植物化学成分测定

植物化学成分测定
植物化学成分测定

在植物组织或农畜产品分析中,样品经高温灼烧,有机物中的碳、氢、氧等物质与氧结合成二氧化碳和水蒸汽而碳化,残留物呈无色或灰白色的氧化物称为“总灰分”。它主要是各种金属元素的碳酸盐、硫酸盐、磷酸盐、硅酸盐、氯化物等。

本章分为植物灰分测定、植物常量元素的测定、植物微量元素分析三节。由于植物的各种营养元素的分析测定方法在土壤分析部分大多已作介绍,学习的重点在灰分的测定,干灰化、湿灰化制备植物分析待测上,掌握分析待测液的制备方法和要点。

在植物组织或农畜产品分析中,样品经高温灼烧,有机物中的碳、氢、氧等物质与氧结合成二氧化碳和水蒸汽而碳化,残留物呈无色或灰白色的氧化物称为“总灰分”。它主要是各种金属元素的碳酸盐、硫酸盐、磷酸盐、硅酸盐、氯化物等。动物性原料的灰分含量由饲料的组分、动物品种及其它因素决定,植物性原料的灰分含量及其组分则由自然条件、成熟度等因素决定。此外灼烧条件也会影响分析结果,而且残留物(灰分)与样品中原有的无机物并不完全相同,因此用干灰化法测得的灰分只能是“粗灰分”。总灰分含量是品质分析中经常测定的项目之一,它是产品中无机营养物质的总和。测定植株各部分灰分含量可以了解各种作物在不同生育期和不同器官中灰分及其变动情况,如用于确定饲料作物收获期有重要参考价值。此外,样品在适当条件下灰化后,除了测定“总灰分”,必要时还可以在其中测定各组成分——灰分元素,如:氮、磷、钾、钙、镁、钠和多种微量元素,它们也是评价营养状况的参考指标之一。

现在常用的灰分测定方法有下列几种[1]:

(1)一般灰化法;

(2)灰化后的残灰用水浸湿后再次灰化;

(3)灰化后的残灰用热水溶解过滤后再次灰化残渣;

(4)添加醋酸镁或硝酸镁或碳酸钙等灰化;

(5)添加硫酸灰化。

前三种测定方法可以认为本质上相同,即均是“直接灰化法”,目前绝大多数农畜产品均采用此法。对含磷、硫、氯等酸性元素较多,即阴离子相对于阳离子过剩的样品,须在样品中加入一定量的灰化辅助剂,补充足够量的碱性金属元素,如镁盐或钙盐等,使酸性元素形成高熔点的盐类而固定起来,再行灰化。如目前国际上将添加醋酸镁作为肉和肉制品灰分测定的标准方法[5]。而相对于以钾、钙、钠、镁等为主的样品,其阳离子过剩,灰化后的残灰呈碱性碳酸盐的形式,如:大豆、薯类、萝卜、苹果、柑橘等,一般还是采用“直接灰化法”,也可以采用通过添加高沸点的硫酸,使阳离子全部以硫酸盐形式成为一定组分进行定量的方法,目前主要用于糖类制品的灰分测定[2],此外通过测定食品中的电解质含量,即“电导法”,也可间接测定食品中的总灰分,但目前该法只应用于白砂糖的灰分测定。

灰化温度一般书籍中往往规定为525~600℃,各种试样因灰分量与样品性质相差较大,实用时灰化温度不完全一致,实践证明大于550℃会引起部分钾、钠的氯化物损失,超过600℃,其磷酸盐也会有所损失,加热的速度也不可太快,以防急剧干馏时灼热物局部产生大量气体而至微粒飞失——爆燃,而且在高温时磷、硫等也可能被炭粒还原为氢化物而逸失。根据AOAC及AACC公定法,各种农畜产品的灰化均有一定的温度范围[1,2,3]。

灰分按溶解情况,测定内容可包括:总灰分(即粗灰分)、水溶性灰分、水不溶性灰分、酸溶性灰分和酸不溶性灰分。水溶性灰分大部分为钾、钠、钙等氧化物及可溶性盐类;水不溶性灰分除泥、砂外,还有铁、铝等金属氧化物和碱土金属等的碱性磷酸盐;酸不溶性灰分大部分为污泥掺入的泥沙,包括原来存在于样品组织中的二氧化硅等,如面粉中这部分灰分超过0.25%即表示有砂石粉等混入。在本节中只介绍总灰分、水溶性灰分与水不溶性灰分及酸溶性与酸不溶性灰分的测定方法。应特别指出的是一些灰分元素在干灰化过程中,可能形成难溶的复杂硅酸盐,尤其是富含硅的禾本科作物的灰分,即使用盐酸长时间消煮也不溶解。例如锰、铜、锌等会有其总量的1/4以上形成这类难溶物[1]。这对粗(总)灰分测定虽无影响,但对个别灰分元素,特别是微量元素的测定必将带来严重误差。此时可以用干灰化法与湿灰化法相结合的方法来制备待测液。

13.1.1粗灰分的测定

13.1.1.1直接灰化法(注1)

