弯扭组合实验实验报告

弯扭组合实验实验报告
弯扭组合实验实验报告

弯扭组合实验实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

乐享科技

弯扭组合实验实验报告

经营管理

乐享

实验二弯扭组合试验

一、实验目的

1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角;

2.测定圆轴上贴有应变片截面上的弯矩和扭矩;

3.学习电阻应变花的应用。

二、实验设备和仪器

1.微机控制电子万能试验机;

2.电阻应变仪;

3.游标卡尺。

三、试验试件及装置

弯扭组合实验装置如图一所示。空心圆轴试件直径D 0=42mm ,壁厚t=3mm , l 1=200mm ,l 2=240mm (如图二所示);中碳钢材料屈服极限s σ=360MPa ,弹性模量E =206GPa ,泊松比μ=。

图一 实验装置图

四、实验原理和方法

1、测定平面应力状态下一点处的主应力大小和主平面的方位角;

圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P ,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所示。

在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。

根据平面应变状态应变分析公式:

αγαεεεεεα2sin 2

2cos 2

2

xy

y

x y

x -

-+

+=

(1)

可得到关于εx 、εy 、γxy 的三个线性方程组,解得:

45

45045450

εεγεεεεεε-=-+==--xy y x (2)

图三 应变花示意图

图四 圆轴上表面微体的应力状

x

x

x

x 图五 圆轴下表面微体的应力状

由平面应变状态的主应变及其方位角公式:

2

221222???

?

??+???? ??-±+=xy y x y x γεεεεεε (3)0min max 2()2()xy xy

x y tg γγαεεεε=-=-

--或y

x xy tg εεγα--=02 (4) 将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。

对于各向同性材料,应力应变关系满足广义虎克定律:

()()122

2212

111μεεμ

σμεεμ

σ+-=+-=

E

E

(5)

由式(2)~(5),可得一点的主应力及其方位角的表达式为:

()()()

()()

00

45

45045

4502

450

2

4504545212212212-------=

-+-+±

-+=εεεεεαεε

εεμμεεσσtg E

E (6)

0ε、0

45ε和0

45-ε的测量可用1/4桥多点测量法同时测出(见图六)。

2、圆轴某一截面弯矩M 的测量:

轴向应力x 仅由弯矩M 引起,故有:

z

x W M

=

σ (7) 根据广义虎克定律,可得: )(1

y x x E

μσσε-=

(8) 又: 0=y σ (9) 由式(7)~(9)得到:

图六

R i

R i

x z W E M ε??= (10)

以某截面上应力最大的上点或下点作为测量点。测出X 方向应变片的应变值εX

(00εε=x )。

ε0的测量可用1/4桥接法(见图七),也可采用半桥接法(见图八)。

3、圆轴某一截面扭矩T 的测量:

切应力τx 仅扭矩T 引起,故有:

P x W T

=τ (11)

根据广义虎克定律,可得:

)(00

4545εεγτ-?=?=-G G xy x (12)

由式(11)、(12)可得:

)()

1(2)(000045454545εεμεε-??+=

-??=--P P W E

W G T (13)

)(004545εε--的测量可用半桥接法(见图七),也可采用全桥接法(见图八)。

为了尽可能减小实验误差,本实验采用重复加载法。可参考如下加载方案:P 0=500N ,P max =1500N ,P=1000N ,N=4。

五、实验步骤

1. 设计实验所需各类数据表格;

2.

测量试件尺寸;

测量三次,取其平均值作为实验值 。

图七

R -45上 R 45上

图八

R -45上

R 45上 R -45下

R 45

图七

R 0

R 0——x 方向应变片 R t ——温补

图八

R 0上 R 0下

3.拟定加载方案;

4.试验机准备、试件安装和仪器调整;

5.确定各项要求的组桥方式、接线和设置应变仪参数;

6.检查及试车;

检查以上步骤完成情况,然后预加一定载荷,再卸载至初载荷以下,以检查试验机及应变仪是否处于正常状态。

7.进行试验;

将载荷加至初载荷,记下此时应变仪的读数或将读数清零。重复加载,每重复一次,记录一次应变仪的读数。实验至少重复四次,如果数据稳定,重复性好即可。8.数据通过后,卸载、关闭电源、拆线并整理所用设备。

六、试验结果处理

1、原始数据列表并计算各测量值的平均值

2.计算实验点的主应力大小和其方位角,并与理论值(按名义尺寸计算)进行比较

由公式: 可计算值:

9

1626

21010}210σσ--?=??上上(320.67-86)10(1-0.28)

故有:

可计算值: 同理:

9166221010}102σσ--?=??下下(-300+73)10(1-0.28)故有:

