的求解过程可知,12*x x 和2

2x 对人寿保险额的影响是不显著

的,因此将模型改进为:

20112231y x x x ββββε=++++

进行模型求解,输出结果如下: b =

-62.2609 0.8338 5.6919 0.0371

bint =

-73.4460 -51.0758 0.3881 1.2796 5.2665 6.1173 0.0331 0.0412

stats =

1.0e+004 *

0.0001 1.1013 0 0.0003 将stats 中的数据装化为长型为: stats=

0.99958 11013 0 3.2689 画出的残差图如下:

数据整理如下:

由上表可以看出,2R =0.9996指因变量y (人寿保险额)的99.958%可以由模型确定;F =11013远远大于F 检验的临界值;P =0.0000远小于α=0.05。检查回归系数的置信区间可以发现: 所有回归系数的置信区间都不包含零点,所以所建模型是完全可靠的,即改进的模型为:

212162.26090.8338 5.69190.0371y x x x =-+++

附matlab程序如下:

散点图1

x1=[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.764 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];

y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133]; plot(x1,y,’*b’)

散点图2:

x2=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6];

y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133]; plot(x2,y,’+r’)

模型求解:

y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133];

x1=[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.764 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];

x2=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6];

x3=x2.^2;

x=[ones(18,1) x1’ x2’ x3’];

[b,bint,r,rint,stats]=regress(y’,x);

b,bint,stats,rcoplot(r,rint)

模型的改进与进一步求解:

(1)

y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133];

x1=[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.764 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];

x2=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6];

x3=x1.^2;

x4=x2.^2;

x=[ones(18,1) x1' x2' x3' x4'];

[b,bint,r,rint,stats]=regress(y',x);

b,bint,stats,rcoplot(r,rint)

(2)

y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133];

x1=[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.764 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];

x2=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6];

x3=x1.*x2;

x4=x2.^2;

x=[ones(18,1) x1' x2' x3' x4'];

[b,bint,r,rint,stats]=regress(y',x);

b,bint,stats,rcoplot(r,rint)

(3)

x1=[66.290 40.964 72.996 45.010 57.204 26.852 38.122 35.840 75.764 37.408 54.376 46.186 46.130 30.366 39.060 79.380 52.766 55.916];

x2=[7 5 10 6 4 5 4 6 9 5 2 7 4 3 5 1 8 6];

x3=x1.^2;

y=[196 63 252 84 126 14 49 49 266 49 105 98 77 14 56 245 133 133]; x=[ones(18,1) x1' x2' x3'];

[b,bint,r,rint,stats]=regress(y',x); b,bint,stats,rcoplot(r,rint) 第二题: 解:

问题的分析与模型建立:

画出高压锅得销量与时间变化的散点图:

图1 高压锅的的销售量相对于时间的散点图

再对Logistic 模型和Gompertz 的增长曲线表达式进行化简。

(1) 对表达式1t kt L y ae -=+两边同时取倒数得:11kt

t ae y L

-+=

,即11kt

t a e y L L

--=; 两边同乘L 得:

1kt t

L

ae y --=; 再对两边同时取自然对数得:ln 1ln t L a kt y ??

-=- ???;

令1ln 1t L G y ??

=- ???,ln ,a b k B =-=。

即可得一个线性表达式:1G b Bt =+。

因此Logistic 增长曲线是一个可线性化的模型。

(2) 对表达式:kt

be t y Le --=两边同除以L 得:kt be t

y e L

--=; 两边同时取自然对数得:ln

kt t

y be L

-=-; 再同时对两边取自然对数得:ln(ln )ln()t y

b kt L

=--;

令2ln ln ,,ln()t y

G d k D b L ==-=-。

得线性表达式:2G dt D =+。

因此Gompertz 增长曲线是一个可线性化的模型。 模型求解:

(1)利用matlab 进行线性化拟合,并画出原数据与拟合曲线,如图2所示。

图2 原数据与线性拟合曲线

由线性表达式:1G b Bt =+,得,-B b a e k ==,利用线性化模型给出参数a 和

k 的估计值。在matlab 中写入程序,计算结果如下:

k =

0.4941 a =

44.8463

从图形可以看出,线性模型虽然简单,但是误差太大,并且当t y →∞→∞时, 而高压锅销售量是有限的,也就是说高压锅的销售量是一个有限的量,不可能是

无限大的。所以,用线性模型不能完全反映高压锅的销售情况。必须找一个更好的模型去分析高压锅的销售情况。

(2)由上所得到的线性表达式:1G b Bt =+,用matlab 对Logistic 模型进行非线性回归。拟合Logistic 模型,画出Logistic 模型并与原数据比较,如图3所示。