13.1.1.1.1方法原理

总灰分常用简单、快速、节约的干灰化法测定。即将样品小心加热炭化和灼烧,除尽有机质,剩下的无机矿物质冷却后称重,即可计算样品总灰分含量。由于燃烧时生成的炭粒不易完全烧尽,样品上可能粘附有少量的尘土或加工时混入的泥沙等,而且样品灼烧后无机盐组成有所改变,如:碳酸盐增加,氯化物和硝酸盐的挥发损失,有机磷、硫转变为磷酸盐和硫酸盐,质量均有改变。所以实际测定的总灰分只能是“粗灰分”。

13.1.1.1.2主要仪器

1.灰化器皿:15~25mL的瓷或白金、石英坩埚(注2);

2.高温电炉:在525~600℃能自动控制恒温;

3.干燥器:干燥剂一般使用135℃下烘几小时的变色硅胶;

4.分析天平;

5. 水浴锅或调温鼓风烘箱。

13.1.1.1.3试剂

1.硝酸(1∶1)溶液;

2.双氧水[ω(H2O2)=30%];

3. 100g·L-1NH4NO3溶液:称硝酸铵(NH4NO3,分析纯)10.0g溶于100mL水中。

13.1.1.1.4操作步骤

1.样品预处理(注3):可以采用测定水分或脂肪后的残留物作为样品:(1)需要预干燥的试样:含水较多的果汁、可以先在水浴上蒸干;含水较多的果蔬,可以先用烘箱干燥(先在60~70℃吹干,然后在105℃下烘),测得它们的水分损失量;富含脂肪的样品,可以先提取脂肪,然后分析其残留物。(2)谷物、豆类、种实等干燥试样一般先粉碎均匀,但磨细过1mm筛即可,不宜太细,以免燃烧时飞失。

2.灰分测定:将洗净的坩埚(注4)置于550℃高温电炉内灼烧15min以上,取出,置于干燥器中平衡后称重,必要时再次灼烧,冷却后称重直至恒重为止。准确称取待测样品2~5g(水分多的样品可以称取10g左右),疏松地装于坩埚中。

3.碳化(注5):将装有样品的坩埚置于可调电炉上在通风橱里缓缓加热,烧至无烟。对于特别容易膨胀的试样(如蛋白、含糖和淀粉多的试样),可以添加几滴纯橄榄油再同上预碳化。

4.高温灰化:将坩埚移到已烧至暗红色的高温电炉门口,片刻后再放进高温电炉内膛深处,关闭炉门,加热至约525℃(坩埚呈暗红色),或其它规定的温度(表13.1.)。烧至灰分近于白色为止,大约1~2h(注6)。如果灰化不彻底(黑色碳粒较多),可以取出放冷,滴加几滴蒸馏水或稀硝酸或双氧水或100g·L-1NH4NO3溶液等,使包裹的盐膜溶解,炭粒暴露,在水浴上蒸干,再移入高温电炉中,同上继续灰化。灰化完全后(注7),待炉温降至约200℃时,再移入干燥器中,冷却至室温后称重。必要时再次灼烧,直至恒重。

13.1.1.1.5结果计算(注8)

粗灰分,% =(m2-m1)/(m3-m1)×100

式中:m1—空坩锅重(g);

m2—灰化后(坩锅+灰分)质量(g);

m3—(空坩锅+样品)质量(g);

13.1.1.1.6注释(适宜测定的样品种类)

(注1)该方法一般适用于大多数植物茎、叶、根、蔬菜、水果、饲料、茶叶、咖啡、坚果及其制品,牛乳、提取脂肪后的油脂类、糖及糖制品、鱼类及其制品、海带等试样。

卷柏属植物化学成分以及药理作用

卷柏属植物化学成分及其药理作用 摘要:卷柏科卷柏属植物, 世界分布范围广,品种较多。除[5]中国药典[6]中卷柏项下收载的 2 个品种外,部颁和各地方标准及在现有成方制剂中有 1 2 个种被收载或应用, 此外还有20 个种在各地民族民间作为药用[2]。贵州民间将深绿卷柏( S . doederl ei n i i ) 称为多德卷柏, 具有祛风、散寒、消肿、止咳之功效, 用于风湿病, 风寒咳嗽。广西地区使用的石上柏来源为卷柏科植物深绿卷柏( S . doederl ei n i i ) ( 别名: 大叶菜) 和江南卷柏( S. moel l end orf i i ) ( 别名: 地柏枝) , 具有清热解毒、抗癌、止血之功效, 用于癌症、肺炎、急性扁桃体炎、眼结膜炎和乳腺炎。金鸡尾( S. mv ol vens) 民间用于治疗脱肛下血、咳嗽、哮喘、黄胆、水肿; 翠云草( S. un c i nat a ) 治疗黄疸性肝炎、肠炎、痢疾、肾炎水肿、肺结核咯血、风湿关节炎; 细叶卷柏( S. l abord e i ) 治疗伤风鼻塞、小儿疮积、口腔炎、月经过多、外伤出血; 蔓出卷柏( S. d a v i di i ) 治疗风湿关节炎、筋骨疼痛[2]。山东省有些地区使用中华卷柏( S . si n ensi s ) 用于治疗慢性气管炎[3]等。近年来, 随着卷柏植物资源调查新种的发现和药理研究的深入, 尤其是其抗肿瘤、降血糖作用对治疗癌症、糖尿病有效。卷柏属植物越来越受到中外研究者的关注。 关键词:卷柏属植物; 化学研究; 进展;防癌治癌;抗炎;抗病毒;镇痛;降血压;水提取物;正丁醇萃取;部位;肉瘤S 1 80;生长抑制作用 正文: 1 卷柏属植物化学研究概况 目前, 中外植物化学工作者已从卷柏属植物中分离出黄酮、木脂素、醇多糖、生物碱、脂肪酸、氨基酸、无机盐等化学成分。自19 71 年Ok i gaw a 等人从S. t amari sci n a 中分离出a ment of l avon e 到19 97 年国外工作者已分离出几十个黄酮类化合物, 且除芹菜素外均为双黄酮类化合物并大多是从植物的乙酸乙酯萃取部位中分离得到[1];国内对卷柏属植物研究相对要晚, 集中分离其乙酸乙酯、正丁醇萃取部位; 并从垫状卷柏乙酸乙酯萃取部位分离出一个新化合物垫状卷柏胆甾酮;卷柏( S t amari sci n a ) 正丁醇萃取部位分离得卷柏苷B、卷柏苷C 两个新化合物。 卷柏属植物含有多种黄酮类以及其他类化学成分。

