等差数列的通项公式和前n项和

等差数列的通项公式和前n项和
等差数列的通项公式和前n项和

数列的通项公式与前n项和的关系

数列的通项公式与前n 项和的关系 -CAL-FENGHAI.-(YICAI)-Company One1

1.(11辽宁T17) 已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式; (II )求数列??????-12n n a 的前n 项和. 【测量目标】等差数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】容易 【试题解析】(I )设等差数列{}n a 的公差为d ,由已知条件可得11 0,21210,a d a d +=??+=-? 解得11,1. a d =??=-? 故数列{}n a 的通项公式为2.n a n =-(步骤1) (II )设数列1{ }2n n a -的前n 项和为n S ,即211,22 n n n a a S a -=+++故11S =(步骤2) 12.2242n n n S a a a =+++ 所以,当1n >时, 1211111222211121()2422 121(1)22 n n n n n n n n n n n S a a a a a S a n n -------=+++--=-+++--=--- = .2 n n (步骤3) 所以1.2n n n S -= 综上,数列11 { }.22n n n n a n n S --=的前项和(步骤4) 2.(10上海T20) 已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,n +∈N . (1)证明:{}1n a -是等比数列;

(2)求数列{}n S 的通项公式,并求出n 为何值时,n S 取得最小值,并说明理由. 【测量目标】数列的通项公式n a 与前n 项和n S 的关系. 【难易程度】中等 【试题解析】(1)当1n =时,114a =-;当2n 时,11551n n n n n a S S a a --=-=-++,()15116 n n a a -∴-=-,(步骤1) 又11150a -=-≠,∴数列{}1n a -是等比数列;(步骤2) (2)由(1)知:151156n n a -??-=- ??? ,得151156n n a -??=- ???,(步骤3) 从而()1575906n n S n n -+??=+-∈ ???N ;(步骤4) 解不等式1n n S S +<,得15265n -??< ???,562log 114.925n >+≈,(步骤5) ∴当15n 时,数列{}n S 单调递增;(步骤6) 同理可得,当15n 时,数列{}n S 单调递减; 故当15n =时,n S 取得最小值.(步骤7) 3.(09辽宁T14) 等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = . 【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】中等 【参考答案】13 【试题解析】∵11(1)2 n S na n n d =+-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413 a = . 4.(09全国II T19) 设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+

数列通项公式、前n项和求法总结

一?数列通项公式求法总结: 1?定义法一一直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例].等差数列{%}是递增数列,前n项和为S”,且也,%5成等比数列,S5=a;.求数列{%}的通项公式. 变式练习: 1.等差数列{陽}中,吗=4,如=2為,求匕}的通项公式 2.在等比数列{%}中<2-4 =2,且2勺为3纠和他的等差中项,求数列}的首项、公比及前"项和. 2 ?公式法 求数列{a…}的通项①可用公式= 5,................ ""求解。 ①-昭......... n>2 特征:已知数列的前"项和s“与%的关系 例2?已知下列两数列{色}的前n项和S“的公式,求{?}的通项公式。

变式练习: 1.已知数列{%}的前n项和为且S产2n2+m n GN*,数列{"}满足山=41。审化+3, n^N*.求色,b「 2.已知数列{?}的前门项和S”= —丄“2+如(2皿),且久的最大值为8,试确泄常数k并求0”。2 3.已知数列仏}的前"项和$“=伫卩,心".求数列仏}的通项公式。 2 3 ?由递推式求数列通项法 类型1特征:递推公式为如="”+/(") 对策:把原递推公式转化为a n+1-a…= f(n),利用累加法求解。例3.已知数列{?… }满足a{=~, % = a n + -J—,求 a”。 2 ir +n

变式练习: 1.已知数列{色}满足a^=a n+2n + \9 q=l,求数列{色}的通项公式。 2?已知数列:? =皿 =5 +漆通项公式 类型2特征:递推公式为勺屮=/(〃)? 对策:把原递推公式转化为组 = /(〃),利用累乘法求解。例4.已知数列仏}满足=-, a n^=—a n9求% 3 ” + 1 变式练习: 1?已知数列{%}中,q=2, a n¥l=3n a n9求通项公式?。

