正弦和余弦转换

正弦和余弦转换
正弦和余弦转换

正弦和余弦转换

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于k2π/2±α(k∈Z)的个三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(42π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k2360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内只有正切是“+”,其余全部是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三正切,四余弦

其他三角函数知识:

同角三角函数基本关系

⒈同角三角函数的基本关系式

倒数关系:

tanα2cotα=1

sinα2cscα=1

cosα2secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

⒉两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ )/(1-tanα2tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα2tanβ)

倍角公式

⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α))

半角公式

⒋半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

万能公式

⒌万能公式

sinα=2tan(α/2)/(1+tan^2(α/2))

cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

tanα=(2tan(α/2))/(1-tan^2(α/2))

万能公式推导

附推导:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

(因为cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式

⒍三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^2(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

记忆方法:谐音、联想

正弦三倍角:3元减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))余弦三倍角:4元3角减 3元(减完之后还有“余”)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

和差化积公式

⒎三角函数的和差化积公式

sinα+sinβ=2sin((α+β)/2) 2cos((α-β)/2)

sinα-sinβ=2cos((α+β)/2) 2sin((α-β)/2)

cosα+cosβ=2cos((α+β)/2)2cos((α-β)/2)

cosα-cosβ=-2sin((α+β)/2)2sin((α-β)/2)

积化和差公式

⒏三角函数的积化和差公式

sinα2cosβ=0.5[sin(α+β)+sin(α-β)]

cosα2sinβ=0.5[sin(α+β)-sin(α-β)]

cosα2cosβ=0.5[cos(α+β)+cos(α-β)]

sinα2sinβ=- 0.5[cos(α+β)-cos(α-β)]

和差化积公式推导

附推导:

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

正余弦转换公式

诱导公式(口诀:奇变偶不变,符号看象限。)sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 半角的正弦、余弦和正切公式三角函数的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan^2α sin3α=3sinα-4sin^3α

正弦和余弦

正弦和余弦 导读:本文正弦和余弦,仅供参考,如果觉得很不错,欢迎点评和分享。 教学建议1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等. 2.重点、难点分析 (1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础. (2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点. 3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心. 锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

∽ ∽ ∽ ……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的. 这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号. 应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们. 4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式. 我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有 有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

正弦余弦公式总结

正弦余弦公式总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)tan(b)] tan(a-b)=[tan(a)-tan(b)]/[1+tan(a)tan(b)] 3.和差化积公式 sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) sin(a)sin(b)=2cos((a+b)/2)sin((a-b)/2)

cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-1/2* [cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2* [cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2* [sin(a+b)+sin(a-b)] cos(a)sin(b)=1/2* [sin(a+b)-sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 2sin2(a/2)=1-cos(a) 2cos2(a/2)=1+cos(a) tan(a/2)=[1-cos(a)]/sin(a)=sina/[1+cos(a)] tan2(a/2)= [1-cos(a)]/[1+cos(a)] 7.万能公式 sin(a)=2tan(a/2)/[1+tan2(a/2)] cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)] tan(a)=2tan(a/2)/[1-tan2(a/2)] 8.其它公式(推导出来的) a*sin(a)+b*cos(a)=2+b2其中 tan(c)=b/a a*sin(a)-b*cos(a)= √a2+b2cos(a-c) 其中 tan(c)=a/b

