基于hfss的超宽带天线的仿真设计

基于hfss的超宽带天线的仿真设计
基于hfss的超宽带天线的仿真设计

基于hfss 的超宽带天线的仿真设计基于HFSS勺超宽带天线的仿真设计

学生姓名:

学号:

学院( 系):

2014年06 月

基于HFSS的超宽带天线的仿真设计摘要:超宽带通信技术以其高速率、抗多

径效应和低成本等一般窄带系统无法比拟的优势成为最具竞争力和发展前景的技术之一。作为系统的重要组成部分,超宽带天线的设计引起了越来越多的关注。与传统的宽带天线相比,超宽带天线的设计更具有挑战性,这是由于天线除了需要具有

超宽的工作频带(3.1GHz-10.6GHz),还要能够保持尺寸的紧凑,价格的低廉,并且易于与平面大规模电路集成。同时,由于在超宽带频段中还存在着一些窄带通信系统是使用的频段,因此,这就要求尽量避免潜在的电磁干扰。本文主要基于HFSS仿

真及分析超带宽天线。

关键词:HFSS超宽带天线电磁干扰

1、超宽带天线的特点以及研究背景无论是军事通信还是民用通信都对天线的宽频性提

出了更高的要求,特别是

UW通信中,要求天线的带宽达3.1GHz-10.6GHz。在超宽带天线的应用中,要求天线具有尺寸小,便于集成等特性。因此,设计出能够与射频通信电路集成的平面微带天线就成为本文的主要研究目标。此外,在FCC规定的3.1GHz-10.6GHz频段

中,还存在的IEEE 802.16 Wimax系统(3.3GHz-3.6GHz)、C波段卫星通信系统

(3.7GHz-4.2GHz)、IEEE 802.11bWLAN/HIPERLA系统(5.15GHz-5.825GHz)。因

此,如何解决这些已经存在的系统与UWB频段的电磁兼容问题,是本文研究的一个重中之

重。超宽带天线因为其频带特别宽,容易受到频带范围内其它窄带信号的干扰,如果窄带信号的所在的固定频率已知,那么可以用射频滤波技术来滤除这些干扰信号。假如一个超宽带接收机,同时兼有高功率的窄带系统,高功率的窄带信号就会对超宽带接收机的信号进行干扰。有时候希望把超宽带天线和具有高灵敏度的窄带接收机结合在一起,这样在一定环境里,超宽带系统就容易受到窄带接收机的干扰。有一些情况下,希望超宽带系统对需要的某个或几个窄带信号不灵敏,还有的情况就是想要滤除掉频带中的干扰信号。

在军事领域中,为了实现保密通信和清除干扰,多频段、多功能电台和宽带跳频电台被广泛的应用。跳频速率越来越高,跳频的范围也越来越广,原有的窄带天线己无法满足要求。另外,狭小的空间内分布多副天线,相互之间的干扰较为严重,并且影响通信质量。为了解决上述矛盾,最有效的解决办法就是研制高性能、宽频带、小型化天线,以减少载体上天线的数目。

在民用通信系统中,无线通信作为当今信息化社会的主要技术手段而显得尤为重要。信道容量不断扩充、传输速率不断提高、服务方式也日渐灵活。与此相对应的是通信设备日趋宽带化,台站设施也由最初的点对点或一点对多点发展到移动和全球漫游。天线作为移动通信系统的发射和接收部件,其宽带化的研究显然有着重要的现实意义。

2、天线的重要参数

2.1辐射方向图

辐射方向图f ( 9 ,?):以天线为中心,辐射功率密度随角坐标变化的特性。定向的单波束或者多波束用于点对点通信或者一点对多点通信; 全向( 在一个指定平面内有均匀辐射特性)波束用于广播电视等场合;赋形主波束用于卫星通信和电视覆盖特定区域的情况。在某一特定频率点上,天线的远区辐射场可以表示为:

