八年级数学期末试卷综合测试卷(word含答案)

八年级数学期末试卷综合测试卷(word含答案)
八年级数学期末试卷综合测试卷(word含答案)

八年级数学期末试卷综合测试卷(word 含答案)

一、八年级数学全等三角形解答题压轴题(难)

1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点

D 作DF D

E ⊥与点

F ,

G 为BE 中点,连接AF ,DG .

(1)如图1,若点F 与点G 重合,求证:AF DF ⊥; (2)如图2,请写出AF 与DG 之间的关系并证明. 【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析. 【解析】 【分析】

(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.

(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出. 【详解】

解:(1)证明:设BE 与AD 交于点H..如图,

∵AD,BE 分别为BC,AC 边上的高, ∴∠BEA=∠ADB=90°. ∵∠ABC=45°,

∴△ABD 是等腰直角三角形. ∴AD=BD. ∵∠AHE=∠BHD, ∴∠DAC=∠DBH. ∵∠ADB=∠FDE=90°, ∴∠ADE=∠BDF. ∴△DAE ≌△DBF.

∴BF=AE,DF=DE.

∴△FDE是等腰直角三角形.

∴∠DFE=45°.

∵G为BE中点,

∴BF=EF.

∴AE=EF.

∴△AEF是等腰直角三角形.

∴∠AFE=45°.

∴∠AFD=90°,即AF⊥DF.

(2)AF=2DG,且AF⊥DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,

∵点G为BE的中点,BG=GE.

∵∠BGM∠EGD,

∴△BGM≌△EGD.

∴∠MBE=∠FED=45°,BM=DE.

∴∠MBE=∠EFD,BM=DF.

∵∠DAC=∠DBE,

∴∠MBD=∠MBE+∠DBE=45°+∠DBE.

∵∠EFD=45°=∠DBE+∠BDF,

∴∠BDF=45°-∠DBE.

∵∠ADE=∠BDF,

∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.

∵BD=AD,

∴△BDM≌△DAF.

∴DM=AF=2DG,∠FAD=∠BDM.

∵∠BDM+∠MDA=90°,

∴∠MDA+∠FAD=90°.

∴∠AHD=90°.

∴AF⊥DG.

∴AF=2DG,且AF⊥DG

【点睛】

本题考查三角形全等的判定和性质,关键在于灵活运用性质.

2.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于

G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF;

(2)请你判断BE+CF与EF的大小关系,并说明理由.

【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析

【解析】

【分析】

(1)先利用ASA判定△BGD?CFD,从而得出BG=CF;

(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.

【详解】

解:(1)∵BG∥AC,

∴∠DBG=∠DCF.

∵D为BC的中点,

∴BD=CD

又∵∠BDG=∠CDF,

在△BGD与△CFD中,

DBG DCF

BD CD

BDG CDF

∠=∠

?

?

=

?

?∠=∠

?

∴△BGD≌△CFD(ASA).

∴BG=CF.

(2)BE+CF>EF.

∵△BGD≌△CFD,

∴GD=FD,BG=CF.

又∵DE⊥FG,

∴EG=EF(垂直平分线到线段端点的距离相等).

∴在△EBG中,BE+BG>EG,

即BE+CF>EF.

【点睛】

本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.

3.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F (1)证明:PC=PE ; (2)求∠CPE 的度数;

(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.

【答案】(1)证明见解析(2)90°(3)AP=CE 【解析】 【分析】

(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP 和△CBP 全等,然后得出PA=PC ,

∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC 是等边三角形,从而得出AP=CE. 【详解】

(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,

在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;

(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP , ∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°; (3)、AP =CE

理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP , 在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∠BAP=∠DCP ,

∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E ∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE

考点:三角形全等的证明

4.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=?是射线DA 上一动点

(不与点D重合,且DA DB

≠),在射线DB上截取DF DE

=,连接EF.

()1当点E在线段AD上时,

①若点E与点

A重合时,请说明线段BF DC

=;

②如图2,若点E不与点A重合,请说明BF DC AE

=+;

()2当点E在线段DA的延长线上()

DE DB

>时,用等式表示线段,,

AE BF CD之间的数量关系(直接写出结果,不需要证明).

【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD

【解析】

【分析】

(1)①根据等边对等角,求到B C

∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF

?是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到

120

AFB ADC

∠=∠=?,推出ABF ACD

??

≌,根据全等三角形的性质即可得出结论;

②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;

(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.

【详解】

(1)①证明:AB AC

=

B C

∴∠=∠

,60

DF DE ADB

=∠=?,且E与A重合,

ADF

∴?是等边三角形

60

ADF AFD

∴∠=∠=?