正弦和余弦

正弦和余弦1 教学目标 1、知识与技能: (1) 让学生理解在直角三角形中锐角正弦的定义, (2)会求直角三角形中锐角的正弦值。 2、过程与方法: 使学生在经历探索正弦定义的过程,逐步培养学生观察、比较、分析、归纳的 水平。 3、情感态度与价值观: (1)在讨论的过程中使学生感受集体的力量,培养团队意识; (2)通过探索、发现、培养学生独立思考,勇于创新的精神和良好的学习习惯。教学重点 1、理解并掌握直角三角形中锐角正弦的定义。 2、在直角三角形中能根据正弦的定义求锐角的正弦值。 教学难点 探索“在直角三角形中,任意锐角的对边与斜边的比值是一个常数”的过程 教学过程: 一、课前检测 1一般情况下,在Rt△ABC中,当锐角A取固定值时∠A的对边与斜边的比值是 一个固定值的吗? 2 什么是正弦? 3 右图是学校举行升国旗仪式的情景,你能想办法 求出旗杆的高度吗? 4 如图,一艘轮船从西向东航行到B处时,灯塔A在 船的正北方向,轮船从B处继续向正北方向航行2000m 到达C处,此时灯塔A在船的北偏西65°的方向; 试问:C处和灯塔A的距离AC约等于多少米(精确到1m)? 二、自主合作 在有一个锐角等于α的所有直角三角形中,角α的对边 与斜边的比值为一个常数 C A B

定义:在直角三角形中,锐角α的对边与斜边的比 叫角α 的正弦,记作Sin α 即 1当角A 固定时,它的三角函数值都是固定的,与角A 的边长短无关 2.sinA 是整体符号,不能看成sin ·A, 3.若用三个大写字母表示一个角时,角的符号“∠”不能省略. 三、练习讲解 1 如图AB=5,在直角三角形ABC 中,∠C =90°,BC=3,AB=5 (1) 求∠A 的正弦SinA. (2) 求∠B 的正弦SinB. 四、达标检测 1、 如图,在直角三角形ABC 中,角C=90,BC=5,AB=13。 (1)求sinA 的值; (2)求sinB 的值。 2、小明说:对于任意锐角α,都有0<sin α<1 你认为对吗?为什么? 3、在直角三角形ABC 中,若三边长都扩大2倍,则锐角A 的正弦值( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、无法确定 五、课后反思 六、作业布置 1、习题4.1 A 组第一题, 2、某人沿着坡脚为65o的一斜坡从坡底向上走,当他沿坡面走了45米时,人上升了多少米?(精确到1m )。 斜边 的对边 角a Sina =

正余弦定理及面积公式

正余弦定理及面积公式 一,,知识点回顾: 正弦定理:R C c B b A a 2sin sin sin === 余弦定理:a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 面积公式:B ac A bc C ab S ABC sin 21 sin 21sin 21 ===? 三角形内角和 π=++C B A ) tan(tan )sin(sin ) cos()cos(cos C B A C B A C B C B A +-=+=+-=--=π 二,基础训练: 1,在?ABC 中,已知23=a ,62=+c , 45=∠B ,求b 及A ; 2,在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 3,在?ABC 中,53 cos ,135 cos =-=B A , (1)求C sin 的值;(2)设BC=5,求?ABC 的面积 4,设锐角?ABC 的内角 A,B,C的对边分别为a,b,c, 且A b a sin 2= (1)求B ∠的大小 (2)若b c a 求,5,33== 5,在?ABC 中,已知54 cos ,3,2-===A a b (1)求B sin 的值 (2)求)62sin(π +B 的值 6,在?ABC 中,53 tan ,41 tan ==B A (1)求C ∠的大小 (2)若AB 的边长为17,求BC 边的长 7,设?ABC 的内角 A,B,C的对边分别为a,b,c,若 3,3,1π =∠==c c a ,则A ∠ 的值 8,设?ABC 的周长为12+,且C B A sin 2sin sin =+ (1)求边长AB 的长 (2)若?ABC 的面积为C sin 61 ,求角C 9,在?ABC 中,A,B,C的对边分别为a,b,c,若 55 22cos ,4,2==∠=B C a π,求?ABC 的面积。