超声雾化提取植物中化学成分.

超声雾化提取植物中化学成分 本论文研究了一种新型的提取方法——超声雾化提取法在提取植物化学成分中的应用,并将该提取方法与吹扫技术和液相微萃取相结合建立了多种快速有效的分析方法。利用超声雾化提取法提取大黄中的大黄素、芦荟大黄素和大黄酸。并利用胶束电动毛细管电泳法测定五种市售大黄样品中这些化合物的含量。采用超声雾化提取法提取八角茴香和小茴香中的反式茴香醚,以及花椒中的柠檬烯,优化了实验条件。在优化条件下测得9种样品中被测物的含量。经方法比较后,证实了超声雾化提取适合于提取香料中挥发性成分。将超声雾化提取与吹扫技术相结合,建立了一种在线提取-气相色谱检测方法。并用该方法测定了八角茴香和小茴香中反式茴香醚的含量。这是一种新颖的在线气相取样技术,可用于挥发性化合物的在线提取和测定。将超声雾化提取与顶空液相微萃取结合,利用超声雾化将香料中挥发性成分转移至气相,再通过顶空液相微萃取富集气相被测物后引入气相色谱质谱分析。最终在优化的条件下研究了孜然和花椒中挥发性化合物的组成。与水蒸馏方法相比,该方法具有提取时间短、能耗低等优势。 同主题文章 [1]. 王志刚,丁大成,任金莲,刘纯荣,吴胜举,兰涛刘学辉,赵永骞,王长京. 超声雾化法制取金属粉末方法的研究' [J]. 声学技术. 1994.(04) [2]. 王红斗,韦业成,郭煜,李霞冰. 文冠果种仁及其油的化学成分' [J]. Journal of Integrative Plant Biology. 1981.(04) [3]. 向仁德,徐任生. 南五加皮化学成分的研究' [J]. Journal of Integrative Plant Biology. 1983.(04) [4]. 谭宁华,赵守训,陈昌祥,周俊. 太子参的化学成分' [J]. 云南植物研究. 1991.(04) [5]. 王葳,张秀珍. 我国枣树资源及其化学成分' [J]. 中国野生植物资源. 1991.(04) [6]. 刘伯衡,李学禹,田丽萍,魏琳. 新疆产甘草属植物化学成分的研究' [J]. 干旱区研究. 1992.(01) [7]. 黎彤,李峰. 西藏地壳模型及其化学成分初探' [J]. 中国科学技术大学学报. 1992.(04)