下面将理论应变值代入求解理论值:

3、计算圆轴上贴有应变片截面上的弯矩

根据公式:

而从理论值来看:

4、计算圆轴上贴有应变片截面上的扭矩

根据公式:004545()2(1)

P E

T W εεμ-?=

???-?+均

可以得到93462101036783.33

0.042(1())()10215.102(10.28)16422

T N m π-??=

???-??=?+

而从理论值来看:

七、误差分析 1、数据定量分析

(1)、主应力与主平面方位角相对误差分析

(2)、将上述M 的计算值与2l P ??的值进行比较,并分析其误差 (3)、将上述T 的计算值与1l P ??的值进行比较,并分析其误差

2、定性分析

由前面的误差计算可以看出,实验结果与真值比较接近,但是上表面的误差相对比下表面大,产生较大实验误差的原因可以归纳为:

(1)、接线接头处接触电阻对实验结果的影响,有些线可能没有接好或者接的太松,从而引入较大的接触电阻,而且有些线拆了后又再接上去,接触电阻前后不一样也会造成相应的误差;

(2)、应变片在黏贴 时候产生的缺陷对测量产生较大影响,因为我们在进行实验的过程中,发现我们的测量结果比理论值一直偏大,而且数据的稳定性一直比较好,老师检查时候说数据稳定性好说明实验本身的步骤没有问题,应该是在贴应变片的时候应变片贴的不是很标准;

(3)、在清零的过程中由于数据变动对实验结果产生较大的影响;

(4)、卸载及再加载的过程中由于速度过快,没有足够的时间使数据稳定下来可能就读数了;

(5)、本实验在实验前并没有再次进行轴的相关尺寸的测量,而是沿用了一贯的标准数据,实际尺寸可能与标准尺寸有出入,从而造成实验结果的计算误差;

(6)材料本身的质量分布以及缺陷对实验也会造成一定的影响。

八、实验感想与实验改进建议

这次做的实验名称是《弯扭组合实验》。材料力学实验是材料力学学习的基础与深化,在其中要用到很多课堂上所学到的理论知识与结果,是将自己所学到的知识付诸实践的一种形式。

在力学实验中,影响实验的因素很多,产生误差的原因也错综复杂,要求我们有一颗严谨的心,严格控制好实验条件等多种途径,以最佳的试验方式呈现力学现象,考验了我们实际动手能力和分析解决问题的能力。

材料力学实验有一定的复杂性,为了在规定的时间内完成老师所要求的实验内容,达到良好的实验结果,需要课前认真的预习,因此在课前,我认真预习了实验讲义上提到的相关步骤与注意事项,了解了仪器的工作原理、性能、正确的操作步骤与各种桥路的接法及其电路原理,写好了实验预习报告。

预习是实验前面必须要完成的工作,但是工作的重点还是在实验过程中。我在做实验的过程中,格外小心,因为我们所用的万能试验机是一种比较精确地仪器,稍微不注意就会使得机器所施加的力超过我们的预期要求。我觉得是要过程中老师的指导是必不可少的,在本次试验中,老师给了我们三个她要求检查的地方(三种桥路所测得三种数值),通过老师在实验过程中的检查,能够使我意识到我的实验是否在一路正确的进行下去。在读数的过程中一定要小心,因为数据具有变动性,不要马虎了事,一定要等数据稳定后在进行读数、这样才能够保证我们所测量的数据的精确性。试验完成后,要认真清理试验台,把所有的仪器恢复到位。

在实验完成后,我认真的处理了实验数据。实验数据是定量分析的依据,是探索、验证力学规律的第一手资料。本次试验我进一步学习了用电脑处理实验数据,刚开始我还不是很熟,但越到后来越发现用电脑处理数据更方便、快捷,可以节省不少时间,而且尤其是在修改错误的时候更有优势,让人开起来清晰明了。但是用电脑处理数据的前提条件依然是我们对理论知识比较熟悉,而且实验操作过程必须认真完成,记录的数据要准确、有效。在写实验报告的过程中,遇到了不少问题,但是经过自己的独立思考和向同学的请教,今本上还算是顺利的完成了实验报告。