正玄余玄正切值对照表

创作编号:BG7531400019813488897SX 创作者:别如克*

82 0.990268069 0.139173101 7.115369722 83 0.992546152 0.121869343 8.144346428 84 0.994521895 0.104528463 9.514364454 85 0.996194698 0.087155743 11.4300523 86 0.99756405 0.069756474 14.30066626 87 0.998629535 0.052335956 19.08113669 88 0.999390827 0.034899497 28.63625328 89 0.999847695 0.017452406 57.28996163 90 1 0 / 91 0.999847695 -0.017452406 -57.28996163 92 0.999390827 -0.034899497 -28.63625328 93 0.998629535 -0.052335956 -19.08113669 94 0.99756405 -0.069756474 -14.30066626 95 0.996194698 -0.087155743 -11.4300523 96 0.994521895 -0.104528463 -9.514364454 97 0.992546152 -0.121869343 -8.144346428 98 0.990268069 -0.139173101 -7.115369722 99 0.987688341 -0.156434465 -6.313751515 100 0.984807753 -0.173648178 -5.67128182 101 0.981627183 -0.190808995 -5.144554016 102 0.978147601 -0.207911691 -4.704630109 103 0.974370065 -0.224951054 -4.331475874 104 0.970295726 -0.241921896 -4.010780934 105 0.965925826 -0.258819045 -3.732050808 106 0.961261696 -0.275637356 -3.487414444 107 0.956304756 -0.292371705 -3.270852618 108 0.951056516 -0.309016994 -3.077683537

