高等数学微分中值定理与导数应用习题

高等数学微分中值定理与导数应用习题
高等数学微分中值定理与导数应用习题

微分中值定理与导数应用

一、选择题

1. 设函数()sin f x x =在[0,]π上满足罗尔中值定理的条件,则罗尔中值定理的结论中的=ξ【 】 A. π B. 2π C. 3

π

D. 4

π

2. 下列函数中在闭区间],1[e 上满足拉格朗日中值定理条件的是【 】

A. x ln

B. x ln ln

C.

x

ln 1

D. )2ln(x -

3. 设函数)3)(2)(1()(---=x x x x f ,则方程0)('=x f 有【 】

A. 一个实根

B. 二个实根

C. 三个实根

D. 无实根

4. 下列命题正确的是【 】

A. 若0()0f x '=,则0x 是()f x 的极值点

B. 若0x 是()f x 的极值点,则0()0f x '=

C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点

D. ()0,3是43()23f x x x =++的拐点

5. 若在区间I 上,()0,()0,f x f x '''>≤, 则曲线f (x ) 在I 上【 】

A. 单调减少且为凹弧

B. 单调减少且为凸弧

C. 单调增加且为凹弧

D. 单调增加且为

凸弧

6. 下列命题正确的是【 】

A. 若0()0f x '=,则0x 是()f x 的极值点

B. 若0x 是()f x 的极值点,则0()0f x '=

C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点

D. ()0,3是43()23f x x x =++的拐点

7. 若在区间I 上,()0,()0,f x f x '''<≥, 则曲线f (x ) 在I 上【 】

A. 单调减少且为凹弧

B. 单调减少且为凸弧

C. 单调增加且为凹弧

D. 单调增加且为凸弧

8. 下列命题正确的是【 】

A. 若0()0f x '=,则0x 是()f x 的极值点

B. 若0x 是()f x 的极值点,则0()0f x '=

C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点

D. ()0,3是43()23f x x x =++的拐点

9. 若在区间I 上,()0,()0,f x f x '''>≥, 则曲线f (x ) 在I 上【 】

A. 单调减少且为凹弧

B. 单调减少且为凸弧

C. 单调增加且为凹弧

D. 单调增加且为凸弧 10.

函数2

56, y x x =-+在闭区间

[2,3]上满足罗尔定理,则ξ=【

A. 0

B. 12

C. 52

D. 2 11.

函数22y x x =--在闭区间[1,2]

-上满足罗尔定理,则ξ=【 】

A. 0

B. 12

C. 1

D. 2 12.

函数21,y x =+在闭区间[2,2]-上

满足罗尔定理,则ξ=【 】

A. 0

B. 1

2

C. 1

D. 2 13.

方程410x x --=至少有一个根

的区间是【 】

A.(0,1/2)

B.(1/2,1)

C. (2,3)

D.(1,2) 14.

函数

(1)y x x =+.在闭区间[]

1,0-上满足罗尔定理的条件,由罗尔定理确定的

=ξ 【 】

A. 0

B. 12

-

C. 1

D.

12

15.

已知函数()32=+f x x x 在闭区间

[0,1]上连续,在开区间(0,1)内可导,则拉格朗日定理成立的

ξ是【

A.13±

B. 13

C. 1

3

- D. 13

±

16.

设273+=x y ,那么在区间)3,(-∞和),1(+∞内分别为【 】 A.单调增加,单调增加 B.单调增加,单调

减小

C.单调减小,单调增加

D.单调减小,单调减小

二、填空题

1. 曲线53)(23+-=x x x f 的拐点为_____________.

2. 曲线x xe x f 2)(=的凹区间为_____________。

3. 曲线535)(23++-=x x x x f 的拐点为_____________.

4. 函数22ln y x x =-的单调增区间是___________.

5. 函数1x y e x =--的极小值点为_____________.

6. 函数3229123y x x x =-+-的单调减区间是___________.

7. 函数22ln y x x =-的极小值点为_____________.

8. 函数x y e x =-的单调增区间是___________.

9. 函数2x y x =?的极值点为_____________.

10. 曲线4326y x x =++在区间(,0)-∞的拐点为_____________. 11. 曲线3231y x x =++在区间(,0)-∞的拐点为_____________. 12. 曲线3236y x x =-+的拐点为___________. 13.

函数3226128y x x x =-+-的拐点坐标为 .

14. 函数2332x x y -=在=x _______有极大值.

15. 曲线x x y arctan +=在0=x 处的切线方程是___________. 16. 曲线43341=-+y x x 在区间(0,)+∞的拐点为_____________. 17. 过点

)

3,1(且切线斜率为

x

2的曲线方程是

y =

三、计算题

1. 求极限)1

1

1(lim 0

--→x x e x

2. 求极限0

11lim()sin x x

x →-

3. 求极限201

lim ln(1)

x x e x x →--+

4. 求极限11lim(

)1ln x x x x

→--

5. 求极限2011lim(

)sin x x x x

→-

6. 求极限)11

1(lim 0

--→x x e x

7. 求极限2

0sin lim

(1)

x x x x x e →--

四、综合应用题

1.设函数32

=-+.求

()234

f x x x

(1)函数的单调区间;(2)曲线()

=的凹凸区间及拐

y f x

点.