,jkreE ,,,,rkf,,,,,,,, (2-1) r

其中为天线的方向性函数,用图形表示出来即天线方向图。,,f,,,

2.2天线的增益

天线的增益: 天线的增益是指在相同的输入功率下,某天线产生于某点的电场强度的平方

22,, E与无损耗理想点源天线产生在同一点的电场强度的平方的比值,称为该天线在该点,,Emax

方向的增益。

2.3天线的带宽

天线的带宽: 天线总是在一定频率范围内工作,在该频率范围内,一个或者一组选定的天线参数的变化不超出可以接受的允许值。天线有多种形式的带宽,方向图带宽、增益带宽和输入阻抗带宽等,用得较多的是天线输入阻抗带宽。在超宽带天线研究领域,天线带宽始终是一个重要参数。

(2-2) BW,ffhl

式(2-2) 常用在在超宽带领域中。

2.4驻波

天线的电压驻波比VSWR(voltage standing wave ratio) 定义为传输线上最大

的电压(或电流)与最小电压(或电流)的比值(VSWR=Umax/Umin)当天线的输入阻抗与传输线的特性阻抗Z 0 =50, 不匹配时,便在传输线上形成驻波。驻波比表明天线传输线之间阻抗的失配程度。驻波是由于传输到天线输入端的入射波能量未被全部吸收(辐射)、产生反射波,迭加而形成的。当驻波等于1 时,系统完全匹配, 工程中不太可能实现; 当驻波小于1.5 时,系统匹配优良;当驻波小于2 时,系统匹配良好; 当驻波小于3 时,系统匹配程度基本满足要求;当驻波大于3.5 时就被认为匹配比较差。在电子战设备中,单个天线或天线阵列的输入电压驻波比VSWR

小于2.5最为常用;对于窄带天线,其驻波特性VSWR」、于1.5;对于超宽带天线,

一般要求其驻波特性VSWR、于2。

3、有限元法(FEM)

有限元法的数学处理方法是在1 943年由Courant 所提出来的,直到1968年才用于

电磁场的数值计算问题。有限元法是建立在变分基础上的,其基本构想是将由偏微分方程表

征的整个求解区域划分为若干个单元,在每个单元内规定一个基函数。这些基函数在各自的

单元内解析,在其他区域内为零,这样可以用分片解析函数代替全域解析函数。对于二维问题,单元的划分可以取三角形、矩形等,其中三角形单元适应性最广; 对于三维问题,单元可取作为四面体、六面体等等,其中四面体应用更加灵活。An soft公司的HFSS软件就是选取四面体作为空间单元。

有限元法在每个单元中规定合适的基函数,由于相邻单元有公共结点,在该结点上有唯

一的函数值,因此分片解析函数通过这些单元间的公共顶点联系起来,拼接成一个整体,代

替全域解析函数,通过相应的代数等价便可化为代数方程求解。

有限元法的优点在于: 有限元法采用物理上离散与分片多项式插值,因此具有对材料、边界、激励的广泛适应性; 有限元法基于变分原理,将数理方程求解变成代数方程组的求解,因此非常简易; 有限元法采用矩阵形式和单元组装方法,其各环节易于标准化,程序通用性强,且有较高的计算精度,便于编制程序和维护,适宜于制作商业软件。

当前,使用有限元法作为内核的商用电磁仿真软件主要是:Ansoft HFSS。4、超宽带天线的设计

2002 年,美国联邦通信委员会( FCC) 正式允许将超宽带( UWB) 技术应用于民用领域,并指定了3.1到10.6GHz作为UWB的工作频段,由此可以全部覆盖频段范围的UWB天

线成为一种新颖的天线类型。然而在UWB频段内同时伴随着许多窄带无线通信系统,如IEEE 802( 11b/g/n 标准下WLANX作频段2.4至U

2.483 5 GHz , IEEE 802(11a 标准下WLANX作频段5.15 到5.825 GHz, WiMAX 工作频

段3(4到3.69 GHz、5.25到5.850 GHz,为避免UWB系统与这些窄带无线通信系统的干扰,可在天线装置前端引入带阻滤波器,但是在系统的体积、复杂度和阻抗匹配等方面都会引入不同程度的问题,因此直接在UWB天线的基础上设计