正弦函数值表

0.0{0.0000} 0.1{0.0017} 0.2{0.0035} 0.3{0.0052} 0.4{0.0070} 0.5{0.0087} 0.6{0.0105} 0.7{0.0122} 0.8{0.0140} 0.9{0.0157} 1.0{0.0175} 1.1{0.0192} 1.2{0.0209} 1.3{0.0227} 1.4{0.0244} 1.5{0.0262} 1.6{0.0279} 1.7{0.0297} 1.8{0.0314} 1.9{0.0332} 2.0{0.0349} 2.1{0.0366} 2.2{0.0384} 2.3{0.0401} 2.4{0.0419} 2.5{0.0436} 2.6{0.0454} 2.7{0.0471} 2.8{0.0488} 2.9{0.0506} 3.0{0.0523} 3.1{0.0541} 3.2{0.0558} 3.3{0.0576} 3.4{0.0593} 3.5{0.0610} 3.6{0.0628} 3.7{0.0645} 3.8{0.0663} 3.9{0.0680} 4.0{0.0698} 4.1{0.0715} 4.2{0.0732} 4.3{0.0750} 4.4{0.0767} 4.5{0.0785} 4.6{0.0802} 4.7{0.0819} 4.8{0.0837} 4.9{0.0854} 5.0{0.0872} 5.1{0.0889} 5.2{0.0906} 5.3{0.0924} 5.4{0.0941} 5.5{0.0958} 5.6{0.0976} 5.7{0.0993} 5.8{0.1011} 5.9{0.1028} 6.0{0.1045} 6.1{0.1063} 6.2{0.1080} 6.3{0.1097} 6.4{0.1115} 6.5{0.1132} 6.6{0.1149} 6.7{0.1167} 6.8{0.1184} 6.9{0.1201} 7.0{0.1219} 7.1{0.1236} 7.2{0.1253} 7.3{0.1271} 7.4{0.1288} 7.5{0.1305} 7.6{0.1323} 7.7{0.1340} 7.8{0.1357} 7.9{0.1374} 8.0{0.1392} 8.1{0.1409} 8.2{0.1426} 8.3{0.1444} 8.4{0.1461} 8.5{0.1478} 8.6{0.1495} 8.7{0.1513} 8.8{0.1530} 8.9{0.1547} 9.0{0.1564} 9.1{0.1582} 9.2{0.1599} 9.3{0.1616} 9.4{0.1633} 9.5{0.1650} 9.6{0.1668} 9.7{0.1685} 9.8{0.1702} 9.9{0.1719} 10.0{0.1736} 10.1{0.1754} 10.2{0.1771} 10.3{0.1788} 10.4{0.1805} 10.5{0.1822} 10.6{0.1840} 10.7{0.1857} 10.8{0.1874} 10.9{0.1891} 11.0{0.1908} 11.1{0.1925} 11.2{0.1942} 11.3{0.1959} 11.4{0.1977} 11.5{0.1994} 11.6{0.2011} 11.7{0.2028} 11.8{0.2045} 11.9{0.2062} 12.0{0.2079} 12.1{0.2096} 12.2{0.2113} 12.3{0.2130} 12.4{0.2147} 12.5{0.2164} 12.6{0.2181} 12.7{0.2198} 12.8{0.2215} 12.9{0.2233} 13.0{0.2250} 13.1{0.2267} 13.2{0.2284} 13.3{0.2300} 13.4{0.2317} 13.5{0.2334} 13.6{0.2351} 13.7{0.2368} 13.8{0.2385} 13.9{0.2402} 14.0{0.2419} 14.1{0.2436} 14.2{0.2453} 14.3{0.2470} 14.4{0.2487} 14.5{0.2504} 14.6{0.2521} 14.7{0.2538} 14.8{0.2554} 14.9{0.2571} 15.0{0.2588} 15.1{0.2605} 15.2{0.2622} 15.3{0.2639} 15.4{0.2656} 15.5{0.2672} 15.6{0.2689} 15.7{0.2706} 15.8{0.2723} 15.9{0.2740} 16.0{0.2756} 16.1{0.2773} 16.2{0.2790} 16.3{0.2807} 16.4{0.2823} 16.5{0.2840} 16.6{0.2857} 16.7{0.2874} 16.8{0.2890} 16.9{0.2907} 17.0{0.2924} 17.1{0.2940} 17.2{0.2957} 17.3{0.2974} 17.4{0.2990} 17.5{0.3007} 17.6{0.3024} 17.7{0.3040} 17.8{0.3057} 17.9{0.3074} 18.0{0.3090} 18.1{0.3107} 18.2{0.3123} 18.3{0.3140} 18.4{0.3156} 18.5{0.3173} 18.6{0.3190} 18.7{0.3206} 18.8{0.3223} 18.9{0.3239} 19.0{0.3256} 19.1{0.3272} 19.2{0.3289} 19.3{0.3305} 19.4{0.3322} 19.5{0.3338} 19.6{0.3355} 19.7{0.3371} 19.8{0.3387} 19.9{0.3404} 20.0{0.3420} 20.1{0.3437} 20.2{0.3453} 20.3{0.3469} 20.4{0.3486} 20.5{0.3502} 20.6{0.3518} 20.7{0.3535} 20.8{0.3551} 20.9{0.3567} 21.0{0.3584} 21.1{0.3600} 21.2{0.3616} 21.3{0.3633} 21.4{0.3649} 21.5{0.3665} 21.6{0.3681} 21.7{0.3697} 21.8{0.3714} 21.9{0.3730} 22.0{0.3746} 22.1{0.3762} 22.2{0.3778} 22.3{0.3795} 22.4{0.3811} 22.5{0.3827} 22.6{0.3843} 22.7{0.3859} 22.8{0.3875} 22.9{0.3891} 23.0{0.3907} 23.1{0.3923} 23.2{0.3939} 23.3{0.3955} 23.4{0.3971} 23.5{0.3987} 23.6{0.4003} 23.7{0.4019} 23.8{0.4035} 23.9{0.4051} 24.0{0.4067} 24.1{0.4083} 24.2{0.4099} 24.3{0.4115} 24.4{0.4131} 24.5{0.4147} 24.6{0.4163} 24.7{0.4179} 24.8{0.4195} 24.9{0.4210} 25.0{0.4226} 25.1{0.4242} 25.2{0.4258} 25.3{0.4274} 25.4{0.4289} 25.5{0.4305} 25.6{0.4321} 25.7{0.4337} 25.8{0.4352} 25.9{0.4368} 26.0{0.4384} 26.1{0.4399} 26.2{0.4415} 26.3{0.4431}