千斤拔属植物化学成分及药理作用的国内外研究进展

1546 环球中医药2015年12月第8卷第12期 Global Traditional Chinese Medicine,December 2015,Vol.8,No.12 四综述四 基金项目:国家科技部第十九次中泰科技合作项目(19?508J);广西壮族自治区教育厅一般资助项目(2013YB289);广西壮族自治区卫生厅自筹经费科研课题(Z2012602);广西植物功能物质研究与利用重点实验室主任基金项目(FPRU2014?8) 作者单位:530001 南宁,广西中医药大学[乔雪(硕士研究生)];广西科技大学医学院(卓燊二秦海洸);广西植物功能物质研究与利用重点实验室广西植物研究所(杨子明) 作者简介:乔雪(1989-),女,2013级在读硕士研究生三研究方向:中药药理药效研究三E?mail:1262840617@https://www.360docs.net/doc/d79860417.html, 通讯作者:秦海洸(1970-),博士,教授,硕士生导师三研究方向:皮肤病二性病的中医药治疗研究三E?mail:qhgwhy@https://www.360docs.net/doc/d79860417.html, 千斤拔属植物化学成分及药理作用的国内外研究进展 乔雪 卓燊 杨子明 秦海洸 【摘要】 千斤拔属植物在中国一直作为民族药及民间药被广泛使用,其中有六种有确切药用历史,在中医上此属植物具有祛风除湿二强筋壮骨二消炎止痛二舒筋活络等功效,在临床上可用于治疗跌打损伤二腰腿痛二乳房疾病二牙痛及妇科病等三近年来国内外学者发现此属植物中含有糖类二黄酮类二氨基酸二甾体二生物碱二挥发油等其他化学成分,且具有类雌激素及抗雌激素样作用,以及良好的抗炎二抗血栓二抗氧化二镇痛二对神经系统损伤的保护等生物活性三本文通过查阅相关文献资料,对近年来国内外所研究的千斤拔属植物的化学成分及药理作用进行综述,为此属植物进一步研究,临床应用及新药开发提供参考三 【关键词】 千斤拔; 化学成分; 药理作用 【中图分类号】 R285 【文献标识码】 A doi:10.3969/j.issn.1674?1749.2015.12.038 Chemical constituents and pharmacological effects of plant Flemingia QIAO Xue ,ZHUO Shen ,YANG Zi?ming ,et al. Guangxi University of Traditional Chinese Medicine ,Nanning 530001,China Corresponding author :QIN Hai?guang ,E?mail :qhgwhy @https://www.360docs.net/doc/d79860417.html,.【Abstract 】 The plants of Flemingia Roxb.ex Rottl have been widely used as a national medicine and folk medicine in our country since antiquity,six of which have an exact and long history of medicinal use.In Traditional Chinese medicine,the plants of Flemingia Roxb.ex Rottl have the effects of dispelling wind and removing dampness from the body,strengthening the sinews and the bones,diminishing inflammation and relieving pain,stimulating the circulation of the blood and causing the muscles and joints to relax.Clinically,they can be used to treat the injuries from fall,fractures,contusions and strains,pain in the waist and lower extremities,breast diseases,toothaches and gynecological diseases,etc.Recently, scholars both home and abroad found that the plants of Flemingia Roxb.ex Rottl contain such chemical components as sugars,flavonoids,amino acids,steroids,alkaloids,and volatile oils,etc.In addition,the plants of Flemingia Roxb.ex Rottl are anti?estrogenic effect and have the effects similar to xenoestrogen.Moreover,they are anti?inflammatory,antithrombotic,antioxidative and analgesic and have protective effects on nervous system injury.In this review,we summarize the chemical components and pharmacological effects of the Flemingia Roxb.ex Rottl,derived from our analysis of high?quality studies home and abroad and review of the literature on the Flemingia Roxb.ex Rottl,in the hope of providing reference for its further study,clinical application and development of new drugs in the future.【Keywords 】 Flemingia Roxb.ex Rottl; Chemical composition; Pharmacological effects

锦鸡儿属植物化学成分及药理作用研究进展

锦鸡儿属植物化学成分及药理作用研究进展 目的探讨锦鸡儿属植物的化学成分及药理作用的研究概况。方法总结国内外发表的有关文献。结果至今已从豆科锦鸡儿属植物中分离得到各类化合物,该属植物具有较强的药理活性,值得深入研究。结论通过对该属植物的化学成分及药理作用的系统总结,以期为该属植物的深入研究和开发提供一定参考依据。 标签:锦鸡儿属;化学成分;药理作用;综述 豆科(Leguminesae)锦鸡儿属植物(Caragana Fabr.)全世界约100余种,我国共有84种[1]。锦鸡儿的药用部位为根和花。根,味甘,性微温,有补血、活血、祛风,清肺益脾的功能,用以治疗虚损、劳热咳嗽、高血压、妇科疾患、关节炎、黄疸型肝炎、水肿等;花称金雀花,性甘,味微温,有滋阴和血、健脾、祛风止咳的功能。用于头晕头痛、耳鸣眼花、肺虚久咳、小儿疳积[2]。 1?锦鸡儿属植物化学成分研究 目前,国内外已从锦鸡儿、毛刺锦鸡儿、红花锦鸡儿、和二连锦鸡儿等该属的14种植物中中分离鉴定了黄酮、二苯乙烯低聚体类、苯丙素、香豆素、萜类和甾体等类型化合物。 1.1?黄酮类 锦鸡儿属黄酮类化合物主要有4种骨架,黄酮类,黄酮醇类,异黄酮类和紫檀素类[3]。 2?锦鸡儿属植物生物活性研究 2.1?抗菌活性 从豆科植物白皮锦鸡儿(Caragana leucophloea Pojark)地上部分分离到的黄酮醇类化合物3—O—甲基山奈酚表现出较强的抗细菌活性[39],对大肠杆菌和番茄疮痂病菌的半抑制浓度分别为9.00、7.42 μg/mL,最低抑制浓度均为12.5μg/mL。在鬼箭锦鸡儿中分离得到的5个紫檀烷类化合物均为有效的抗真菌成分,其中的高丽槐素对三种念珠菌菌株,显示出潜在的抗真菌活性,最低抑菌浓度范围为6.25~25.00 μg/mL[40]。 2.2?抗氧化活性 首次从豆科植物白皮锦鸡儿地上部分分离到的黄酮醇类化合物3—O—甲基槲皮素和槲皮素现出较强的抗氧化活性[39]。 2.3?抗炎镇痛作用 小叶锦鸡儿醋酸乙酯提取物对二甲苯、巴豆油所致的小鼠耳廓炎症及棉球所致的小鼠肉芽肿均有抑制作用,说明其醋酸乙酯提取物部位对小鼠的急、慢性炎症具有一定的抗炎作用[41]。小叶锦鸡儿醋酸乙酯提取物能明显延长小鼠扭体和舔足潜伏期,减少扭体和舔足次数,提高电刺激痛阈。表明醋酸乙酯提取物小鼠有明显镇痛作用[42]。 2.4?抗肿瘤和抗病毒作用 小叶锦鸡儿中分离出的3个异黄酮及其苷类化合物:雁靛黄素(Ⅰ)、高丽槐树—7—O—β—D—吡喃葡萄糖苷(Ⅱ)和芒柄花素—7—O—β—D —吡喃葡萄糖苷(Ⅲ)对人乳腺癌细胞株、宫颈癌细胞株、人肝癌细胞株生长的影响。结果表明化合物Ⅰ、Ⅱ对两种细胞株有不同程度的抗肿瘤活性,化合物Ⅲ不具抗肿瘤活性[43]。对中间锦鸡儿(Caragana intermedia)的氯仿提取物中分得的化合物