出具有陷波特性的天线结构显得尤为重要。目前常用的陷波方法是在微带辐射贴片或接地板的适当位置处开不同形状的缝隙,如U 形缝隙、L 形缝隙、弧形缝隙等。

4.1 天线的馈电方式

平面天线的馈电方式主要有微带线馈电、共面波导馈电和同轴线馈电等等。用微带线或

共面波导馈电时,馈线与微带贴片是共面的,因而可方便地进行光刻。但此时馈线本身也要辐射,从而干扰方向图,使得增益降低。为此,用微带线馈电时,一般要求微带线宽度不能太宽,希望远小入,这就要求平面单极天线的特性

阻抗值要高些,或者基片厚度相对较小,介电常数大些。在理论计算中,微带馈线可等效为沿z 轴方向的一个薄电流片,其背后是空腔磁壁。为计入边缘效应,此电流片的宽度要比微带馈线的宽度宽(取有效宽度)。微带线馈电点位置的不同将决定贴片激励哪种模式的波。当天线元的尺寸确定以后,可按下法进行匹配: 先将中心馈电的天线贴片同50欧姆的馈线一起光刻,测量输入阻抗并设计出匹配变阻器;再在天线元与馈线之间接入该匹配变阻器。本文的研究中应用了共面波导的馈电方式。

共面波导的结构如图4-1 所示,是在介质基片的一个表面上制备三条金属带而构成,中间宽为w 的金属带为信号带,两边金属带同时接地。它可用光刻工艺制作,且容易与其他无缘微波电路和有源微波器件连接,实现微波电子系统的小型化、集成化。共面波导馈电比微带来说好处很多,共面波导容易制作、容易和无源或有源的表面贴装元件实现串联或者并联连接、不需要过孔、辐射损耗小、相互之

间的串扰小,并且共面波导的特性阻抗是由中间导带宽度和缝隙之比决定,可以自由设计其尺寸。共面波导传输线相对常规微带线来说,具有辐射损耗小、易于和其

他元器件串并连接、提高电路集成度的优点。随着通信的发展,需要一种成本

低、易于加工且便于和微波电路集成的天线,显然共面波导馈电的天线符合这一要

图4-1

4.2超宽带天线的设计

设计了基本的超宽带天线后,为了抑制Wimax和C波段通信的3.3-4.2GHZ这

个窄带通信频段,我们根据目前比较常见的方法一一U形和折叠式贴片开槽的办法来设计阻带,阻带的中心频率位于3.69GHz和5.82GHz对U形和折叠式槽线的参数进行了优化。由于阻带的宽度由U形槽和折叠式槽线的宽度决定,所以我们根据辐射单元尺寸的限制首先确定了槽的宽度0.3mm

UWE天线结构如图4-2所示,介质基片厚度h为0.5 mm,相对介电常数为

求。共面波导传输的波是TE波

4.4,损耗正切为0.02

421天线的回波损耗和驻波

它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在之

间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。

由图4-3可以看出天线实现了双频缺陷的特性,抑制了窄带频率的干扰,具有

良好的抗干扰特性,满足了设计的要求。

4.2.2天线的辐射特性

我们分别在频率为4GHz 6GHz和9GHz时,仿真了天线辐射的远区场方向图

(如图4-4所示)。在低频4GHz 6GHz天线在x-z平面(H面)具有良好的全向辐射特性,并且方向图在x-y平面以及y-z平面(E面)也是对称的,这是由于低频段的工作波长远远大于天线的尺寸,天线的电长度小,电流分布较规则,所以辐射较

OdB的到无穷大

0表示全反射,无穷大表示完全匹配。图4-2所示为扫描的天线的回波损耗

图4-2

图4-3为天线的驻波图:

图4-3

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

基于HFSS的天线设计

一、实验目的 ?利用电磁软件An soft HFSS设计一款微带天线。 ?微带天线要求:工作频率为2.5GHz带宽(回波损耗S11<-10dB)大于5% ?在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps于1953年提出来的,经过20年左右的 发展,Munson和Howell于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分 组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的宽度W介 质层的厚度h、介质的相对介电常数r和 损耗正切tan、介质层的长度LG和宽度WG 图1所示的微带贴片天线是 图1:微带天线的结构 采用微带天线来馈电的,本次将要设计的 矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有g/2的 改变,而在宽度W方向上保持不变,如图2 (a)所示,在长度L方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2 (b)可以看出,微带线边缘的电场可 以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

用Sonnet Agilent HFSS设计微带天线概要

用Sonnet & Agilent HFSS设计微带天线 摘要:以一同轴线底馈微带贴片为题材,分别用Sonnet 软件及Agilent Hfss 软件进行Simulate,分析其特性。并根据结果对这两个软件作一比较。 天线模型: 天线为微带贴片天线,馈电方式为50Ω同轴线底馈,中心频率3GHz ξ=,尺寸56mm*52mm*3.175mm 基片采用Duroid材料 2.33 r Patch :30mm*30mm 馈电点距Patch中心7mm处。 参见下图。 一.Sonnet 参数设置如下图:

介质层按照天线指标予以设置: 画出Antenna Layout.

Top view Bottom view 其中箭头所指处为via,并在GND层加上via port. 即实现了对Patch的底馈。 至此,Circuit Edit完成。下一步对其进行模拟。Array模拟结果: S11,即反射系数图:

可见中心频率在3G附近,。 进一步分析电流分布: 在中心频率的附近,取3G,3.1G作表面电流分布图:

可见,在中心频率的电流分布较为对称。符合设计的要求。 远区场方向图: 选取了若干个频率点绘制远区场增益图。从中可以看到,中心频率的增益较边缘为大。 符合设计的要求。

二.Agilent Hfss Agilent Hfss (high frequency structure simulator)是AGILENT公司的一个专门模拟高频无源器件的软件。较现在广泛应用的ANSOFT HFSS功能类似,但操作简单明了。能在平面结构上建模天线不同,Agilent Hfss可以精确地定义天线的立体结构。并可将馈电部分考虑在模拟因素内,按要求设定辐射界面,等等。可能在本文的例子中,由于结构比较简单,并不能充分体现这一点,但也应可见一斑。 本例与HFSS HELP中所附带的例子较为类似,因此我参照HELP文件,在HFSS5.6环境下较为顺利的完成了模拟。 用HFSS模拟天线,主要分Draw Model、Assign Material、Define Boundary、Solve、Post Process 五个步骤: ⒈Draw Model: HFSS采用的是相当流行的AUTOCAD的ENGINE,因此绘制方法与AUTOCAD大同小异,这里不在赘述。我先分Air Box、Substrate Box、Coax Line、Patch几个部分画好模型。其中COAX LINE 包括内导体(圆柱)及外层介质及外导体(环柱);PATCH为一平面矩形,AIR BOX、SUBSTRATE BOX 为长方体。 同时,由于基板,同轴线之间会有重叠,所以应用3D OBJECTS 菜单中的Subtract命令将 重叠部分减去。

HFSS 天线设计实例

HFSS 天线设计实例 这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化 设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:

2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate 介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:

1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为 ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm

基于HFSS的天线设计教材

图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、介质层的长度LG 和宽度 WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

hfss设计天线范例

第二章创建项目 本章中你的目标是: √保存一个新项目。 √把一个新的HFSS设计加到已建的项目 √为项目选择一种求解方式 √设置设计使用的长度单位 时间:完成这章的内容总共大约要5分钟。 一.打开HFSS并保存一个新项目 1.双击桌面上的HFSS9图标,这样就可以启动HFSS。启动后的程序工作环境如图:

图2-1 HFSS工作界面 1.打开File选项(alt+F),单击Save as。2.找到合适的目录,键入项目名hfopt_ismantenna。 图2-2 保存HFSS项目 二.加入一个新的HFSS设计 1.在Project菜单,点击insert HFSS Design选项。( 或直接点击图标。)一个新的工程被加入到hfopt_ismantenna项目中,默认名为HFSSModel n。

图2-3 加入新的HFSS设计 2.为设计重命名。在项目树中选中HFSSModel1,单击鼠标右键,再点击Rename项,将设计重命名为hfopt_ismantenna。 图2-4 更改设计名

三.选择一种求解方式 1.在HFSS菜单上,点击Solution Type选项. 2.选择源激励方式,在Solution Type 对话框中选中Driven Mode项。 图2-5 选择求解类型图2-6 选择源激励方式 四.设置设计使用的长度单位

1.在3D Modeler菜单上,点击Units选项. 2.选择长度单位,在Set Model Units 对话框中选中mm项。 图2-5 选择长度单位图2-6 选择mm作为长度单位 第三章构造模型 本章中你的目标是: √建立物理模型。 √设置变量。 √设置模型材料参数 √设置边界条件和激励源 √设置求解条件 时间:完成这章的内容总共大约要35分钟。

HFSS的天线课程设计(20201005041508).docx

一、实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为,带宽( 回波损耗 S11<-10dB)大于 5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由 Deschamps于 1953 年提出来的,经过 20 年左右的发展, Munson和 Howell 于 20 世纪 70 年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1 是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的 宽度 W、介质层的厚度 h、介质 的相对介电常数r和损耗正切 tan、介质层的长度LG和宽度 WG。图 1 所示的微带贴片天线是图 1:微带天线的结构 采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈 电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能, 形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有 g / 2 矩 的 改变,而在宽度 W方向上保持不变,如图 2(a)所示,在长度 L 方向上可以看做 成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2(b)可以看出,微带线边缘的电场可以分解成 垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小 相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分 量相互抵消,辐射电场平行于天线表面。

HFSS天线设计实例

HFSS 天线设计实例这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化

设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数: 2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate

介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转 同理,我们画贴片: 1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将

三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm的圆环

(完整版)基于HFSS的微带天线设计毕业设计论文

烟台大学 毕业论文(设计) 基于HFSS的微带天线设计 Microstrip antenna design based on HFSS 申请学位:工学学士学位 院系:光电科学技术与信息学院

烟台大学毕业论文(设计)任务书院(系):光电信息科学技术学院

[摘要]天线作为无线收发系统的一部分,其性能对一个系统的整体性能有着重要影响。近年来内置天线在移动终端数量日益庞大的同时功能也日益强大,对天线的网络覆盖及小型化也有了更高的要求。由于不同的通信网络间的频段差异较大,所以怎样使天线能够覆盖多波段并且同时拥有足够小的尺寸是设计内置天线的主要问题。微带天线具有体积小,重量轻,剖面薄,易于加工等诸多优点,得到广泛的研究与应用。微带天线的带宽通常小于3%,在无线通信技术中,对天线的带宽有了更高的要求;而电路集成度提高,系统对天线的体积有了更高的要求。 随着技术的进步,在不同领域对于天线的各个要求越来越高,所以对微带天线的尺寸与性能的分析有着重要的作用。对此,本文使用HFSS 软件研究了微带天线的设计方法,论文介绍及分析了天线的基本概念和相关性能参数,重点对微带天线进行了研究。 本文介绍了微带天线的分析方法,并使用HFSS 软件的天线仿真功能,对简单的微带天线进行了仿真和分析。 [关键词] 微带天线设计分析HFSS [Abstract]Antenna as part of the wireless transceiver system, its performance important impact on the overall performance of a system. Internal antenna in recent years an increasingly large number of mobile terminals while also increasingly powerful, and also network coverage and miniaturization of the antenna Band differences between the different communication networks, cover band and also problem of the design built-in antenna. Microstrip antenna with small size, light weight, thin profile, easy to process many advantages, extensive research and application. Microstrip antenna bandwidth is typically less than 3% the bandwidth of the antenna in wireless communication technology; improve the integration of the circuit the size of the antenna. As technology advances in different areas for various requirements of the antenna important role. Article uses HFSS microstrip antenna design, the paper introduces and analyzes the basic concepts and performance parameters of the antenna, with emphasis on the microstrip antenna. This article describes the analysis of the microstrip antenna and antenna simulation in HFSS simulation and analysis functions, simple microstrip antenna. [Key Words]Microstrip antenna design analysis HFSS

HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File?save as,输入Antenna,点击保存。 (2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK (3)、设置模型单位:3D Modeler>Units 选择mm,点击OK (4)、菜单栏Tools>>Options>>Modeler Options, 勾选” Edit properties of new pri ” ,点击OK 二、建立微带天线模型 (1)点击三仓U 建GND,起始点:x:0 ,y:0 ,z: ,dx:,dy:32,dz:

(2) 介质基片:点击 :比,:x:0, y:0 , z:0。dx: , dy: 32 , dz:-, 修改名称为Sub,修改 材料属性为 Rogers RT/Duriod 5880,修改颜色为绿色 点击OK (3) 建立天线模型patch , 点击^已,x:,y: 8, z:0 ,dx: ,dy: 16 ,dz: 命名为patch ,点击OK (4) 建立天线模型微带线 MSLine 点击’硏,x:,y: 0, ,z: 0 , dx: ,dy: 8 ,dz:, 命名为MSLine,材料pec,透明度 选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite (5) 、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地 Modeler>Grid Plane>XZ ,或者设置回厂刁冈 习 点击 e ,创建Port 。命名为port 双击 Port 下方 CreatRectangle 输入:起始点:x: ,y: 0,z:-,尺寸:dx: ,dy: 0 ,dz: (6) 、创建 Air 。 点击1 ,x:-5 ,y:-5 ,z:, dx:, dy:42, dz: 修改名字为Air ,透明度. 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择 GND 右击Assign Boundaries>>Pefect E 将理想边界命名为:PerfE_GND ,点击OK (2)、设置边界条件:选择 Port ,点击 Assign Boundaries>>Pefect E 在对话框中将其命名为 PerfE_Patch ,点击0K ,透明度。 修改名称为GND,修改材料属性为pec ,

HFSS 矩形微带贴片天线的仿真设计报告

基于H F S S矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验内容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub 0,0,0 28.1,32, -0.79 Box Rogers 5880 (tm) GND 0,0,-0.79 28.1,32, -0.05 Box pec Patch 7.03 , 8 , 0 12.45 , 16, 0.05 Box pec MSLine 10.13,0,-0. 79 2.49 , 8 , 0.05 Box pec Port 10.13,0,-0. 79 2.49 ,0, 0.89 Rectangle Air -5,-5,-5.79 38.1 , 42, 10.79 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入Antenna,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。 (3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of

new pri”, 点击OK。 二、建立微带天线模型 (1)点击创建GND,起始点:x:0,y:0,z:-0.79,dx:28.1,dy:32,dz:-0.05 修改名称为GND, 修改材料属性为 pec, (2)介质基片:点击,:x:0,y:0,z:0。dx: 28.1,dy: 32,dz: - 0.794,修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。 点击OK (3) 建立天线模型patch, 点击,x:7.03,y: 8, z:0 ,dx: 12.45,dy: 16,dz: 0.05 命名为patch,点击OK。 (4) 建立天线模型微带线MSLine 点击,x:10.13,y: 0, ,z: 0 , dx:2.46,dy: 8,dz: 0.05, 命名为MSLine,材料pec, 透明度0.4 选中Patch和MSLine,点击Modeler>Boolean>Unite (5)、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地。Modeler>Grid Plane>XZ,或者设置 点击,创建Port。命名为port 双击Port下方CreatRectangle 输入:起始点:x: 10.13,y: 0,z:- 0.84,尺寸: dx:2.46,dy: 0,dz: 0.89 (6)、创建Air。 点击,x:-5,y:-5,z:-5.79, dx:38.1, dy:42, dz:10.79