弯扭组合变形实验报告

弯扭组合变形实验报告 水工二班 叶九三 1306010532 一、实验目的 1用电测法测定薄壁圆管弯扭组合变形时表面任一点的主应力值和主方向,并与理论值进行比较。 2测定分别由矩和扭矩引起的应力w σ和n τ,熟悉半桥和全桥的接线方法。 二、实验设备 仪器名称及型号:静态电阻应变仪 精度:1μm 三、试件尺寸及有关数据 试件材料:铝合金 弹性模量:70GPa 泊松比μ=0.33 应变片灵敏系数K=2.20 试件外径D=40mm 试件内径d=36mm 自由端端部到测点的距离L=300mm 臂长a=200mm 试件弯曲截面系数z W =2.16*610-3m 试件扭转截面系数P W =4.32*610-3m 四、实验数据与整理 1.实测数据 弯ε(W ε) 扭ε(n ε) 0ε 45ε 90ε 荷载F (N ) 读数με 增量με 读数με 增量με 读数με 增量με 读数με 增量με 读数με 增量με 0F 0 396 0 358 0 150 0 193 0 -19 1F 396 358 150 193 -19 393 363 150 194 -21 2F 789 721 300 387 -40 391 353 150 193 -20 3F 1180 1074 450 580 -60 394 357 149 192 -21 4F 1574 1431 599 772 -81 平均增量 393.50 357.75 150 193 -20 计算结果: εⅠ=218.7με εⅡ=-88.7με 0?=o 2.28

1σ=14.9MPa 2σ=-1.3MPa W E εσ?=*w =13.7725MPa ||1n n E εμ τ?+= =4.7072MPa 误差分析 w σ(MPa ) n τ(MPa ) I σ ∏σ 0? 实测值 13.7725 4.7072 14.9 -1.3 28.2 理论值 13.8889 4.6296 15.2 -1.4 33 相对误差% 0.84 1.68 1.9 7.1 14.5 思考题 1可以,因为主应力大小与方向是唯一的,不论应变片延哪个方向粘贴, 只要测出平面应力状态下的三要素,就可以计算出主应力的大小与主平 面方向。 2半桥自补偿法好,精度比半桥外补偿法高。 3不需要,因为采用的全桥测法已经将温度影响消除了。

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

弯扭组合变形实验报告

薄壁圆管弯扭组合变形应变测定实验 一.实验目的 1.用电测法测定平面应力状态下主应力的大小及方向; 2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的 应力。 二.实验仪器和设备 1.弯扭组合实验装置; 2.YJ-4501A/SZ 静态数字电阻应变仪。 三.实验原理 薄壁圆管受力简图如图1所示。薄壁圆管在P 力作用下产生弯扭组合变形。 薄壁圆管材料为铝合金,其弹性模量E 为72 2m GN , 泊松比μ为0.33。薄壁圆管截 图1 面尺寸、如图2所示。由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。Ⅰ-Ⅰ截面现有A 、B 、C 、D 四个测点,其应力状态如图3所示。每点处已按 –450、00、+450方向粘贴一枚三轴450应变花,如图4所示。 图2 图3 图4 四.实验内容及方法 1. 指定点的主应力大小和方向的测定 薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为 ()()()?? ? ???-+--±++-=--24502 0454******* 1211εεεεμεεμ μσσE

主应力方向计算公式为 ()()04545045 452εεεεεεα----= --tg 或 ()45 450454522εεεεεα+---=--tg 2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定 只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2 Md M εε= 然后由虎克定律可求得弯矩M 引起的正应力 2 Md M M E E εεσ= = b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可 测得扭矩M n 在450方向所引起的线应变 4 nd n εε= 由广义虎克定律可求得剪力M n 引起的剪应力 ()214nd nd n G E εμετ=+= c. 剪力Q 引起的剪应力的测定 用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的线应变 4 Qd Q εε= 由广义虎克定律可求得剪力Q 引起的剪应力 () 2 14Qd Qd Q G E εμετ=+= 五.实验步骤 1. 接通测力仪电源,将测力仪开关置开。 2. 将薄壁圆管上A 、B 、C 、D 各点的应变片按单臂(多点)半桥测量接线方法接至应变仪测量通道上。 3. 预加50N 初始载荷,将应变仪各测量通道置零;分级加载,每级100N ,加至450N ,记录各级载荷作用下应变片的读数应变,然后卸去载荷。 4. 按图5各种组桥方式,从复实验步骤3,分别完成弯矩、扭矩、剪力所引起应变的测定。 六.实验数据及结果处理

弯扭组合实验实验报告

弯扭组合实验实验报告

Administrator

实验二弯扭组合试验 一、实验目的 1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角; 2.测定圆轴上贴有应变片截面上的弯矩和扭矩; 3.学习电阻应变花的应用。 二、实验设备和仪器 1.微机控制电子万能试验机; 2.电阻应变仪; 3.游标卡尺。 三、试验试件及装置 弯扭组合实验装置如图一所示。空心圆轴试=42mm,壁厚t=3mm, l1=200mm,件直径D l2=240mm(如图二所示);中碳钢材料屈服极限 s =360MPa,弹性模量E=206GPa,泊松比μ=