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

数列通项公式和前n项和的常见解题方法

一、 观察法:已知数列的前几项,要求写出数列的一个通项公式 例1、求下列数列的一个通项公式。 ①1 3572,4,8,165101520 -- ②1,0,1,0 ③3,33,333,3333 ④11,103,1005,10007 二、定义法:主要应用于可定性为等差或等比数列的类型,可直接利用等差或等比数列的通项公式进行求解。例2、求下列数列的通项公式 ①已知数列{}a n 中() *112,3n n a a a n N +==+∈求通项公式。 ②已知{}a n 中a 13=-且n n a a 21=+求此数列的通项公式。 ③已知等比数列2,a ,a +4,…写出其通项a n 的表达式. ④已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N + ),则数列{}n a 的通项公式 三、 递推关系式形如1()n n a a f n +=+ (其中()f n 不是常数函数) 此类问题要利用累加法, 利用公式121321()()()n n n a a a a a a a a -=+-+-+???+-来求解. 例.若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 变式:(1)数列{a n }满足a 1=1且132(2),n n n a a n n a -=+-≥求 (2)数列{a n }满足a 1=1且11(2),2 n n n n a a n a -=+ ≥求 四、 递推关系式形如1()n n a a f n += (其中()f n 不是常数函数) 此类问题要利用累乘法,利用公式321121n n n a a a a a a a a -=??? 来求解. 例.在数列{}n a 中,11=a ,n n n a a 21=+(* N n ∈),求通项n a 。 变式:若1124,n n n a a a n ++==,求n a 五、 (构造数列法) 递推关系式形如 1n n a pa q +=+(,,1,0)q p p q ≠≠为常数且 此类问题可化为1()11n n q q a p a p p ++=+--,即数列{}1 n q a p +-是一个以p 为公比的等比数列. 例.已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式 变式:115,23n n n a a a a -==+且,求 六、利用前n 项和S n 求通项 利用{11,1 ,2n n a n n S S n a -=-≥= ,一定要验证首项。 例:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)223n S n n =-。 (2)12-=n s n (2)若数列{a n }的前n 项和S n =32 a n -3,求{a n }的通项公式.

等差数列前n项求和

2.3 等差数列的前n 项和 一、教学目标 1、理解等差数列的概念;探索并掌握等差数列的通项公式、前n 项和。 2、体会等差数列与二次函数的关系。 二、基础知识 1、数列前n 项和公式: 一般地,称n a a a a ++++...321为数列}{n a 的前n 项的和,用n S 表示,即n n a a a a S ++++= (321) 2、数列通项n a 与前n 项和n S 的关系 当2≥n 时,有n n a a a a S ++++=...321;13211...--++++=n n a a a a S ,所以n a =____________;当n=1时,11s a =。总上可得n a =____________ 3、等差数列}{n a 的前n 项和的公式=n S ________________=__________________ 4、若数列{}n a 的前n 项和公式为Bn An S n +=2(B A ,为常数),则数列{}n a 为 。 5、在等差数列}{n a 中,n S ;n S 2-n S ;n S 3-n S 2;。。。 仍成等差数列,公差为___________ 6、在等差数列}{n a 中:若项数为偶数2n 则=n S ________________;奇偶-s s =________________;=偶奇 s s ________________。 若项数为奇数2n-1则=-1n S ________________;偶奇-s s =________________;=偶奇 s s ________________。 7、若数列}{n a 与}{n b 均为等差数列,且前n 项和分别是n S 和n T ,则 =m m b a _____________。 三、典例分析 例1、已知数列{}n a 的前n 项和22+=n S n ,求此数列的通项公式。 解析:32111=+==s a ① )2(12]2)1[(2221≥-=+--+=-=-n n n n s s a n n n ② 在②中,当n=1时,1112=-?与①中的1a 不相等