基于HFSS矩形微带贴片天线的仿真设计报告

矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验内容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。

(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。 (3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

(1)、插入模型设计 (2)、重命名 输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05

修改名称为GND, 修改材料属性为pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。 点击OK

hfss矩形微带贴片天线的仿真设计报告

基于HFSS 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验内容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub 0,0,0 28.1,32,-0.79 Box Rogers 5880 (tm)GND 0,0,-0.79 28.1,32,-0.05 Box pec Patch 7.03 , 8 , 0 12.45 , 16, 0.05 Box pec MSLine 10.13,0,-0.79 2.49 , 8 , 0.05 Box pec Port 10.13,0,-0.79 2.49 ,0, 0.89 Rectangle Air -5,-5,-5.79 38.1 , 42, 10.79 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入Antenna,点击保存。

(2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。 (3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。

二、建立微带天线模型 (1)点击创建GND,起始点:x:0,y:0,z:-0.79,dx:28.1,dy:32,dz:-0.05 修改名称为GND, 修改材料属性为pec, (2) 介质基片:点击,:x:0,y:0,z:0。dx: 28.1,dy: 32,dz: - 0.794, 修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

HFSS仿真实验报告样例

〈〈微波技术与天线》HFSS仿真实验报告 实验二印刷偶极子天线设计 一、仿真实验内容和目的 使用HFSS设计一个中心频率为2.45GHz的采用微带巴伦馈线的印刷偶极子天线, 并通过HFSS 软件Opitmetrics模块的参数扫描分析功能对印刷偶极子天线的一些3!要结构参数进行参数扫描分析,分析这些参数对天线性能的影响。 二、设计模型简介 整个天线分为5个部分,即介质层,偶极于天线臂,微带巴伦线,微带传输线,见 三、建模和仿真步骤 1、新建HFSSC程,添加新设计,设置求解类型:Driven Modal。 2、创建介质层。创建长方体,名称设为Substrate,材质为FR4_epoxy颜色为深绿色,透明度为 0.6。 3、创建上层金属部分 1)创建上层金属片,建立矩形面,名称Top_Patch颜色铜黄色。 2)创建偶极子位于介质层上表面的一个臂。画矩形面,名称Dip_Patch,颜色铜黄色。3)创建三角形斜切角,创建一个三角形面,把由矩形面Top_Patch和Dip_Patch组成的 90折线连接起来。 4)合并生成完整的金属片模型。 4、创建下表面金属片■I批注[y1]:实际报告撰写中,表格应手动编制,不允许直接截图。

1)创建下表面传输线Top_patch_1。 2)创建矩形面Rectangle1。 3)创建三角形polyline2。 4)镜像复制生成左侧的三角形和矩形面 此步完成后得到即得到印刷偶极子天线三维仿真模型如图2所示。 5、设置边界条件 1)分配理想导体。 2)设置辐射边界条件,材质设为air。 6、设置激励方式:在天线的输入端口创建一个矩形面最为馈电面,设置该馈电面的激励方式为集总端口激励,端口阻抗为50欧姆。 7、求解设置:求解频率(Solution Frequency)为2.45GHz自适应网格最大迭代次数(Maximum Number of Passes) : 20,收敛误差(Maximum Delta S)为0.02。 8、扫频设置:频率扫描范围2—3GHz,以0.001GHz为扫描步进,扫描类型:快速扫描 (Fast Sweep)。 9、设计检查和运行仿真计算。