图3 Logistic 模型的拟合图形

因此Logistic 增长曲线的非线性化方程为:

0.49413000

144.8463t t

y e

-=+ (3) 由上所得到的线性表达式:2G dt D =+。用matlab 对Gompertz 模型进行

非线性回归。拟合Gompertz 模型,画出Gompertz 模型并与原数据比较,如图4所示。

图4 Gompertz 模型的拟合图形

由线性表达式:2G dt D =+,得,-d D b e k ==,利用线性化模型给出参数b

和k 的估计值。在matlab 中写入程序,计算结果如下:

k=

0.4941 b=

30.4930

所以拟合的Gompertz 增长曲线方程为:

0.494130.49303000t

e t y e

--=

分析总结:下来分析两种的拐点如下:

(1),0t t dy y

ry r dt L =->。

(其中r 表示模型的增长率) Logistic 模型转化为微分形式是:00()t y t y =。

ln ,0t dy L

ry r dt y

=>。(其中r 表示模型的增长率) Gompertz 模型转化为微分形式是:00()t y t y =。

在Logistic 模型中

dy dt 是关于y 的二次函数,很容易看出,当2

L

y =时增长率最大,即是模型的拐点。

Logistic 增长曲线模型就是我们在生态学中所熟知的“S 型曲线”,它的最大值L 就是环境容纳量,它的变化受环境的影响,主要用于对种群数量及变化率的研究。其一般形式为:

1t kt

K

y ae

-=+(K 为环境容纳量) 其有个重要特征就是当y 随着t 的增加直至无穷大而趋向于K ,K 就是y 的饱和值,反过来当t 逐渐减小直至0,y 的值也趋于0。主要用于对一种新技术或新事物的产生,主要是一个“新”,对以前从来没有过的东西的趋势的研究。而Gompertz 增长曲线主要有以下特征:初期增长缓慢,后期逐渐加快,当达到一定程度后,增长率有逐渐下降,最终达到一条水平线。Gompertz 曲线通常用于描述事物的发展由萌芽、成长到饱和的周期过程。由此可见,Gompertz 增长曲线与Logistic 增长曲线还是比较相似的。

附matlab 程序如下: 散点图:

t=[0 1 2 3 4 5 6 7 8 9 10 11 12];

y=[43.65 109.86 187.21 312.67 496.58 707.65 960.25 1238.75 1560.00 1824.29 2199.00 2438.89 2737.71];

plot(t,y,'*b')

线性拟合:

y=[43.65 109.86 187.21 312.67 496.58 707.65 960.25 1238.75 1560.00 1824.29 2199.00 2438.89 2737.71];

t=0:12;

p=polyfit(t,y,1);

yy=polyval(p,t,1)

polt(t,y,'*',t,yy)

plot(t,y,'*',t,yy)

对a、k值得估计:

y=[43.65 109.86 187.21 312.67 496.58 707.65 960.25 1238.75 1560.00 1824.29 2199.00 2438.89 2737.71];

t=0:12;

L=3000;

y1=log(L./y-1);

p=pplyfit(t,y1,1);

p=polyfit(t,y1,1);

k=-p(1);

a=exp(p(2));

yy=L./(1+a*exp(-k*t));

plot(t,y,'*',t,yy)

Logistic拟合:

t=0:12;

y=[43.65 109.86 187.21 312.67 496.58 707.65 960.25 1238.75 1560.00 1824.29 2199.00 2438.89 2737.71];

L=3000;

z=log(L./y-1);

p=polyfit(t,z,1)

k=-p(1),a=exp(p(2))

Gompertz拟合:

y=[43.65 109.86 187.21 312.67 496.58 707.65 960.25 1238.75 1560.00 1824.29 2199.00 2438.89 2737.71];

t=0:12;

L=3000;

y1=log(log(y/L));

a=polyfit(t,y1,1);

b=-exp(a(2));

k=-a(1);

yy=L*exp(-b*exp(-k*t));

plot(t,y,'*',t,yy);