2.设函数32

=-+.求

()33

f x x x

(1)函数的单调区间;(2)曲线()

=的凹凸区间及拐

y f x

点.

3.设函数32

=---.求()

()391

f x x x x

f x在[0,4]上的最值

4.设函数32

=+.求

f x x x

()4-123

(1)函数的单调区间与极值;(2)曲线()

y f x

=的凹凸区间及拐点.

5.某工厂要建造一个容积为3002m的带盖圆桶,问半径r和高h

如何确定,使用的材料最省?

6.求函数()cos

x

=在[],ππ

f x e x

-上的最大值及最小值。

7设函数32

=+.求

f x x x

()4-123

(1)函数的单调区间与极值;(2)曲线()

y f x

=的凹凸区间及拐点. 8设函数32

f x x x x

=+-+.求

()391

(1)函数的单调区间与极值;(2)曲线()

=的凹凸区间及拐点.

y f x

9求函数()sin cos

=+在[0,]π上的极值.

f x x x

10.试求()33=-f x x x 的单调区间,极值,凹凸区间和拐点坐标.

五、证明题

1. 证明:当+∞<≤x 0时,x x ≤arctan 。

2. 应用拉格朗日中值定理证明不等式:

当b a <<0时,a

a b a

b b

a b -<<-ln 。

3. 设

)

(x f 在]1,0[上可导,且

)1(=f 。证明:存在)1,0(∈ξ,使

()()0f f ξξξ'+=成立。

4. 设()f x 在闭区间[0, π]上连续,在开区间(0, π)内可导,

(1)在开区间(0, π)内,求函数()sin ()g x x f x =?的导数.

(2)试证:存在(0,)ζπ∈,使 ()cot ()0f f ζζζ'+=.

. 5. 设

()

f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且

()()0,f a f b ==

(1)在开区间(,)a b 内,求函数-()()kx g x e f x =?的导数. (2)试证:对任意实数k ,存在(,)a b ζ∈,使 ()()f kf ζζ'=.

6. 求函数()arctan f x x =的导函数,

(2)证明不等式:2121arctan arctan x x x x -≤-,其中21x x >.(提示:可以用中值定理)

7. 证明方程5231010x x x +--=有且只有一个大于1的根.

8. 证明方程52481x x x +-=有且只有一个大于1的根.

9. 证明方程52371x x x +-=有且只有一个大于1的根.

10. 设()f x 在[,]a b 上连续,在(,)a b 内二阶可导,()()0f a f b =

=,且存在

点(,)c a b ∈使()0f c >.证明:至少存在一点(,)a b ξ∈,使()0f ξ''<.

11. 设()f x 在[0,1]上连续, 在(0,1)内可导, 且(0)0f =,

(1) 1.f =

证明: (1) 存在(0,1),ξ∈ 使得()1;f ξξ=- (2) 存在两个不同的,(0,1),ηζ∈ 使()() 1.f f ηζ''=

12. 设()f x 在[1,2]上有二阶导数,且(1)(2)0f f =

=.又

2()(1)()F x x f x =-.证明:至少存在一点(1,2)ξ∈,使()0F ξ''=

13. 证明方程410+-=x x 在(0,1)上有且只有一个根. 14. 证明:当+∞<≤x 0时,x x ≤arctan .

15.

)(x f 在),(+∞-∞内满足关系式)()('x f x f =,且1)0(=f ,则

x e x f =)(。(提示:设辅助函数()()x e

x f x F =)

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23- ),=b ( 16 - ). ∵()12++='bx x a x f ,当2,121==x x 时, 012=++b a ,0142=++b a ,解之得6 1 ,32-=-=b a 2.函数()() 1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 211 2 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

高等数学导数与微分练习题

作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin = ; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1(+=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程???-=-=) cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二阶导数 2 2dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2sin cos )sin ( x x x x x x y -='='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。

最新(高等数学)第四章导数的应用

(高等数学)第四章导 数的应用

第四章导数的应用 第一节中值定理 一.费马定理 1.定义1.极值设函数?Skip Record If...?在点?Skip Record If...?的某邻域?Skip Record If...?内对一切?Skip Record If...?有 ?Skip Record If...?或(?Skip Record If...?), 则称?Skip Record If...?在点?Skip Record If...?处取得极大值(或极小值);并称?Skip Record If...?为?Skip Record If...?的极大值点(或极小值点). 注意:极大值、极小值在今后统称为极值; 极大值点、极小值点在今后统称为极值点; 2.定理1.极值的必要条件(费马定理)设?Skip Record If...?在点?Skip Record If...?的某邻域?Skip Record If...?内有定义,且在?Skip Record If...?处可导,若 ?Skip Record If...?为极值,则必有:?Skip Record If...?. 证明:不妨设?Skip Record If...?为极大值。按极大值的定义,则?Skip Record If...?的某个邻域,使对一切此邻域内的?Skip Record If...?有?Skip Record If...?--------------(1) 所以,?Skip Record If...? ?Skip Record If...?--------(2) 又因为?Skip Record If...?存在,所以应有?Skip Record If...?---------(3) 故,由(2)式及(3)式,必有?Skip Record If...?. 1.注意:使?Skip Record If...?的点?Skip Record If...?可能为?Skip Record If...?的极大值点(或极小值点),也可能不是.比如:?Skip Record If...?