0.28。 图一 实验装置图 四、实验原理和方法 1、测定平面应力状态下一点处的主应力大小和主平面的方位角; 圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P ,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所 图三 应变 τx στx σ

示。 在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。 根据平面应变状态应变分析公式: α γαεεεεε α 2sin 2 2cos 2 2 xy y x y x - -+ += (1) 可得到关于εx 、εy 、γxy 的三个线性方程组,解得: 45 450 45450 εεγεεεεεε-=-+==--xy y x (2) 由平面应变状态的主应变及其方位角公式: 2 2 21222? ?? ? ??+???? ??-±+=xy y x y x γεεεεεε (3)0 min max 2()2()xy xy x y tg γγα εεεε=- =---或y x xy tg εεγα-- =02 (4) 将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。 图四 圆轴上表面图五 圆轴下表面

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

弯扭组合实验实验报告

北京航空航天大学材料力学实验 弯扭组合试验 实验报告 机械工程及自动化学院380711班张涛38071122

实验二弯扭组合试验 一、实验目的 1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角; 2.测定圆轴上贴有应变片截面上的弯矩和扭矩; 3.学习电阻应变花的应用。 二、实验设备和仪器 1.微机控制电子万能试验机; 2.电阻应变仪; 3.游标卡尺。 三、试验试件及装置 弯扭组合实验装置如图一所示。空心圆轴试件直径D0=42mm,壁厚t=3mm,l1=200mm,l2=240mm(如图二所示);中碳钢材料屈服极限 =360MPa,弹性模量E s =206GPa,泊松比μ=0.28。

图一实验装置图 四、实验原理和方法 1、测定平面应力状态下一点处的主应力大小和主平面的方位角; 圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所示。 图三应变花示意图 图四圆轴上表面微体的应力状态τx σx τx σx 图五圆轴下表面微体的应力状态

在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。 根据平面应变状态应变分析公式: αγαεεεεεα2sin 2 2cos 2 2 xy y x y x - -+ += (1) 可得到关于εx 、εy 、γxy 的三个线性方程组,解得: 45 45045450 εεγεεεεεε-=-+==--xy y x (2) 由平面应变状态的主应变及其方位角公式: 2 221222??? ? ??+???? ??-±+=xy y x y x γεεεεεε (3)0min max 2()2()xy xy x y tg γγαεεεε=-=- --或y x xy tg εεγα--=02 (4) 将式(2)分别代入式(3)和式(4),即可得到主应变及其方位角的表达式。 对于各向同性材料,应力应变关系满足广义虎克定律: ()()122 2212 111μεεμ σμεεμ σ+-=+-= E E (5) 由式(2)~(5),可得一点的主应力及其方位角的表达式为: ()()() ()() 00 45 45045 4502 450 2 4504545212212212-------= -+-+± -+=εεεεεαεε εεμμεεσσtg E E (6) 0ε、0 45ε和0 45-ε的测量可用1/4桥多点测量法同时测出(见图六)。 R i

实验一----弯扭组合变形

实验一----弯扭组合变形

弯扭组合变形的实验报告 力学-938小组 一.实验目的 1.测定薄壁圆管表面上一点的主应力; 2.验证弯扭组合变形理论公式; 3.掌握电阻应变片花的使用。 二.实验设备和仪表 1.静态数字电阻应变仪; 2.弯扭组合试验台。 三.实验原理与分析 1.实验计算简图如下所示: 在D点作用一外力,通过BD杆作用在C点,同时产生 弯矩和扭矩; 2.应变测量常常采用电阻应变花,把几个敏感栅制作成特殊夹角 形式,组合在同一基片上。本实验采用45o直角应变花,在A,B,C,D四点(这四点分别布置在圆管正前方、正上方、正后

方,正下方)上各贴一片,分别沿-45o ,0o ,45o 方向,如图所示。测量并记录每一点三个方向的应变值-45εo 、0εo 、45εo 。 正上方和正下方(B 、D 点)处于弯扭组合情况下,同时作 用有弯曲正应力和扭转切应力,其中弯曲正应力上端受拉,下端受压,而前方和后方由于弯矩作用产生的切应力远远小于扭转产生的切应力,所以可以忽略不计,这样,在前后位置只受扭转剪应力。 3. 理论应变的计算公式及简单推导 弯曲正应力计算公式:()4432 z M PLD W D d σπ= = -; (1) 扭转剪应力计算公式:()44 16 n p M PaD W D d τπ== -; (2) 根据(1)(2)式可计算出理论上作用在每点的应力值。 由应力状态理论分析可知,薄壁圆管表面上各点均处于平面应力状态。若在被测位置x,y 平面内,沿x,y 方向的线应变