数学建模竞赛题目

西安科技大学第二届数学建模竞赛题目 A题:垃圾分类处理与清运方案设计 垃圾分类化收集与处理是有利于减少垃圾的产生,有益于环境保护,同时也有利于资源回收与再利用的城市绿色工程。在发达国家普遍实现了垃圾分类化,随着国民经济发展与城市化进程加快,我国大城市的垃圾分类化已经提到日程上来。2010年5月国家发改委、住房和城乡建设部、环境保护部、农业部联合印发了《关于组织开展城市餐厨废弃物资源化利用和无害化处理试点工作的通知》,并且在北京、上海、重庆和深圳都取得一定成果,但是许多问题仍然是垃圾分类化进程中需要深入研究的。 在深圳,垃圾分为四类:橱余垃圾、可回收垃圾、有害垃圾和其他不可回收垃圾,这种分类顾名思义不难理解。其中对于居民垃圾,基本的分类处理流程如下:

在垃圾分类收集与处理中,不同类的垃圾有不同的处理方式,简述如下:1)橱余垃圾可以使用脱水干燥处理装置,处理后的干物质运送饲料加工厂做原料。不同处理规模的设备成本和运行成本(分大型和小型)见附录1说明。2)可回收垃圾将收集后分类再利用。 3)有害垃圾,运送到固废处理中心集中处理。 4)其他不可回收垃圾将运送到填埋场或焚烧场处理。 所有垃圾将从小区运送到附近的转运站,再运送到少数几个垃圾处理中心。显然,1)和2)两项中,经过处理,回收和利用,产生经济效益,而3)和4)只有消耗处理费用,不产生经济效益。 本项研究课题旨在为深圳市的垃圾分类化进程作出贡献。为此请你们运用数学建模方法对深圳市南山区的分类化垃圾的实现做一些研究,具体的研究目标是: 1)假定现有垃圾转运站规模与位置不变条件下,给出大、小型设备(橱余垃圾)的分布设计,同时在目前的运输装备条件下给出清运路线的具体方案。以期达到最佳经济效益和环保效果。 2)假设转运站允许重新设计,请为问题1)的目标重新设计。 仅仅为了查询方便,在题目附录2所指出的网页中,给出了深圳市南山区所有小区的相关资料,同时给出了现有垃圾处理的数据和转运站的位置。其他所需数据资料自行解决。 附录1 1)大型厨余垃圾处理设备(如南山餐厨垃圾综合利用项目,处理能力为200吨/日,投资额约为4500万元,运行成本为150元/吨。小型餐厨垃圾处理机,处理能力为200-300公斤/日,投资额约为28万元,运行成本为200元/吨。橱余垃圾处理后产物价格在1000-1500元/吨。 2)四类垃圾的平均比例 橱余垃圾:可回收垃圾:有害垃圾:其他不可回收垃圾比例约为4:2:1:3。可回收垃圾划分为纸类、塑料、玻璃、金属四大类,大概比例分别是:55%、35%、6%、4%。纸类、塑料、玻璃、金属四类的废品回收价格是每公斤:1元、2.5元、0.5元、2.5元。

数学建模-赛题-微分方程竞赛试题

高教社杯全国大学生数学建模竞赛题目 2003高教社杯全国大学生数学建模竞赛题目 (请先阅读 “对论文格式的统一要求”) A题 SARS的传播 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: (1)对附件1所提供的一个早期的模型,评价其合理性和实用性。 (2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件2提供的数据供参考。 (3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3提供的数据供参考。 (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。 附件1: SARS疫情分析及对北京疫情走势的预测 2003年5月8日 在病例数比较多的地区,用数理模型作分析有一定意义。前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。希望这种分析能对认识疫情,安排后续的工作生活有帮助。

数学建模竞赛C题解答

数学建模竞赛C题解答

————————————————————————————————作者:————————————————————————————————日期:

2010高教社杯全国大学生数学建模竞赛C 题解答 问题1:如图1,设P 的坐标为 (x , y ), (x ≥ 0,y ≥ 0),共用管道的费用为非共用管道的k 倍,模型可归结为 2222)()()(),(min y b x l y a x ky y x f -+-+-++= 只需考虑21<≤k 的情形(不妨假设b a ≤)。对上述二元费用函数求偏导,令 ()()()()()()()()??? ? ??? =-+----+--==-+----+=0 ,0,22222222 y b x l y b y a x y a k y x f y b x l x l y a x x y x f y x (*) 结合图1,将(*)式改写为 ?? ?=+=-k βαβαsin sin 0 cos cos ,易知: 2 4cos cos ,2 sin sin 2 k k -= ===βαβα 所以 2 4tan tan k k -= =βα,故经过AP 和BP 的直线方程分别为: x k k a y 2 4-- =- ① ()l x k k b y --= -24 ② 联立①、②解方程组得交点()()?? ? ???--+= ??? ?????--- =2 2 421,421k kl b a y a b k k l x

因为 x ≥ 0,y ≥ 0,所以 l 应满足: ()a b k k l --≥ 2 4 且()a b k k l +-≤2 4 (a )当 )(42 a b k k l --≤ 时,此时交点在y 轴上,将0=x 代入①式,可得),0(a P =,即交点P 与A 点重合(如图2)。 ka l a b f ++-=22min )( (b) 当)(4)(42 2 a b k k l a b k k +-< <--时,交点在梯形内(如图1) 。??? ? ? ?--+---=)4(21),(24222k kl b a a b k k l P , 因为 2 42cos cos cos k l l x l x BP AP -==-+= +α βα,所以模型简化为: 2 42),(min k l ky y x f -+ =, () l k k b a f 2min 4)(2 1 -++= (c) 当)(42 a b k k l +-≥ 时,此时交点在x 轴上,即无共用管线的情形(如图3) 。

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

2016年数学建模大赛试题B题

2016高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题小区开放对道路通行的影响 2016年2月21日,国务院发布《关于进一步加强城市规划建设管理工作的若干意见》,其中第十六条关于推广街区制,原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步开放等意见,引起了广泛的关注和讨论。 除了开放小区可能引发的安保等问题外,议论的焦点之一是:开放小区能否达到优化路网结构,提高道路通行能力,改善交通状况的目的,以及改善效果如何。一种观点认为封闭式小区破坏了城市路网结构,堵塞了城市“毛细血管”,容易造成交通阻塞。小区开放后,路网密度提高,道路面积增加,通行能力自然会有提升。也有人认为这与小区面积、位置、外部及内部道路状况等诸多因素有关,不能一概而论。还有人认为小区开放后,虽然可通行道路增多了,相应地,小区周边主路上进出小区的交叉路口的车辆也会增多,也可能会影响主路的通行速度。 城市规划和交通管理部门希望你们建立数学模型,就小区开放对周边道路通行的影响进行研究,为科学决策提供定量依据,为此请你们尝试解决以下问题: 1. 请选取合适的评价指标体系,用以评价小区开放对周边道路通行的影响。 2. 请建立关于车辆通行的数学模型,用以研究小区开放对周边道路通行的影响。交通流分配模型 3. 小区开放产生的效果,可能会与小区结构及周边道路结构、车流量有关。请选取或构建不同类型的小区,应用你们建立的模型,定量比较各类型小区开放前后对道路通行的影响。 4. 根据你们的研究结果,从交通通行的角度,向城市规划和交通管理部门提出你们关于小区开放的合理化建议。

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

全国大学生数学建模竞赛论文--范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全 名):参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

眼科病床的合理安排 摘要 病床是医院的重要卫生资源,其使用情况是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。 本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。 针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)和病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法和RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。 针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。模型中,充分考虑了观测期内病人平均等待时间、病床平均周转率、病床利用率和潜在流失率等指标,且在制定寻优策略时,引入了病人满意度量化函数和优先级函数,使得模型更加合理。通过Matlab 对该模型求解,得出了次日病床安排方案(结果见表4)。 综合评价模型时,以该医院目前的病床安排方案和我国医院通用的病床安排方法为比较对象,借助上述三种评价方法和模型,进行了综合评价比较,从综合评价结果来看,本文的模型相对较优(评价结果见表9)。 针对问题三,本文既充分考虑了如何缩短病人平均等待时间和提高病床利用率,又兼顾了公平原则,根据病症的不同和就诊病人到院的顺序制订了优先服务策略,给出了每个病人相应的入住时间区间(见P18)。 针对问题四,由于住院部周六和周日不安排手术,对某些类型病人的病床安排产生了一定的影响,因此我们对问题二中模型的优先级函数进行了相应的调整,并利用Matlab进行了求解(结果见表10)。 为了判断手术安排时间是否改变,本文根据问题一的评价方法和模型对修改后的模型进行了综合评价,从评价结果得知,手术安排时间应该做相应的调整。 针对问题五,为了使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短,本文建立了以其为目标函数且带约束条件的非线性规划模型,并利用了Lingo 软件对其进行求解,得出的结论是:分配给外伤、白内障(双眼)、白内障(单眼)、青光眼、视网膜疾病等各类型病人的床位数依次为:8、16、12、21、22,分别占总床数的比例为:10.13%、20.25%、15.19%、26.58%、27.85%。 最后,本文对所建模型的优点和缺点进行了客观的评价,认为本文研究的结果在实际医院病床安排中有一定的参考价值。 关键词:病人平均等待时间;实际病床利用率;RSR 法;满意度量化函数;动态规划模型;非线性规划 1.问题重述 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,