正余弦公式

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式(上面公式反过来就得到了) sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)] cos(a)cos(b)=12?[cos(a+b)+cos(a-b)] sin(a)cos(b)=12?[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1 -2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推导出来的) a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan(c)=ba

正弦和余弦转换

正弦和余弦转换 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα

tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

正余弦定理、三角形的一些公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 R c C R b B R a A C R c B R b A R a R R C c B b A a 2sin 2sin 2sin sin 2sin 2sin 2)(2sin sin sin = = = ======变形有:为外接圆的半径 三角形的面积公式: A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 ab c b a C ac b c a B bc a c b A C ab b a c B ac c a b A bc c b a 2cos 2cos 2cos cos 2cos 2cos 22222 222 22222222222-+= -+= -+= -+=-+=-+=变形有: 判断三角形的形状: 为锐角三角形 ,为直角角三角形 为钝角三角形 ABC b a c c a b c b a ABC c b a ABC c b a ?+<+<+2222222222 222 22,, 三角形中有: 形为正三角形 成等比数列,则该三角、、成等差数列,、、)若()(中c b a C B A C B A C B A C B A ABC 2tan )tan(cos )cos(sin )sin(1-=+-=+=+? 两角和差的正余弦公式及两角和差正切公式 ()βαβαβαsin cos cos sin sin -=- ()βαβαβαsin cos cos sin sin +=+ cos()cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i n αβα βαβ+=- ()βαβαβαt a n t a n 1t a n t a n t a n +-=- ()tan tan tan 1tan tan αβ αβαβ ++=- 二倍角公式: α α ααβ β ααααα2 22 2 2t a n 1t a n 22t a n 1 c o s 2s i n 21s i n c o s 2c o s c o s s i n 22s i n -= -=-=-== 半角公式:

正余弦转换公式

正余弦转换公式文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tanα-tanβ tan(α-β)=——————

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

正弦余弦换算公式

三角函数诱导公式常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:

对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即 sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限任何一个角的四种三角函数值都是“+”; 第二象限只有正弦是“+”,其余全部是“-”; 第三象限只有正切是“+”,其余全部是“-”; 第四象限只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦 1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b)

正弦、余弦、正切

直角三角形的边角关系—正弦、余弦、正切 知识要点 1.正弦:在直角三角形中,一个锐角所对的直角边与斜边的比,叫做这个角的正弦. 即:c a A A =∠= 斜边 的对边sin ; c b B B = ∠= 斜边 的对边sin . 2.余弦:在直角三角形中,一个锐角的邻边与斜边的比,叫做这个角的余弦. 即:c b A A =∠= 斜边 的邻边cos ; c a B B = ∠= 斜边 的邻边cos 3.正切:在直角三角形中,一个锐角所对的直角边与邻边的比,叫做这个角的正切. 即:b a A A A =∠∠= 的邻边 的对边tan ; a b B B B = ∠∠= 的邻边 的对边tan . 4.特殊角的正弦,余弦值: = ?0sin 0;= ?30sin 2 1;= ?45sin 2 2;= ?60sin 2 3;=?90sin 1; =?0cos 1;= ?30cos 2 3;= ?45cos 2 2;= ?60cos 2 1;=?90cos 0. = ?0tan 0 ;= ?30tan 3 3;=?45tan 1 ;= ?60tan 3 ;?90tan 不存在 ; 5.正、余弦、正切值随锐角大小的变化(即增减性): 正弦值随锐角的增大而增大,余弦值随锐角的增大而减小,正切值随锐角的增大而增大。 6.互余两角的正弦,余弦间的关系: 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值. ()ααcos 90sin =-?; ()ααsin 90cos =-?. 7.同角的正弦,余弦间的关系: (1)平方和的关系:1cos sin 22=+A A . (2)大小比较:当?<. 当?<

相关文档
最新文档