为,x y εε,剪应变为x y γ ,根据应变分析可知,该点任一方向 α的线应变计算公式为: 1 cos 2sin 22 2 2 x y x y xy αεεεεεαγα+-= + - (3) 将α分别用-45o ,0o ,45o 代替,可得到x,y 方向的应变方程 组: 0454504545x y xy εεεεεεγεε--?=? =+-?? =-?o o o o o o (4) 由此,可得到解出每点-45εo 、0εo 、45εo 值的公式: 0454522 x x y xy x y xy εεεεγεεεγε-? =?? +-? =?? ++?=??o o o (5) 另外,根据2中的分析,利用材料力学相关公式,可得,x y εε, x y γ的理论计算公式为: ()21x y x xy E G E σεεμεμττγ?= ??? =-?? +?==?? (6) 这样,将(1)(2)(6)式代入到(5)式中,即可求解每点 -45εo 、0εo 、45εo 的理论值。 4. 将计算得到的理论值直接与测试仪上显示的数据进行对比,分析 误差。 四. 实验步骤

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

弯扭实验报告-最终版

【实验名称】 弯扭组合受力下的圆管应力和内力测定实验 【实验背景】 在工程中受弯扭复合作用的构件比比皆是。现仅举几例加以说明: 1. 工厂中用于机械加工的车床、铳床等主轴就是一种典型的复合受力形式,主轴的内力 弯矩、扭矩、轴力等。 内力图 3. 自行车的拐臂,由于脚踏板的受力点与拐臂不在同一中心线上,拐臂的内力既有弯矩, 又有扭矩。 一般来说,对复合受力的构件,其截面上的内力既有弯矩和剪力又有扭矩,有时还有轴 力。所以,复合受力条件下的构件属于平面应力状态。对于这类构件,工程中一般要解决下 列两类问题。 1. 强化校核:测定危险点的应力状态,确定主应力值和主方向。 2. 优化设计:分离截面上的内力,确定各内力的贡献大小。 【实验目的】 1 .学习电测实验的全过程。本实验从按实验要求制定贴片方案,粘贴电阻片、引线、编号到测量所贴电阻片的应变,以及用不同组桥方式分离内力的一整套实验过程都由同学自己来完成。

2. 学习测定一点应力状态的方法。 3. 学习利用各种组桥方式测量内力的方法。 4. 学习电阻片的粘贴方法。 5. 进一步熟悉电测法的基本原理与操作方法。 【实验仪器】 1. 电子万能实验机 2. 静态电阻应变仪 3. 弯矩复合受力实验装置一套 4. 钢板尺、游标卡尺 【实验原理】 一. 测主应变的大小及方向 为了用实验的方法测定薄壁圆筒弯曲和扭转时表面一点处的主应力大小和方向,首 先要测量该点处的主应变£ 1和£ 3的大小和方向,然后用广义胡克定律算得一点处的 主应力b 1和b 3。根据平面应变状态分析原理,要确定一点处的主应变,需要知道该点处沿X和两个互相垂直方向的3个应变分量£ X, & y和丫xy o由于在实验中测量剪应变很困难,而用电阻应变片测量线应变比较简便,所以通常采用一点处沿X轴成3 个不同方向且已知夹角的线应变。 为了简化计算,实际上采用互成特殊角的三片应变片组成的应变花,中间的应变片与X 轴成0°,另外2个应变片分别与X轴成±45°。用电阻应变仪分别测得圆筒变形后应变花的 3 个应变值,即£0° , £ -45。,£ 45。,则有 &1、£ 3,和主应力b 1、b 3,方向一致。应用广义胡克定律,则主 对各向同性材料,主应变 应力 b 1、b 3,为

弯扭组合变形的主应力测定

实验八 弯扭组合变形的主应力测定 一、实验目的 1.测定平面应力状态下主应力的大小及方向。 2.掌握电阻应变花的使用。 二、实验设备 1.弯扭组合实验装置。 2.静态电阻应变仪。 三、实验原理 平面应力状态下任一点的主应力方向无法判断时,应力测量常采用电阻应变花。应变花是把几个敏感栅制成特殊夹角形式,组合在同一基片上,如图8-1所示。如果已知三个方向的应变a ε、b ε及c ε,根据这三个应变值可以计算出主应变1ε及3ε的大小和方向,因而主应力的方向亦可确定(与主应变方向重合)。主应力的大小可由各向同性材料的广义胡克定律求得: (8-1) 式中,E 、μ分别为材料的弹性模量和泊松比。 图8-2为045直角应变花,所测得的应变分别为00ε、045ε及090ε,由下式计算出主应变1ε及3ε的大小和方向: 2 904524509003,100000 02 22 )()(εεεεεεε-+-± += (8-2)(8-3)