泡桐属植物化学成分及生物活性概述

泡桐属植物化学成分及生物活性概述 作者:曹育超,邵长江,贺殿,贾忠 【摘要】白花泡桐[Paulownia. Fortunei (Seem.) Hemsl.]为玄参科泡桐属(Paulownia)植物,落叶乔木,全国几乎均有分布,野生或栽培,是常用的中草药,其花、叶、皮、根、果古时对其就有药用记载,可用于治疗炎症、病毒感染、跌打损伤等多种疾病。白花泡桐花的化学成分除挥发油部分外,未见报道。本文对泡桐属植物化学成分及生物活性进行总结,为开发利用植物资源、研究植物生物活性提供了一定的科学依据。 【关键词】泡桐属;化学成分;生物活性 玄参科泡桐属Paulownia植物,全属共有7种,分别是白花泡桐[P.fortunei(Seem.)Hemsl.],毛泡桐[P.tomentosa(Thunb.)Steud.],兰考泡桐(P.elongata S.Y.Hu),椒叶泡桐(P.catalpifolia Gong Tong),台湾泡桐(P.kawakamii Ito),川泡桐(P.fargesii Franch.)和南方泡桐(P.australis Gong Tong),光泡桐[P.tomentosa var. tsinlingensis (Pai)Gong Tong]是毛泡桐的变种。除东北北部、内蒙古、新疆北部、西藏等地区外全国均有分布,栽培或野生。白花泡桐在越南、老挝也有分布,有些种类已在世界许多国家引种栽培。作为一种优质木材,它不仅在工农业方面有广泛用途,同时它还

是一种常用的中草药,其花、叶、皮、根、果古时就有其药用记载。如《本草纲目》记述:“桐叶……主恶蚀疮著阴,皮主五痔,杀三虫。花主傅猪疮,消肿生发[1]。”《药性论》也言:“治五淋,沐发去头风,生发滋润。”近年来医学研究发现其主要作用有:抗菌消炎,止咳利尿,降压止血,同时还具有杀虫作用。 1 化学成分 泡桐属植物的化学成分研究始于20世纪30年代初。日本学者最先对泡桐属植物的化学成分进行了研究,1931年Masco Kazi等从泡桐叶的树皮和树叶中分离得到糖苷类化合物[2,3]。1959年,Kazutoru Yoneichi研究了桐木中的木脂素成分,分离得到了丁香苷。随着科学技术的发展,各种色谱分离方法和现代波谱技术应用于天然产物的研究,从泡桐属植物中不断发现新化合物。该属植物中所含化学成分类型主要有环烯醚萜苷、苯丙素、木脂素苷、黄酮、倍半萜、三萜等。其中许多化合物被证明具有一定的生物活性。 1.1 苯丙素类化合物苯丙素类化合物在泡桐属植物中分布较为广泛。主要有:(1)木脂素(四氢呋喃骈四氢呋喃类):细辛素(d-Asarinin)[4],芝麻素(d-Sesamin)[5],泡桐素(Paulownin)[6],异泡桐素(Isopaulownin)、(+)-Piperitol[7]等。(2)苯丙素酚类:Verbascoside[8],Isoverbascoside[9]。

植物化学成分数据库用户操作手册

3.2.22 植物化学成分数据库 数据库介绍:本数据库目前收录了上海有机所采集的植物化学成分数据,信息包括了植物分类信息、植物图片、分离出的化学成分、相关研究文献等。共收集化学物质8万种,用户可通过输入植物物种名称、植物科属描述信息、化合物检索数据库,并可用名录浏览部分蔬菜与水果的化学成分并进行成分比较,可了解植物的共有成分。 图3.2.22.1 植物成分数据库首页 图3.2.22.2 从植物名称检索植物 本数据库所有的检索结果,都以植物列表显示。用户可点击植物名对应的超链接查看植物信息。 检索方式与示例:

可输入中文、拉丁文、英文名,例如“Amaranthaceae”,或者“Amaranth family”,或者“百合”,“相思子”,“丝瓜”等。对每一种名称均进行模糊检索。如图3.2.22.2,输入“丝瓜”模糊检索中文名包括了“丝瓜”的植物(例1),检索结果如图3.2.22.3,有丝瓜和广东丝瓜两个结果。 图3.2.22.3 从植物名称检索植物的结果 植物检索结果列表中包括植物名和链接、植物分级、缩微图片、化学成分的链接,并可将植物加入收藏夹。 鼠标放在缩微图片上,便可在窗口里自动放大图片局部。 图3.2.22.4 查看植物详细信息

物的成分。化学成分的信息,包括了有机所化合物登录号(点击号码链接可查看化合物详细信息)、结构、名称和分子式。 注意:本数据库收集的植物成分,并非植物的全部成分,只是文献研究提到的成分。 图3.2.22.5 植物的部分化学成分 图3.2.22.6 查看化合物的详细信息 图3.2.22.3中点击“广东丝瓜”的链接,便可查看广东丝瓜的信息,如图3.2.22.7. 广东丝瓜的化学成分如图3.2.22.8.

第五章 植物化学成分的结构鉴定方法

第五章植物化学成分的结构鉴定 1.结构鉴定的研究程序 2.结构鉴定的一般方法 3.常见天然活性成分的特性及测定方法(自学) 第一节结构研究的程序 一、化合物纯度的判定方法 1.结晶均匀、一致。 2.熔点明确、敏锐(0.5~1.0℃) 3.TLC (PPC):三种以上不同展开剂展开,均呈现单一斑点。 4.HPLC、GC也可以用于化合物纯度的判断。二、未知化合物的结构分析 分子量和分子式的确定 推断可能含有的官能团、结构碎片和基本骨架 测定分子的平面结构 推断并确定分子的构型、构象等的主体结构 第二节四大光谱在结构测定中的应用 紫外—可见光谱(UV -VIS)——共轭体 系特征 分子中电子跃迁(从基态至激发态)。 n-π*、π-π* 跃迁可因吸收紫外光及可见光所引起,吸收光谱将出现在光的紫外 区和可见区(200~700nm) 200nm 400 700nm 紫外区(UV)可见区(VIS) 应用: 推断化合物的骨架类型——共轭系统。 取代基团的推断。如加入诊断试剂推断黄酮的取代模式(类型、数目、排列方式) 用于含量测定(以最大吸收波长作为检测波长进行含量测定)。

红外光谱(IR) 分子中价键的伸缩及弯曲振动所引起的吸收而测得的吸收图谱,称为红外光谱。 4000 3600 3000 1500 1000 625cm -1 特征频率区指纹区特征官能团的鉴别 化合物真伪的鉴别 羟基(酚羟基、醇羟基)3600~3200 cm -1 游离羟基~3600 cm -1 氢键缔合羟基3400~3200 cm -1羰基1600~1800 cm -1酮~1710 cm -1 酯1710~1735cm -1 芳环1600、1580、1500cm -1 有2~3个峰 双键1620~1680 cm -1 两个化合物完全相同的条件1、特征区完全吻合2、指纹区也需完全一致 1H-NMR (核磁共振氢谱): 信息参数:化学位移(δ)、峰面积、峰裂分(s 、d 、t 、q 、m )及偶合常数(?) (1)化学位移(δppm): 与1H核所处的化学环境(1H核周围的 电子云密度)有关 电子云密度大,处于高场,δ值小 电子云密度小,处于高场,δ值大 ~0.9-C-CH 3 ~1.8-C=C-CH 3 ~2.1-COCH 3 ~3.0-NCH 3 ~3.7-OCH 3 11 10 9 8 7 6 5 4 3 2 1 0 -COOH -CHO Ar-H -C=C-H 常见结构的化学位移大致范围(要求熟记) (δ (δppm) 推断化合物的结构(含1H核基团的结构) (二)峰面积: 磁等同质子的数目——用积分曲线面积(高度)表示(三)峰裂分及偶和常数: 磁不等同两个或两组1H核在一定距离内相互自旋偶合干扰,发生的分裂所表现出的不同裂分符合n+1 规律 ( n = 磁等同质子的数目) 用偶合常数(J)表示 峰裂分的数目 峰裂分的距离 不同系统偶合常数(J Hz) 大小 s 单峰d 双峰t 三重峰q 四重峰m 多重峰 芳环 J 邻6~10Hz J 间0~3Hz J 对0~1Hz 双键 J 顺7~11 Hz J 反12~18 Hz 饱和烃类相邻碳原子上质子偶合常数的大小与两个氢原子之间的立体夹角θ有关