120

AFB ADC

∴∠=∠=?

在ABF

?和ACD

?中

AFB ADC

B C

AB AC

∠=∠

?

?

∠=∠

?

?=

?

ABF ACD ∴??≌ BF DC ∴=

②如图2,过点A 做AG ∥EF 交BC 于点G ,

∵∠ADB =60° DE =DF ∴△DEF 为等边三角形 ∵AG ∥EF

∴∠DAG =∠DEF =60°,∠AGD =∠EFD =60° ∴∠DAG =∠AGD ∴DA =DG

∴DA -DE =DG -DF ,即AE =GF 由①易证△AGB ≌△ADC ∴BG =CD

∴BF =BG +GF =CD +AE

(2)如图3,和(1)中②相同,过点A 做AG ∥EF 交BC 于点G ,

由(1)可知,AE=GF ,DC=BG ,

BF CD BF BG GF AE ∴+=+== 故BF AE CD =-. 【点睛】

本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.

5.(1)问题发现:如图(1),已知:在三角形ABC ?中,90BAC ?∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和

CE 之间的数量关系为_________________.

(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ?中, ,,,AB AC D A E

=

三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.

(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ?与ACF ?均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ?的形状并说明理由.

【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析. 【解析】 【分析】

(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;

(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;

(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可. 【详解】

(1)∵BD ⊥直线l ,CE ⊥直线l , ∴∠BDA=∠AEC=90°, ∴∠BAD+∠ABD=90°, ∵∠BAC=90°, ∴∠BAD+∠CAE=90°, ∴∠CAE=∠ABD , 在△ABD 与△CAE 中,

∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC , ∴△ABD ≌△CAE(AAS), ∴BD=AE ,AD=CE , ∵DE=AD+AE , ∴DE=CE+BD , 故答案为:DE=CE+BD ;

(2)(1)中结论还仍然成立,理由如下: ∵BDA AEC BAC α∠=∠=∠=, ∴∠DBA+∠BAD=∠BAD+∠CAE=180°?α, ∴∠CAE=∠ABD ,

在△ADB与△CEA中,

∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,

∴△ADB≌△CEA(AAS),

∴AE=BD,AD=CE,

∴BD+CE=AE+AD=DE,

即:DE=CE+BD,

为等边三角形,理由如下:

(3)DEF

由(2)可知:△ADB≌△CEA,

∴BD=EA,∠DBA=∠CAE,

∵△ABF与△ACF均为等边三角形,

∴∠ABF=∠CAF=60°,BF=AF,

∴∠DBA+∠ABF=∠CAE+CAF,

∴∠DBF=∠FAE,

在△DBF与△EAF中,

∵FB=FA,∠FDB=∠FAE,BD=AE,

∴△DBF≌△EAF(SAS),

∴DF=EF,∠BFD=∠AFE,

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,

∴△DEF为等边三角形.

【点睛】

本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.

6.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,

△BPN,并连接BM,AN.

(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;

(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.

(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.

【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.

【解析】

【分析】

(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交

∠=?,因此有BM⊥AN;

AN于点C,得出MCN90

(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;

(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.

【详解】

解:(Ⅰ)结论:BM=AN,BM⊥AN.

理由:如图1中,

∵MP=AP,∠APM=∠BPN=90°,PB=PN,

∴△MBP≌△ANP(SAS),

∴MB=AN.

延长MB交AN于点C.

∵△MBP≌△ANP,

∴∠PAN=∠PMB,

∵∠PAN+∠PNA=90°,

∴∠PMB+∠PNA=90°,

∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,

∴BM⊥AN.

(Ⅱ)结论成立

理由:如图2中,

∵△APM,△BPN,都是等边三角形

∴∠APM=∠BPN=60°

∴∠MPB=∠APN=120°,

又∵PM=PA,PB=PN,

∴△MPB≌△APN(SAS)

∴MB=AN.

(Ⅲ)如图3中,取PB的中点C,连接AC,AB.

∵△APM,△PBN都是等边三角形

∴∠APM=∠BPN=60°,PB=PN

∵点C是PB的中点,且PN=2PM,

∴2PC=2PA=2PM=PB=PN,

∵∠APC=60°,

∴△APC为等边三角形,

∴∠PAC=∠PCA=60°,

又∵CA=CB,

∴∠CAB=∠ABC=30°,

∴∠PAB=∠PAC+∠CAB=90°.

【点睛】

本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.