00 0090090045022an εεεεεα---=t (8-3) 图8-1 图8-2 图 8-3 本实验以图8-3所示空心圆轴为测量对象,该空心圆轴一端固定,另一端固结一横杆,轴与杆的轴线彼此垂直,并且位于水平平面内。今在横杆自由端加砝码,使空心圆轴发生扭转与弯曲的组合变形。在A -A 截面的上表面A 点采用045直角应变花,如图8-4所示,如果测得三个应变值00ε、045ε和090ε,即可确定A 点处主应力的大小及方向的实验值。 图 8-4 图 8-5 另由扭—弯组合理论可知,A -A 截面的上表面A 点的应力状态如图8-5

弯扭组合变形实验报告

创作编号: BG7531400019813488897SX 创作者:别如克* 薄壁圆管弯扭组合变形应变测定实验 一.实验目的 1.用电测法测定平面应力状态下主应力的大小及方向; 2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力。 二.实验仪器和设备 1.弯扭组合实验装置; 2.YJ-4501A/SZ静态数字电阻应变仪。 三.实验原理 薄壁圆管受力简图如图1所示。薄壁圆 管在P力作用下产生弯扭组合变形。 薄壁圆管材料为铝合金,其弹性模量E 为722 GN, 泊松比μ为0.33。薄壁圆管截图1 m 面尺寸、如图2所示。由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。Ⅰ-Ⅰ截面现有A、B、C、D四个测点,其应力状态如图3所示。每点处已按–450、00、+450方向粘贴一枚三轴450应变花,如图4所

示。 图2 图3 图4 四.实验内容及方法 1. 指定点的主应力大小和方向的测定 薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为 ()()()?? ? ???-+--±++-=--24502 04545 45231212 11εεεεμ εεμμσσE 主应力方向计算公式为 ()() 04545045 452εεεεεεα----= --tg 或 () 4545045 4522εεεεεα+--- =--tg 2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定 只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2 Md M εε= 然后由虎克定律可求得弯矩M 引起的正应力 2 Md M M E E εεσ= = b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路, 可测得扭矩M n 在450方向所引起的线应变 4 nd n εε= 由广义虎克定律可求得剪力 M n 引起的剪应力 ()2 14nd nd n G E εμετ= += c. 剪力Q 引起的剪应力的测定 用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

弯扭组合实验实验报告

乐享科技 弯扭组合实验实验报告 经营管理 乐享 实验二弯扭组合试验 一、实验目的 1.用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角; 2.测定圆轴上贴有应变片截面上的弯矩和扭矩; 3.学习电阻应变花的应用。 二、实验设备和仪器 1.微机控制电子万能试验机; 2.电阻应变仪; 3.游标卡尺。 三、试验试件及装置 弯扭组合实验装置如图一所示。空心圆轴试件直径D0=42mm,壁厚t=3mm,l1=200mm,l2=240mm

(如图二所示);中碳钢材料屈服极限s σ=360MPa ,弹性模量E =206GPa ,泊松比μ=0.28。 图一 实验装置图 四、实验原理和方法 1、测定平面应力状态下一点处的主应力大小和主平面的方位角; 圆轴试件的一端固定,另一端通过一拐臂承受集中荷载P ,圆轴处于弯扭组合变形状态,某一截面上下表面微体的应力状态如图四和图五所示。 在圆轴某一横截面A -B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方向分别沿0°和±45°。 根据平面应变状态应变分析公式: αγαεεεεεα2sin 2 2cos 2 2 xy y x y x - -+ += (1) 可得到关于εx 、εy 、γxy 的三个线性方程组,解得: 45 45045450 εεγεεεεεε-=-+==--xy y x (2) 由平面应变状态的主应变及其方位角公式: 2 221222??? ? ??+???? ??-±+=xy y x y x γεεεεεε (3)0min max 2()2()xy xy x y tg γγαεεεε=- =- --或y x xy tg εεγα--=02 (4) 图三 应变花示意图 图四 圆轴上表面微体的应力状态 ?x ?x ?x ?x 图五 圆轴下表面微体的应力状态