HIMCM 2014美国中学生数学建模竞赛试题

HIMCM 2014美国中学生数学建模竞赛试题 Problem A: Unloading Commuter Trains Trains arrive often at a central Station, the nexus for many commuter trains from suburbs of larger cities on a “commuter” line. Most trains are long (perhaps 10 or more cars long). The distance a passenger has to walk to exit the train area is quite long. Each train car has only two exits, one near each end so that the cars can carry as many people as possible. Each train car has a center aisle and there are two seats on one side and three seats on the other for each row of seats.To exit a typical station of interest, passengers must exit the car, and then make their way to a stairway to get to the next level to exit the station. Usually these trains are crowded so there is a “fan” of passengers from the train trying to get up the stairway. The stairway could accommodate two columns of people exiting to the top of the stairs.Most commuter train platforms have two tracks adjacent to the platform. In the worst case, if two fully occupied trains arrived at the same time, it might take a long time for all the passengers to get up to the main level of the station.Build a mathematical model to estimate the amount of time for a passenger to reach the street level of the station to exit the complex. Assume there are n cars to a train, each car has length d. The length of the platform is p, and the number of stairs in each staircase is q. Use your model to specifically optimize (minimize) the time traveled to reach street level to exit a station for the following: 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: Requirement 1. One fully occupied train's passengers to exit the train, and ascend the stairs to reach the street access level of the station. 要求1.一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 Requirement 2. Two fully occupied trains' passengers (all passengers exit onto a common platform) to exit the trains, and ascend the stairs to reach the street access level

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

上传高中数学建模竞赛试题

高中数学建模竞赛试题 竞赛时间共120分钟,总分150分 高20 级 班 姓名 一、选择题(每题只有一个选项正确,将正确的选择项填入题后的括号内8×7): 1、三个框中,一个装有苹果,另一个装有柑子,第三个框装有苹果和柑子,装好分别标上“苹果”“ 柑子”“混装”三个标签。后查全都装错了,现在只能打开一个框来纠正三个标签,应该打开哪个框?( D ) A 、“苹果”标签 B 、“ 柑子”标签 C 、“混装”标签 D 、都可以 2、一批旅游者决定分乘几辆大汽车旅游,每车乘22人时有一人坐不上车;若开走一辆空车,所有的旅游车刚好平均分配到余下的车;而每车最多载32人。则旅游者的人数和汽车的辆数各为( B ) A 、441,20 B 、529,24 C 、331,15 D 、414,19 3、某县所建水库最大容量为:1.28×5 10立方米,据监测,在山洪暴发中注入的水量n S 与天数n 的关系式为:n S =5000)24( n n 。水库原有水量为8×4 10立方米,泄水闸每天泄水量4×3 10立方米,那么多少天后堤坝有危险(水容量超过最大容量为危险)( B ) A 、15天 B 、9天 C 、6天 D 、12天 4、下列哪个事件不能构成数学建模的案例?( C ) A 、学生的作业完成情况。 B 、城市饮用水消费情况。 C 、学生养成中的违纪案例。 D 、老师讲解测量实践案例。 5、一商品进价为80元,销售价为100元;为增加销量,采用每卖出一个商品就赠送一个价值1元的小商品的方法,结果销量增加10%;在实践中,若礼品的价值为n+1元比礼品为n 元时销量增加10%。请设计礼品价值为多少元时,利润最大。( D ) A 、8元 B 、9元 C 、10元 D 、9或10元 6、机器人每前进一步就向左转0 30,则下列哪一次机器人会回到起点?( B ) A 、10次 B 、36次 C 、42次 D 、55次 7、有一个摊主用4个白子和4个黑子作赌,其摸彩规定:从袋子里8个子中摸4个,要交 A 、 35 8 B 、701 C 、83 D 、43 8、从宣汉到达州的公路两旁有许多的景点,但总是投入不赚钱,你认为应该从下列哪个方 向投入为最佳方案( B ) A 、追加景点 B 、打造亮点 C 、政府命令 D 、广告投入 二、填空(把每题的最后答案填入后面的横线上2×7) 1、老王向银行贷款3万元发展产业,并按银行贷款月利为0.01,且为复利。若半年还完,则每月还款 5176.4510013264426078741354282726 元(等额还款法)。 2、32位学生中仅一个患有阴性基因的传染病,最少用 5 次可找到这位病人。