7.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G

(1)当 DF⊥AB 时,求 t 的值;

(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。

(3)聪明的斯扬同学通过测量发现,当点 D 在线段 AB 上时,EG 的长始终等于 AC 的一半,他想当点D 运动到图 2 的情况时,EG 的长是否发生变化?若改变,说明理由;若不变,求出 EG 的长。

【答案】(1)4

3

;(2)见详解;(3)不变.

【解析】

【分析】

(1)设AD=x,则BD=4-x,BF=4+x.当DF⊥AB时,通过解直角△BDF求得x的值,易得t 的值;

(2)如图1,过点D作DH∥BC交AC于点H,构建全等三角形:△DHG≌△FCG,结合全等三角形的对应边相等的性质和图中相关线段间的和差关系求得DG=GF;

(3)过F作FH⊥AC,可证△ADE≌△CFH,得DE=FH,AC=EH,再证△GDE≌△GFH,可得EG=GH,即可解题.

【详解】

解:(1)设AD=x,则BD=4-x,BF=4+x.

当DF⊥AB时,∵∠B=60°,

∴∠DFB=30°,

∴BF=2BD,即4+x=2(4-x),

解得x=

4

3

故t=

4

3

(2)如图1,过点D作DH∥BC交AC于点H,则∠DHG=∠FCG.

∵△ABC是等边三角形,

∴△ADH是等边三角形,

∴AD=DH.

又AD=CF,

∴DH=FC.

∵在△DHG与△FCG中,

DGH FGC

DHG FCG

DH FC

∠∠

?

?

∠∠

?

?

?

∴△DHG≌△FCG(AAS),

∴DG=GF;

(3)如图2,过F作FH⊥AC,

在△ADE和△CFH中,

90

AED FHC

A FCH

AD CF

∠∠?

?

?

∠∠

?

?

?

==

∴△ADE≌△CFH(AAS),

∴DE=FH,AE=CH,

∴AC=EH,

在△GDE和△GFH中,

DEG FHG

DGE FGH

DE FH

∠∠

?

?

∠∠

?

?

?

∴△GDE≌△GFH(AAS),

∴EG=GH,

∴EG=

1

2

EH=

1

2

AC.

【点睛】

本题考查了三角形综合题,需要掌握全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△GDE≌△GFH是解题的关键.

8.综合与实践:

我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.

(1)请你用所学知识判断乐乐说法的正确性.

如图,已知ABC

?、

111

A B C

?均为锐角三角形,且

11

AB A B

=,

11

BC B C

=,

1

C C

∠=∠.求证:111

ABC A B C

??

≌.

(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.

【答案】(1)见解析;(2)钝角三角形或直角三角形. 【解析】 【分析】

(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出

∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.

(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证. 【详解】

(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,

则11111190BDA B D A BDC B D C ∠=∠=∠=∠=?. 在BDC ?和111B D C ?中,

1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,

∴111BDC B D C ??≌, ∴11BD B D =.

在Rt BDA ?和111Rt B D A ?中,

11AB A B =,11BD B D =,

∴111Rt Rt (HL)BDA B D A ??≌, ∴1A A ∠=∠.

在ABC ?和111A B C ?中,

1C C ∠=∠,1A A ∠=∠,11AB A B =,

∴111(AAS)ABC A B C ??≌.

(2)如图,当这两个三角形都是直角三角形时,

∵11AB A B =,11BC B C =,190C C ∠==∠?.

∴Rt ABC ?≌111Rt A B C ?(HL );

∴当这两个三角形都是直角三角形时,它们也会全等;

如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,

与(1)同理,利用AAS 先证明111BDC B D C ??≌,得到11BD B D =, 再利用HL 证明111Rt Rt BDA B D A ??≌,得到1A A ∠=∠, 再利用AAS 证明111ABC A B C ??≌;

∴当这两个三角形都是钝角三角形时,它们也会全等; 故答案为:钝角三角形或直角三角形. 【点睛】

本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.

9.如图1,等腰△ABC 中,AC =BC =42, ∠ACB=45?,AO 是BC 边上的高,D 为线段AO 上一动点,以CD 为一边在CD 下方作等腰△CDE ,使CD =CE 且∠DCE=45?,连结BE . (1) 求证:△ACD ≌△BCE ;

(2) 如图2,在图1的基础上,延长BE 至Q , P 为BQ 上一点,连结CP 、CQ,若CP =CQ =5,求PQ 的长.

(3) 连接OE ,直接写出线段OE 的最小值.