实验四 薄壁圆筒在弯扭组合变形下主应力测定

实验四 薄壁圆筒在弯扭组合变形下主应力测定 实验内容: 构件在弯扭组合作用下,根据强度理论,其强度条件是[]r σσ≤。计算当量应力r σ,首先要确定主应力,而主应力的方向是未知的,所以不能直接测量主应力。通过测定三个不同方向的应变,计算主应变,最后计算出主应力的大小和方向。本实验测定应变的三个方向分别是-45°、0°和45°。 实验目的与要求: 1、用电法测定平面应力状态下一点的主应力的大小和方向 2、进一步熟悉电阻应变仪的使用,学会1/4桥法测应变的实验方法 设计思路: 为了测量圆管的应力大小和方向,在圆管某一截面的管顶B 点、管底D 点各粘贴一个45°应变花,测得圆管顶B 点的-45°、0°和45°三个方向的线应变45ε-、 0ε、45ε。 应变花的粘贴示意图 实验装置示意图 关键技术分析: 由材料力学公式: 得 从以上三式解得 主应变

根据广义胡克定律 1、实验得主应力 大小 ___ ___ ___145452()2(1)E σεεσμ-+?= ± ?-?实实方向 _________ ___ 04545 45452( )/(2) tg αεεεεε-- =+ --实 2、理论计算主应力 3、误差 实验过程 1.测量试件尺寸、力臂长度和测点距力臂的距离,确定试件有关参数。附表1 2.拟定加载方案。先选取适当的初载荷P 0(一般取P o =lO %P max 左右)。估算P max (该实验载荷范围P max <400N),分4~6级加载。 3.根据加载方案,调整好实验加载装置。 4.加载。均匀缓慢加载至初载荷P o ,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值,直到最终载荷。实验至少重复两次。 5.作完试验后,卸掉载荷,关闭电源, 整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 6.实验装置中,圆筒的管壁很薄,为避免损坏装置,注意切勿超载,不能用力扳动圆筒的自由端和力臂。

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

弯扭组合实验实验报告

弯扭组合试验 实验报告 Administrator 实验二弯扭组合试验 、实验目的 1 ?用电测法测定平面应力状态下一点处的主应力大小和主平面的方位角; 2. 测定圆轴上贴有应变片截面上的弯矩和扭矩; 3. 学习电阻应变花的应用。 二、实验设备和仪器 1. 微机控制电子万能试验机; 2. 电阻应变仪; 3. 游标卡尺。 三、试验试件及装置 弯扭组合实验装置如图一所示。空心圆轴试件直径D o= 42mm壁厚t=3mm l i=200mm

l2=240mm(如图二所示);中碳钢材料屈服极限s= 360MPa弹性模量E= 206GPa泊松比(1= 0.28。 图一实验装置图

四、实验原理和方法 1、测定平面应力状态下一点处的主应力大小和主平面的方 位角; 圆轴试件的一端固定,另一端通过一拐臂承受集中荷载 P,圆轴处于弯扭组合变形状态, 某一截面上下表面微体的应力状态如图四和图五所示。 在圆轴某一横截面 A — B 的上、下两点贴三轴应变花(如图三),使应变花的各应变片方 向分别 沿0°和土 45°。 根据平面应变状态应变分析公式: x 00 由平面应变状态的主应变及其方位角公式: 2 xy II x x J 1 tab x 1 F 图四圆轴上表面微体的应力状态 ------------------------------ 图五 圆轴下表面微体的应力状态 可得到关于& x 、£ y 、 丫 xy - -cos2 仝巾2 2 2 的三个线性方程组, 解得: (1) y 450 450 00 (2) xy 450 450 (3)

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

实验四 弯扭组合变形时的应力测定

实验四弯扭组合变形时的应力测定 一、实验目的 1.用电测法测定平面应力状态下的主应力大小及其方向,并与理论值进行比较。 2.测定弯扭组合变形杆件中的弯矩和扭矩分别引起的应变,并确定内力分量弯矩和扭矩的实验值。 3.进一步掌握电测法和电阻应变仪的使用。 了解半桥单臂,半桥双臂和全桥的接线方法。 二、实验仪器 1.弯扭组合实验装置。 2.YJ-28-P10R静态数字应变仪, 或者YJ-31电阻应变仪。 三、实验原理和方法 弯扭组合变形实验装置如图5-1所示,它由薄壁管1、扇臂2、钢索3、手轮4、加 图4-1 弯扭组合实验装置

载支座5、加载螺杆6、载荷传感器7、钢索接头8、底座9、电子秤10和固定支架11组成。钢索一端固定在扇臂端,另一端通过加载螺杆、载荷传感器与钢索接头固定,实验时转动手轮,加载螺杆和载荷传感器都向下移动,钢索受拉,载荷传感器就有电信号输出,此时电子秤数字显示出作用在扇臂的载荷值,扇臂端的作用力传递到薄壁管上,使管产生弯扭组合变形。 薄壁圆管材料为铝,其弹性模量E=70GPa、泊松比μ=0.33,管的平均直径D0=37mm,壁厚t=3mm。 Ⅰ-Ⅰ 图4-2 图4-3 A、B、C、D点应力状态