中药化学——植物化学成分的生源学说

植物中众多的化学成分有许多已阐明了它们的化学结构和药理作用,其中不少已用于临床。这些成分中有的已可用化学的或生物的方法进行合成。但尚存在的问题是:这些成分在植物体内是怎样形成的?是由何种物质、经过什么新陈代谢途径形成的?为了解决这个问题,许多植物学、生物学、植物化学、生化学的研究工作者从可能的新陈代谢过程,生物化学反应等多方面地进行推测这些成分在植物体内的形成过程,这就是植物化学成分的生源学说(Biogenesis Biogenetic Origin)。植物化学成分的生源研究主要是研究各类成分在体内生物合成的途径,各种酶在过程中所起的作用以及过程中所产生的各种中间产物的化学并测定它们的结构。生源的研究有多种设想与途径,因而也形成了多种学说,如异戊二烯法则、醋酸学说等已普遍应用于研究药用植物有效成分的生物合成及其途径。随着同位素示踪技术和化学技术的发展,生源研究的进展也更为迅速。生源研究的意义基本上可归纳为下列几点: 1. 了解了各类成分的生物合成途径以及某种成分最初由何种物质(这种物质称为前体Precursors)形成和各种中间产物后,就可以人为地于植物中注入前体或中间产物来增加所需成分的积累和产量。达到人工控制、定向培育的目的。例如于枸椽酸的新陈代谢途径中加入乌头酶(Aconilase)就可以增加枸椽酸在植物体内的积累,因枸椽酸的生成过程中必须有此种酶的存在。这是研究植物生源最主要的目的。但是,前体并非一成不变,例如熊果甙在不同科时它们的生源就有可能不同。 2.从生源关系密切的成分中来扩大生物活性物质的资源。如三萜类与许多甾体衍生物类在生源上具密切关系,甾体衍生物类常具多种生物活性,三萜类成分在植物界分布广泛,故有可能从三萜类成分来寻找具广泛生物活性的物质。 3.从生源学说来确定某类成分的结构类别。如四环三萜类成分原分类不属于三萜,以后通过生源关系的探讨,才明确地将它们划在三萜范围内。 4.了解某类成分在植物体内的原始状态与代谢途径后,就可以为进行植物成分的生物合成提供理论规律,这将能更好地对生产与实践(如生药的采收时间与部位,有效成分的合成等)起指导作用。植物体内各种成分的生源基本上可分为两类,一类是植物本身必须的营养物质如糖类,脂肪、蛋白质等成分的新陈代谢途径,一类是植物次生物质,如生物碱、甙类、萜类等成分的新陈代谢途径。有关这些代谢途径的学说很多,其中不少还是设想,例如认为醋酸酯一丙二酸酯(Acetate-Melonate)途径合成脂肪酸、酚性化合物、蒽醌等成分,3,5-羟基一3-甲基戊酸酯(Mevalonate)途径合成萜类、甾类等成分,莽草酸(shikimicacid)途径合成芳香族氨基酸、有机酸及其他化合物;氨基酸途径合成生物碱等成分。 1.植物体内各类成分的生源关系 2.各类植物次生物的生源学说,列举数例说明它们的生物合成途径(1)有机酸类:有14C可以说明许多较复杂的有机酸类由 CH3COOH形成,如上所述6-甲基不杨酸的生物合成途径;(2)生物碱:生物碱的生源学说曾有多种路线的设想,但目前己主要集中一种学说,即生物碱是由醋酸、单萜和多种简单氨基酸如苯丙氨酸(Phenylalanine)、色氨酸(TrYptophan)、蛋氨酸(Meih1onine),鸟氨酸(Ornithine)等作为前体而形成的。这些理论因为标记化合物的发展已可用实验证实。方法是给予植株以一定的具标记元素的化合物为前体,(常用的为具14C的化合物),待植株经过一定时期的生长后,分离生物碱,从前体与生成物标记元素的位置来确定二者之间的关系。由于应用了这种技术,许多生物碱如烟碱(Nicoitine)、)吗啡(Morphine)、莨菪碱(Hyoscyamine)、秋水仙碱(Col一chicine)、罂粟碱(Papaverine)、芦竹碱(Gramine)等已证明是由氨基酸形成。有些简单的生物碱已可按生源学说途径在实验室里用氨基酸进行人工合成。目前关于生物碱的生源研究有一较大的突破,即认为除了上述各种前体外,还有许多特殊的中间物质参与了生物合成过程。(3)香豆精类(4)蒽醌类:许多蒽醌类成分在植物体内的前体至今未完全确定。有的学者认为苔藓酸(Orsellinic acid,广泛分布于地衣和真菌)为一前体。由其形成蒽醌类成分的生源学说路线。(5)萜类:一般认为由CH3COOH与辅酶A(CoenzymeA,简作:CO.A)缩合成酯,再经过脱水、氧化-还原、环化、分子重排等反应形成C5——C10——C15——C20