【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】

试题分析:()1根据SAS 即可证得ACD BCE ≌;

()2首先过点C 作CH BQ ⊥于H ,由等腰三角形的性质,即可求得45DAC ∠=?,

则根

据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ

⊥时,OE取得最小值.

试题解析:()1证明:∵△ABC与△DCE是等腰三角形,

∴AC=BC,DC=EC,45

ACB DCE

∠=∠=,

45

ACD DCB ECB DCB

∴∠+∠=∠+∠=,

∴∠ACD=∠BCE;

在△ACD和△BCE中,

,

AC BC

ACD BCE

DC EC

=

?

?

∠=∠

?

?=

?

(SAS)

ACD BCE

∴≌;

()2首先过点C作CH BQ

⊥于H,

(2)过点C作CH⊥BQ于H,

∵△ABC是等腰三角形,∠ACB=45?,AO是BC边上的高,

45

DAC

∴∠=,

ACD BCE

≌,

45

PBC DAC

∴∠=∠=,

∴在Rt BHC中,

22

424

CH BC

===,

54

PC CQ CH

===

,,

3

PH QH

∴==,

6.

PQ

∴=

()3OE BQ

⊥时,OE取得最小值.

最小值为:42 2.

OE=-

10.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图

(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;

(2)请你直接利用以上结论,解决以下问题:

①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.

②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.

【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】

【分析】

(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=

∠BAC+∠B+∠C;

(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;

(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=

∠A+∠ADC+∠AEC,求出∠DCE的度数即可.

【详解】

(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:

过点A、D作射线AF,

∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,

∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,

即∠BDC =∠BAC+∠B+∠C ; (2)①如图(2),∵∠X =90°, 由(1)知:∠A+∠ABX+∠ACX =∠X =90°, ∵∠A =40°, ∴∠ABX+∠ACX =50°, 故答案为:50;

②如图(3),∵∠A =40°,∠DBE =130°, ∴∠ADE+∠AEB =130°﹣40°=90°, ∵DC 平分∠ADB ,EC 平分∠AEB ,

∴∠ADC =

12∠ADB ,∠AEC =1

2

∠AEB , ∴∠ADC+∠AEC =1

(ADB AEB)2

∠+∠=45°,

∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°. 【点睛】

本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.

二、八年级数学 轴对称解答题压轴题(难)

11.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”. 理解:

(1)如图1,在ABC ?中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;

(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ?的“好好线”; 在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可); 应用:

(3)在ABC ?中,27B ∠=,AD 和DE 是ABC ?的“好好线”,点D 在BC 边上,点

E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.

【答案】(1)36°;(2)见详解;(3)18°或42°

【解析】

【分析】

(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.

(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;

(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;

【详解】

解:(1)∵AB=AC,

∴∠ABC=∠C,

∵BD=BC=AD,

∴∠A=∠ABD,∠C=∠BDC,

设∠A=∠ABD=x,则∠BDC=2x,∠C=

°180-

2

x

可得

°

180-2

2

x x

∴x=36°

则∠A=36°;(2)如图所示:

(3)如图所示:

①当AD=AE时,

∵2x+x=27°+27°,

∴x=18°;

②当AD=DE时,

∵27°+27°+2x+x=180°,

∴x=42°;

综上所述,∠C为18°或42°的角.

【点睛】

本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.

12.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.

(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.

(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.

【解析】

【分析】

(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;

(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到

∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明

△BAE≌△ACH,故BE=AH,故可证明BE=2AF.

(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.

【详解】

(1)∵△ADC≌△EDB,

∴BE=AC=8,

∵AB=12,

∴12-8<AE<12+8,

即4<AE<20,

∵D为AE中点

∴2<AD<10;

(2)延长AF到H,使AF=HF,

由题意得△ADF≌△HCF,故AH=2AF,

∵AB⊥AC,AD⊥AE,

∴∠BAE+∠CAD=180°,

又∠ACH+∠CAH+∠AHC=180°,

∵∠D=∠FCH,∠DAF=∠CHF,

∴∠ACH+∠CAD=180°,

故∠BAE= ACH,

又AB=AC,AD=AE

∴△BAE≌△ACH(SAS),

故BE=AH,又AH=2AF

∴BE= 2AF.

(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,

由题意得△DBF≌△ADG,

∴FD=GD,BF=AG,

∵DE⊥DF,

∴DE垂直平分GF,

∴EF=EG,

∵∠C=90°,

∴∠B+∠CAB=90°,

又∠B=∠DAG,

∴∠DAG +∠CAB=90°

∴∠EAG=90°,

故EG2=AE2+AG2,

相关主题
相关文档
最新文档