基于hfss的超宽带天线的仿真设计

基于hfss的超宽带天线的仿真设计基于HFSS的超宽带天线的仿真设计 学生姓名: 学号: 学院(系): 2014年06月 基于HFSS的超宽带天线的仿真设计摘要:超宽带通信技术以其高速率、抗多径效应和低成本等一般窄带系统无法比拟的优势成为最具竞争力和发展前景的技术之一。作为系统的重要组成部分,超宽带天线的设计引起了越来越多的关注。与传统的宽带天线相比,超宽带天线的设计更具有挑战性,这是由于天线除了需要具有超宽的工作频带(3.1GHz-10.6GHz),还要能够保持尺寸的紧凑,价格的低廉,并且易于与平面大规模电路集成。同时,由于在超宽带频段中还存在着一些窄带通信系统是使用的频段,因此,这就要求尽量避免潜在的电磁干扰。本文主要基于HFSS仿真及分析超带宽天线。 关键词:HFSS 超宽带天线电磁干扰 1、超宽带天线的特点以及研究背景 无论是军事通信还是民用通信都对天线的宽频性提出了更高的要求,特别是UWB通信中,要求天线的带宽达3.1GHz-10.6GHz。在超宽带天线的应用中,要求天线具有尺寸小,便于集成等特性。因此,设计出能够与射频通信电路集成的平面微带天线就成为本文的主要研究目标。此外,在FCC规定的3.1GHz-10.6GHz频段中,还存在的IEEE 802.16 Wimax系统(3.3GHz-3.6GHz)、C波段卫星通信系统(3.7GHz-4.2GHz)、IEEE 802.11bWLAN/HIPERLAN系统(5.15GHz-5.825GHz)。因此,如何解决这些已经存在的系统与UWB 频段的电磁兼容问题,是本文研究的一

个重中之重。超宽带天线因为其频带特别宽,容易受到频带范围内其它窄带信号的干扰,如果窄带信号的所在的固定频率已知,那么可以用射频滤波技术来滤除这些干扰信号。假如一个超宽带接收机,同时兼有高功率的窄带系统,高功率的窄带信号就会对超宽带接收机的信号进行干扰。有时候希望把超宽带天线和具有高灵敏度的窄带接收机结合在一起,这样在一定环境里,超宽带系统就容易受到窄带接收机的干扰。有一些情况下,希望超宽带系统对需要的某个或几个窄带信号不灵敏,还有的情况就是想要滤除掉频带中的干扰信号。 在军事领域中,为了实现保密通信和清除干扰,多频段、多功能电台和宽带跳频电台被广泛的应用。跳频速率越来越高,跳频的范围也越来越广,原有的窄带天线己无法满足要求。另外,狭小的空间内分布多副天线,相互之间的干扰较为严重,并且影响通信质量。为了解决上述矛盾,最有效的解决办法就是研制高性能、宽频带、小型化天线,以减少载体上天线的数目。 在民用通信系统中,无线通信作为当今信息化社会的主要技术手段而显得尤为重要。信道容量不断扩充、传输速率不断提高、服务方式也日渐灵活。与此相对应的是通信设备日趋宽带化,台站设施也由最初的点对点或一点对多点发展到移动和全球漫游。天线作为移动通信系统的发射和接收部件,其宽带化的研究显然有着重要的现实意义。 2、天线的重要参数 2.1 辐射方向图 辐射方向图f (θ ,? ):以天线为中心,辐射功率密度随角坐标变化的特性。定向的单波束或者多波束用于点对点通信或者一点对多点通信;全向(在一个指定平面内有均匀辐射特性)波束用于广播电视等场合;赋形主波束用于卫星通信和电视覆盖特定区域的情况。在某一特定频率点上,天线的远区辐射场可以表示为: ,jkreE,,,,rkf,,,,,,,, (2-1) r

HFSS设计微带天线一例

这是一种采用同轴线馈电的圆极化微带天线

切角实现圆极化 设计目标!(具体参数可能不太对,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:

2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate 介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察

按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转 同理,我们画贴片: 1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平。

3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为 ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port

相关主题
相关文档
最新文档