植物化学成分测定

在植物组织或农畜产品分析中,样品经高温灼烧,有机物中的碳、氢、氧等物质与氧结合成二氧化碳和水蒸汽而碳化,残留物呈无色或灰白色的氧化物称为“总灰分”。它主要是各种金属元素的碳酸盐、硫酸盐、磷酸盐、硅酸盐、氯化物等。 本章分为植物灰分测定、植物常量元素的测定、植物微量元素分析三节。由于植物的各种营养元素的分析测定方法在土壤分析部分大多已作介绍,学习的重点在灰分的测定,干灰化、湿灰化制备植物分析待测上,掌握分析待测液的制备方法和要点。 在植物组织或农畜产品分析中,样品经高温灼烧,有机物中的碳、氢、氧等物质与氧结合成二氧化碳和水蒸汽而碳化,残留物呈无色或灰白色的氧化物称为“总灰分”。它主要是各种金属元素的碳酸盐、硫酸盐、磷酸盐、硅酸盐、氯化物等。动物性原料的灰分含量由饲料的组分、动物品种及其它因素决定,植物性原料的灰分含量及其组分则由自然条件、成熟度等因素决定。此外灼烧条件也会影响分析结果,而且残留物(灰分)与样品中原有的无机物并不完全相同,因此用干灰化法测得的灰分只能是“粗灰分”。总灰分含量是品质分析中经常测定的项目之一,它是产品中无机营养物质的总和。测定植株各部分灰分含量可以了解各种作物在不同生育期和不同器官中灰分及其变动情况,如用于确定饲料作物收获期有重要参考价值。此外,样品在适当条件下灰化后,除了测定“总灰分”,必要时还可以在其中测定各组成分——灰分元素,如:氮、磷、钾、钙、镁、钠和多种微量元素,它们也是评价营养状况的参考指标之一。 现在常用的灰分测定方法有下列几种[1]: (1)一般灰化法; (2)灰化后的残灰用水浸湿后再次灰化; (3)灰化后的残灰用热水溶解过滤后再次灰化残渣; (4)添加醋酸镁或硝酸镁或碳酸钙等灰化; (5)添加硫酸灰化。 前三种测定方法可以认为本质上相同,即均是“直接灰化法”,目前绝大多数农畜产品均采用此法。对含磷、硫、氯等酸性元素较多,即阴离子相对于阳离子过剩的样品,须在样品中加入一定量的灰化辅助剂,补充足够量的碱性金属元素,如镁盐或钙盐等,使酸性元素形成高熔点的盐类而固定起来,再行灰化。如目前国际上将添加醋酸镁作为肉和肉制品灰分测定的标准方法[5]。而相对于以钾、钙、钠、镁等为主的样品,其阳离子过剩,灰化后的残灰呈碱性碳酸盐的形式,如:大豆、薯类、萝卜、苹果、柑橘等,一般还是采用“直接灰化法”,也可以采用通过添加高沸点的硫酸,使阳离子全部以硫酸盐形式成为一定组分进行定量的方法,目前主要用于糖类制品的灰分测定[2],此外通过测定食品中的电解质含量,即“电导法”,也可间接测定食品中的总灰分,但目前该法只应用于白砂糖的灰分测定。

生物质中三种主要化学成分含量的测定实验

生物质中三种主要化学成分含量的测定实验 实验题目:生物质中三种主要化学成分含量的测定实验 实验目的 1.掌握生物质中主要化学成分含量的经典分析方法和原理。 2.了解纤维素、半纤维素以及木质素这三种主要化学成分在生物质热裂解中的作用。 实验原理 植物的主要化学成分是纤维素、半纤维素和木质素这三部分。它们是构成植物细胞壁的主要组分。其中,纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素是填充在纤维和微细纤维之间的“粘合剂”和“填充剂”。 1.纤维素 生物制粉末在加热的情况下用醋酸和硝酸的混合液处理,在这种情况下,细胞间的物质被溶解,纤维素也分解成单个的纤维,木质素、半纤维素和其它的物质也被除去。淀粉、多缩戊糖和其它物质受到了水解。用水洗涤除去杂质以后,纤维素在硫酸存在下被重铬酸钾氧化成二氧化碳和水。 C6H10O5 + 4K2Cr2O7 + 16H2SO4 = 6CO2 + 4Cr2(SO4)3 + 4K2SO4 + 21H2O 过剩的重铬酸钾用硫酸亚铁铵溶液滴定,再用硫酸亚铁铵滴定同量的但是未与纤维素反应的重铬酸钾,根据差值可以求得纤维素的含量。 2.半纤维素 用沸腾的80%硝酸钙溶液使淀粉溶解,同时将干扰测定半纤维素的溶于水的其它碳水化合物除掉。将沉淀用蒸馏水冲洗以后,用较高浓度的盐酸,大大缩短半纤维素的水解时间,水解得到的糖溶液,稀释到一定体积,用氢氧化钠溶液中和,其中的总糖量用铜碘法测定。 铜碘法原理:半纤维素水解后生成的糖在碱性环境和加热的情况下将二价铜还原成一价铜,一价铜以Cu2O的形式沉淀出来。用碘量法测定Cu2O的量,从而计算出半纤维素的含量。 测定还原性糖的铜碱试剂中含有KIO3和KI,它们在酸性条件下会发生反应,也不会干扰糖和铜离子的反应。加入酸以后,会发生反应释放出碘: KIO3 + 5KI +3H2SO4 = 3I2 + 3K2SO4 +3H2O 加入草酸以后,碘与氧化亚铜发生反应: Cu2O + I2 + H2C2O4 = CuC2O4 + CuI2 + H2O 过剩的碘用Na2S2O3溶液滴定:2Na2S2O3 + I2 = Na2S4O6 + 2NaI 3.木质素

相关文档
最新文档