最新数学建模竞赛答案汇总

2010年数学建模竞赛 答案

输油管道的铺设设计 符号约定 m 炼油厂A 到铁路线L 的距离 n 炼油厂B 到铁路线L 的距离 b 炼油厂A 、B 间水平距离 F 输送管道的总费用 f 铺设管道的附加费用 W 铺设费用的权重系数 1k A 厂铺设非共用管线每千米的费用 2k B 厂铺设非共用管线每千米的费用 3k 共用管线每千米的费用 问题一分析与模型建立 最短路径的存在性论证 如图4.1,假设C 点为在铁路线上设计增建的车站,由费尔马问题的结论,在ABC ?中,存在费尔马点P ,使点P 与ABC ?三个顶点距离之和小于三角形二边之和,即有 PA+PB+PC∠ACB 时,费尔马点P 与C 点重合。 为此有如下结论:

①当0120<∠ACB 时,铺设公用管道PC 的输送费用比不铺设公用管道费用低; ②当0120>∠ACB 时,不需要铺设公用管道,即公用管道PC =0。 问题一分析与模型建立 如图4.1,以炼油厂A 、B 间铁路线所在直线为x 轴,以过炼油厂A 且垂直于铁路线L 直线为y 轴,建立平面直角坐标系。设 A(0,m), B(b,n),P(r,t),并设非公用管道的费用为每千米1个单位,公用管道的费用为每千米k 个单位(下同),根据实际意义易知21<≤k 。 根据参考文献[1],点P 不可能在A 的上方,故m t ≤≤0。 易得,A 点关于过点P 平行于x 轴的直线1L 的对称点'A (0,2t-m )。 由费尔马点的应用及平面几何对称性有 111F PB PA k PC BA k PC '=?+?+?>?+? 为此,得到铺设管道的最优模型 min 1F BA k PC '=?+? 4-1 问题一模型求解 对模型分两种管道费用相同与不同两种情形研究,并根据点A 、B 的坐标不同的取值,进行A 、B 不同位置时管道铺设设计。 1公用管道与非公用管道费用不同,即k <1时模型的求解 已知A 点关于1l 对称点'A (0,2t-m ) ()F t tk =