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

高考数学----数列通项公式与前n项和公式

数列通项与求和 一、观察法(归纳猜想、根据周期规律) 二、根据递推关系求通项 (一)累加法 形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数,则求n a 可用累加法。 ① 若)(n f 是关于n 的一次函数,累加后可转化为等差数列求和; ② 若)(n f 是关于n 的指数函数,累加后可转化为等比数列求和; ③ 若)(n f 是关于n 的分式函数,累加后可裂项求和。 (二)累乘法 形如 )2)((1 ≥=-n n f a a n n 或1)(-=n n a n f a ,且)(n f 不为常数,求n a 用累乘法。 (三)待定系数法 形如0(,1≠+=+k b ka a n n ,其中a a =1)型 (1)若1=k 时,数列{n a }为等差数列; (2) 若0=b 时,数列{n a }为等比数列; (3) 若1≠k 且0≠b 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求。 方法如下:设)(1λλ+=++n n a k a ,比较系数得λ。 (四)倒数法 形如1+= +n n n ca a a d 型,取倒数变成 1111 +=+n n d a c a c 的形式的方法叫倒数变换.取倒数后有两种类型:一是直接转化为等差数列;二是再借助于待定系数法去求解. (五)对数变换法 形如 r n n pa a =+1)0,0(>>n a p 这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。 三、和n S 有关的求通项的方法

已知数列}{n a 前n 项和n S ,则用公式???≥-==-211 1 n S S n S a n n n (注意:不能忘记讨论1=n )。 四、形如)(1n f a a n n =++型和 ) (1n f a a n n =?+型 (一)形如)(1n f a a n n =++型 (1)若 d a a n n =++1(d 为常数),则数列{ n a }为“等和数列”,它是一个周期数列,周期为2,其通项分 奇数项和偶数项来讨论; (2)若f(n)为n 的函数(非常数)时,可通过构造转化为) (1n f a a n n =-+型,通过累加来求出通项;或 用逐差法(两式相减)得) 1()(11--=--+n f n f a a n n ,分奇偶项来分求通项. (二)形如) (1n f a a n n =?+型 (1)若 p a a n n =?+1(p 为常数),则数列{ n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇 数项和偶数项来讨论; (2)若f(n)为n 的函数(非常数)时,可通过逐差法得) 1(1-=?-n f a a n n ,两式相除后,分奇偶项来分 求通项. 一、公式法 ①等差数列前n 项和S n =____________=________________,推导方法:____________; ②等比数列前n 项和S n =? ??? ? ,q =1, = ,q ≠1.推导方法:乘公比,错位相减法. ③常见数列的前n 项和: a .1+2+3+…+n = ; b .2+4+6+…+2n = ; c .1+3+5+…+(2n -1)= ; )12)(1(61 12++==∑=n n n k S n k n 2 13)]1(21 [+==∑=n n k S n k n 二、倒序相加:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如__________数列的前n 项和公式即是用此法推导的. 三、错位相减:形如a n =b n ·c n ,其中一个是等差数列一个是等比数列 四、分组求和:形如a n =b n +c n , 五、裂项(相消)法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,只剩有限项再求 和.

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

求数列通项公式常用的七种方法

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 求数列通项公式常用的七种方法 一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式 ()d n a a n 11-+=或1 1-=n n q a a 进行求解. 例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式. 分析:设数列{}n a 的公差为d ,则?? ?-=+=+5411 1d a d a 解得???-==23 1d a ∴ ()5211+-=-+=n d n a a n 二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =( )( ) 32 321 ----n n =1 2 -n 而111-==s a 不适合上式,() () ???≥=-=∴-22111n n a n n 三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 3 1 1= +,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a 即 341=+n n a a ()2≥n 又1123 1 31a s a ==不适合上式 ∴ 数列{}n a 从第2项起是以 3 4 为公比的等比数列 ∴ 2 2 2343134--?? ? ??=? ? ? ??=n n n a a ()2≥n ∴()()??? ??≥?? ? ??==-23431112n n a n n 注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项. 四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 可以用这种方法. 例4: ()12,011-+==+n a a a n n ,求通项n a 分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a ┅ 321-=--n a a n n ()2≥n 以上各式相加得()()2 11327531-=-+++++=-n n a a n ()2≥n 又01=a ,所以()2 1-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()2 1-=n a n ( ∈N n 五、累乘法:它与累加法类似 ,当数列{}n a 中有 ()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“律”的数时,就可以用这种方法. 例5:111,1 n n n a a a n -==- ()2,n n N *≥∈ 求通项n a 分析: 11 n n n a a n -= - ∴11n n a n a n -=- ()2,n n N * ≥∈