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

下载大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数( )()2 0ln 10x f x x a x ≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = \ 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 。 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.360docs.net/doc/d76634977.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

最新数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。 一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.360docs.net/doc/d76634977.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证)

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题] 1、 曲线的渐近线为()。 A、仅有铅直渐近线 B、仅有水平渐近线 C、既有水平渐近线又有铅直渐近线 D、无渐近线 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 本题考察渐近线计算. 因为,所以y存在水平渐近线,且无铅直渐近线。 [单选题] 2、 在区间[0,2]上使罗尔定理成立有中值为ξ为() A、4 B、2 C、3 D、1 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题] 3、 ,则待定型的类型是(). A、 B、 C、 D、

【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题] 4、 下列极限不能使用洛必达法则的是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则. [单选题] 5、 在区间[1,e]上使拉格朗日定理成立的中值为ξ=(). A、1 B、2 C、e D、 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】本题考察中值定理的应用。

[单选题] 6、 如果在内,且在连续,则在上(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 在内,说明为单调递增函数,由于在连续,所以在 上f(a)<f(x)<f(b). [单选题] 7、 的单调增加区间是(). A、(0,+∞) B、(-1,+∞) C、(-∞,+∞) D、(1,+∞) 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 ,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题] 8、 ().

高等数学中导数的求解及应用

高等数学中导数的求解及应用 摘要:高等数学是一门方法学科,因此可以说是许多专业课程的基础。然而导 数这一章节在高等数学中是尤为重要的,在高等数学的整个学习过程中,它起着 承前启后的作用,是学习高等数学非常重要的任务。本文详细地阐述了导数的求 解方法和在实际中的应用。 关键词:高等数学导数求解应用 导数的基本概念在高等数学中地位很高,是高等数学的核心灵魂,因此学习 导数的重要性是不言而喻的。然而这种重要性很多同学没有意识到,更不懂得如 何求解导数以及运用导数来解决有关的问题。我通过自己的学习和认识,举例子 说明了几种导数的求解方法以及导数在实际中的应用。 一、导数的定义 1.导数的定义 设函数y=f(x)在点x0的某一邻域内有定义,如果自变量x在x0的改变量 为△x(x0≠0,且x0±△x仍在该邻域内)时,相应的函数有增量△y=f(x0+△x)- f(x0)。 若△y与△x之比,当△x→0时,有极限lim =lim存在,就称此极限为该函数y=f(x)在点x0的导数,且有函数y=f(x)在点x=x0处可导,记 为f`(x0)。 2.导数的几何意义 函数y=f(x)在点x0处的导数在几何上表示曲线y=f(x)在点〔x0,f(x0)〕处 的切线斜率,即f`(x0)=tan,其中是切线的倾角。如果y=f(x)在点x0处的导数 为无穷大,这时曲线y=f(x)的割线以垂直于x轴的直线x=x0为极限位置,即曲线 y=f(x)在点〔x0,f(x0)〕处具有垂直于x轴的切线x=x0。根据导数的几何意义 并应用直线的点斜式方程,可知曲线y=f(x)在点〔x0,f(x0)〕处的切线方程。 二、导数的应用 1.实际应用 假设某一公司每个月生产的产品固定的成本是1000元,关于生产数量x的 可变成本函数是0.01x2+10x元,若每个产品的销售价格是30元,求:总成本的 函数,总收入的函数,总利润的函数,边际收入,边际成本及边际利润等为零时 的产量。 解:总的成本函数是可变成本函数和固定成本函数之和: 总成本的函数C(x)=0.01x2+10x+1000 总收入的函数R(x)=px=30x(常数p是产品数量) 总利润的函数I(x)=R(x)-C(x)=30x-0.01x2-10x-1000=-0.01x2+20x-1000 边际收入R(x)Γ=30 边际成本C(x)=0.02x+20 边际利润I(x)=-0.02x+20 令I(x)=0得-0.02x+20=0,x=1000。也就是每月的生产数量为1000个时,边际利润是零。这也就表明了,当每月生产数目为1000个时,利润也不会再增加了。 2.洛必达法则的应用 如果当x→a(或x→∞)时,两个函数f(x)与F(x)都趋于零或都趋于无 穷大,那么极限lim可能存在,也可能不存在。通常把这种极限叫做未定式,分别简记为或。对于这类极限,即使它存在也不能用“商的极限等于极限的商”

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

相关文档
最新文档