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

数学建模b题标准答案

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):北京大学 参赛队员(打印并签名) :1. 姚胜献 2. 许锦敏 3. 刘迪初 指导教师或指导教师组负责人(打印并签名):刘业辉 日期: 2011 年 9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 交巡警服务平台的设置与调度 摘要 本文通过建立整数规划模型,解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题;通过建立线性加权评价模型定量评价了某市现有交巡警服务平台设置方案的合理性,并根据各个区对服务平台需求量的不同,提出了重新分配全市警力资源的解决方案。在计算交巡警服务平台到各个路口节点的路程时,使用了图论里的floyd算法。 针对问题一的第一个子问题,首先假设交巡警服务平台对某个路口节点的覆盖度是二元的,引入决策变量,建立了0-1整数规划模型。交巡警出警应体现时间的紧迫性,所以选择平均每个突发事件的出警时间最短作为目标函数,运用基于MATLAB的模拟退火算法进行求解,给出了中心城区A的20个服务平台的管辖范围,求得平均每个案件的出警时间为1.013分钟。 针对问题一的第二个子问题,为了实现对中心城区A的13个交通要道的快速全封锁,以最短的封锁时间为目标,建立了0-1整数规划模型,利用lingo软件编程求解,给出了该区交巡警服务平台警力合理的调度方案,并求得对13个交通要道实现全封锁最短需要8.02分钟。 问题一的第三个子问题是交巡警服务平台的选址问题。考虑到建设新的服务平台需要投入更多的成本和警务资源,还需平衡各个服务平台的工作量。因此,以增加最少的服务平台数和服务平台工作量方差最小为目标,采用集合覆盖理论,建立了双目标0-1整数规划模型,用基于MATLAB的模拟退火算法求解出增加的服务平台数为4个,新增 的服务平台具体位置为A 28,A 40 ,A 48 ,A 88 ,并得到各个服务平台的工作强度方差为2.28。 针对问题二的第一个子问题,通过建立线性加权评价模型定量评价了该市现有交巡警服务平台设置方案的合理性,结果发现全市服务平台覆盖率较低且各个区的工作量不均衡,得出全市服务平台的布局存在明显的不合理的结论。并确定各区域人口密度、各区域公路总长度以及各区域平均每天总的发案率为各区域对交巡警需求的指标,然后根据各个区对服务平台需求量的不同,提出了较为合理的分配全市警力资源的解决方案。 对于问题二的第二个子问题,以围堵范围最小和调动警力最少的原则,通过分析案发后嫌疑犯可能到达的位置,给出了围堵方案。 关键词:交巡警服务平台 0-1整数规划模拟退火法

高教社杯全国大学生数学建模竞赛B题参考答案

交巡警服务平台的设置与调度优化分析 摘要 本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。并分别对题目的各问,作了合理的解答。 问题一: (1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd算法及matlab编程求出两点之间的最短距离,使其尽量满足能在3分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。 (2)、我们对进出该区的13条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用0-1变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。 (3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。 问题二: (1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、D、E、F区域平台设置不合理。并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。 (2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。 关健字:MATLAB软件,0-1规划,最短路,Floyd算法,指派问题 一、问题重述 “有困难找警察”,是家喻户晓的一句流行语。警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配备基本相同。由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。 试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:

2016年全国大学生数学建模竞赛题

2001高教社杯全国大学生数学建模竞赛题目 (请先阅读“对论文格式的统一要求”) C题基金使用计划 某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。当前银行存款及各期国库券的利率见下表。假设国库券每年至少发行一次,发行时间不定。取款政策参考银行的现行政策。 校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果: 1.只存款不购国库券; 2.可存款也可购国库券。 3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多

摘要:运用基金M分成n份(M1,M2,…,Mn),M1存一年,M2存2年,…,Mn存n 年.这样,对前面的(n-1)年,第i年终时M1到期,将Mi及其利息均取出来作为当年的奖金发放;而第n年,则用除去M元所剩下的钱作为第n年的奖金发放的基本思想,解决了基金的最佳使用方案问题. 关键词:超限归纳法;排除定理;仓恩定理 1问题重述 某校基金会有一笔数额为M元的基金,欲将其存入银行或购买国库券.当前银行存款及各期国库券的利率见表1.假设国库券每年至少发行一次,发行时间不定.取款政策参考银行的现行政策. 表1 存款年利率表 校基金会计在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额.校基金会希望获得最佳的基金使用计划,以提高每年的奖金额.需帮助校基金会在如下情况下设计基金使用方案,并对M=5 000万元,n=10年给出具体结果: ①只存款不购国库券; ②可存款也可购国库券. ③学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%. 2模型的分析、假设与建立 2.1模型假设 ①每年发放的奖金额相同; ②取款按现行银行政策; ③不考虑通货膨胀及国家政策对利息结算的影响; ④基金在年初到位,学校当年奖金在下一年年初发放; ⑤国库券若提前支取,则按满年限的同期银行利率结算,且需交纳一定数额的手续费; ⑥到期国库券回收资金不能用于购买当年发行的国库券. 2.2符号约定 K——发放的奖金数; ri——存i年的年利率,(i=1/2,1,2,3,5); Mi——支付第i年奖金,第1年开始所存的数额(i=1,2,…,10); U——半年活期的年利率; 2.3模型的建立和求解 2.3.1情况一:只存款不购国库券(1)分析

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

相关文档
最新文档