薄壁圆管弯扭组合变形受力如简图4-2所示。Ⅰ-Ⅰ截面为被测位置,该截面上的内力有弯矩和扭矩。取其前、后、上、下的A 、B 、C 、D 为被测的四个点,其应力状态见图4-3(截面Ⅰ-Ⅰ的展开图)。每点处按-450 、0、+450 方向粘贴一片450 的应变花,将截面Ⅰ-Ⅰ展开如图4-4(a )所示。 四、 实验内容和方法 1.确定主应力大小及方向: 弯扭组合变形薄壁圆管表面上的点处于平面应力状态,用应变花测出三个方向的线应变后,可算出主应变的大小和方向,再应用广义胡克定律即可求出主应力的大小和方向。 主应力 ()()()?? ?? ??-+--±++-= ?+?-?+?-24502045454522.12 1211εεεεμεεμ μσE (1) 主方向 ()() 0454*******a εεεεεεα----= ?+?-? -?+n t (2) 式中:045-ε、0ε、045+ε分别表示与管轴线成045-ε、0ε、045+ε方向的线应变 2. 单一内力分量或该内力分量引起的应变测定: (1)弯矩M 及其所引起的应变测定 (a )弯矩引起正应变的测定: 用上、下(即B 、D 两点)两测点两片方向的应变片组成图8-4b 所示半桥测量线路,测得B 、D 两处由于弯矩引起的正应变 2 ds M εε= (3) 式中:ds ε——应变仪的读数应变 M ε——由弯矩引起的轴线方向的应变 (b)弯矩M 的测定:

弯扭组合变形主应力实验

实验五弯扭组合变形主应力实验 一、实验目的 1、用电测法测定平面应力状态下一点的主应力的大小和方向; 2、在弯扭组合作用下,分别测定由弯矩和扭矩产生的应力值; 3、进一步熟悉电阻应变仪的使用,学会全桥法测应变的实验方法。 二、仪器设备 1、弯扭组合变形实验装置; 2、YD-2009型数字式电阻应变仪; 三、试件制备与实验装置 1、试件制备 本实验采用合金铝制薄壁圆管作为测量对象。为了测量圆管的应力大小和方向,在圆管某一截面的管顶B点、管底D点各粘贴了一个45o应变花(如图4-5-1),圆管发生弯扭组合变形后,其应变可通过应变仪测定。 图4-5-1 2、实验装置 如图4-5-1所示,将薄壁圆管一端固定在弯扭组合变形实验装置上,逆时针转动实验架上的加载手轮,通过薄壁圆管另一端的钢丝束施加载荷,使圆管产生变形。从薄壁圆管的内力图4-5-2可以发现:薄壁圆管除承受弯矩M作用之外,还受扭矩T的作用,圆管处于“组合变形”状态,且弯矩M=P?L,扭矩T= P?a

图4-5-2 内力图 图 4-5-3 单元体图

四、实验原理 1、主应力大小和方向的测定 如图4-5-3,若测得圆管管顶B 点的-45o、0o、45o三个方向(产生拉应变方向为45o,产生压应变的方向为-45o,轴向为0o)的线应变为ε-45o、ε0o、ε45o。由《材料力学》公式 αγαεεεεεα2sin 2 1 2cos 2 2 xy - + += -y x y x 可得到关于εx 、εy 、γxy 的线形方程组 ()[]()[] 45 2sin 2 145 2cos 2 2 xy 45-?--?+ += --γ εεεεεy x y x 2 2 0y x y x εεεεε-+ += ()() 452sin 2 1 452cos 22 xy 45?- ?+ += -γεεεεεy x y x 联立求解以上三式得 εx =ε0o εy =ε-45o+ε45o-ε0o γxy =ε-45o-ε45o 则主应变为 εγεεεεε2 xy 22,1222 ??? ??+??? ??±+= -y x y x y xy x εεγα--=02tg 由广义胡克定律 ()212 11μεεμ σ+-E = ()122 21μεεμ σ+-E = 得到圆管的管顶A 点主应力的大小和方向计算公式 ( )() () ()()2 45 02 45 045 452,10 12212-- - -+ ++E ± -E = εε εε μμεεσ 45 4504545022tg -----= εεεεεα 2、弯矩产生的应力大小测定 分析可知,圆管虽为弯扭组合变形,但管顶B 和管底D 两点沿x 轴方向的应变计只能测试因弯矩引起的线应变,且两者等值反向。因此,由上述主应力测试过程得知 ε=εx =ε0o

相关文档
最新文档