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

数列通项公式方法大全很经典

1,数列通项公式的十种求法: (1)公式法(构造公式法) 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222 n n n n a a ++-= ,故数列{}2n n a 是以1 2 22a 11==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31 ()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22 n n a n =+-,进而求出数列{}n a 的通项公式。 (2)累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+,即得数列{}n a 的通项公式。 变式:已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 (3)累乘法 例3已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。

等差数列前n项和公式及性质

2.2 等差数列的前n项和 第一课时等差数列前n项和公式及性质 【选题明细表】 基础达标 1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B ) (A)40 (B)42 (C)43 (D)45 解析:∵a1=2,a2+a3=13, ∴3d=13-4=9,∴d=3, a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B ) (A)28 (B)29 (C)30 (D)31

解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1, S偶=a2+a4+…+a2n=na n+1, ∴S奇-S偶=a n+1=29.故选B. 3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D ) (A)27 (B)36 (C)45 (D)54 解析:∵2a8=a5+a11=6+a11,∴a5=6, ∴S9===9a5=54.故选D. 4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若 S3=9,S6=36,则a7+a8+a9等于( B ) (A)63 (B)45 (C)36 (D)27 解析:由S3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B. 5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A ) (A)-2 (B)0 (C)1 (D)2 解析:由已知得2a n-=0, 又a n≠0,∴a n=2, ∴S2n-1===2(2n-1), ∴S2n-1-4n=-2.故选A.

九类常见递推数列求通项公式方法

递推数列通项求解方法 类型一:1n n a pa q += +(1p ≠) 思路1(递推法):()123()n n n n a pa q p pa q q p p pa q q q ---??=+=++=+++=?? ......121(1n p a q p p -=++++ (2) 1 1)11n n q q p a p p p --??+=+?+ ? --?? 。 思路2(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1 q p μ= -,数列 {}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1 111n n q q a a p p p -??+ =+ ?--??,即1111n n q q a a p p p -??=++ ? --?? 。 例1 已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式。 解:方法1(递推法): ()123232(23)3222333n n n n a a a a ---??=+=++=+++=?? (1) 22 3(122n -=++++ (2) 11 332 )12232112n n n --+??+=+?+=- ? --? ?。 方法2(构造法):设()12n n a a μμ++=+,即3μ=,∴数列{}3n a +是以134 a +=为首项、2为公比的等比数列,则113422n n n a -++=?=,即1 23n n a +=-。

1n n +思路1(递推法): 123(1)(2)(1)(3)(2)(1)n n n n a a f n a f n f n a f n f n f n ---=+-=+-+-=+-+-+-= …1 11 ()n i a f n -==+∑。 思路2(叠加法):1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、 23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得1 11 ()n n i a a f n -=-= ∑ ,即 1 11 ()n n i a a f n -==+ ∑ 。 例2 已知11a =,1n n a a n -=+,求n a 。 解:方法1(递推法):123(1)(2)(1)n n n n a a n a n n a n n n ---=+=+-+=+-+-+= ......1[23a =+++ (1) (1)(2)(1)]2 n i n n n n n n =++-+-+= = ∑ 。 方法2(叠加法):1n n a a n --=,依次类推有:121n n a a n ---=-、232n n a a n ---=-、…、 212a a -=,将各式叠加并整理得12 n n i a a n =-= ∑ ,12 1 (1)2 n n n i i n n a a n n ==+=+ = = ∑ ∑ 。

数列通项公式前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列 {}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及 前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 变式练习:

1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和21 2n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 变式练习: 1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 2.已知数列: 求通项公式 类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。 变式练习:

数列通项公式前n项和求法总结全

数列通项公式前n项和 求法总结全 YUKI was compiled on the morning of December 16, 2020

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数 列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比 及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 变式练习:

1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和21 2n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 变式练习: 1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 2.已知数列: 求通项公式 类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。 变式练习:

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

相关文档
最新文档