距离保护PSCAD仿真(DOC)

距离保护PSCAD仿真(DOC)
距离保护PSCAD仿真(DOC)

东南大学成贤学院毕业设计论文

第三章距离保护仿真构建

3.1一次系统模型

本次距离保护模型采用双电源供电的长距离输电线路配备主保护是距离保护,双侧电源均采用R-L-C中性点接地的230kV,50Hz的电源,其内部电阻9.186Ω,电抗是138mH。通过万用表确定电压电流信号,加断路器B1配置距离保护通过长距离输电线路与另一侧相接,在线路中加上故障。

系统模型

加上三相故障数字控制器不同的数字对应不同的故障。0表示没故障,1表示A相接地故障,2表示B相接地故障,3表示C相接地故障,4表示AB两相接地故障,5表示AC两相接地故障,6表示BC两相接地故障,7表示ABC三相接地故障,8表示AB两相相间短路故障,9表示AC两相相间短路故障,10表示BC两相相间短路故障,11表示ABC三相相间短路故障。对应的数字转换开关有1-6个数,每个数对应一个故障状态数字

3.1.1电源模型

这个组件模型一个三相交流电压源,源阻抗可以指定为理想(即无限总线)。这个源可能是控制通过固定、内部参数或变量的外部信号。本次模型定义为采用R-L-C中性点接地的230kV,50Hz的首段电源,其内部电阻9.186Ω,电抗是138mH。双击电源模型选项一:配置选项,可以确定电源名称source1,电源阻抗类型R-L-C,中性点是否接地YES,模型显示单线路。

选项二:信号参数,可以确定是否有外控电压NO,外控频率NO,电压230kV,电压启动时间0.05s,频率50Hz,相移0。

选项三:终端条件可以不用设置。选项四:电阻设定无。选项五:阻抗R/R-L设定无。选项六:阻抗R-L-C设定9.186ohm,138mH,0uF。

选项七:电感设定。选项八:电容设定。选项九:检测信号设定。

3.1.2线路模型

架空线路的配置组件用于定义的基本性质与导体的传输通道在空气,以及提供访问TLine /电缆配置编辑器。本次设计架空线路总长100kM,分为90kM和10kM两端,接线形式一直在分界处加故障进行模拟。双击线路模型,依次线路命名LINE1,稳定频率50Hz,线路长度90kM,导体数量3,终端型号直接连接,下面还可以详细编辑线路模型。

对于线路阻抗的计算可以采用此模型:

读出Ia 的数值根据电源电压通过公式:

a

I E

Z 3

可以计算出线路阻抗通过计算可以得出每千米阻抗为0.3欧姆。 3.1.3断路器模型

这个组件的模拟三相断路器操作。在(关闭)或关闭(打开)电阻的断路器必须一起指定其初

始状态。该组件是通过一个名为输入信号控制(默认是BRK )。他有两个状态0表示on 断路器是闭合的,1表示off 断路器是打开的。断路器控制可以配置自动通过定时开关逻辑组件,或定序器组件。断路器也可以手动控制通过使用在线控制,或通过一个更为详细的控制方案。双击断路器模型,参数详细设置,选项一:配置选项,是否单极操作No ,是否开放电流No ,是否使用超前电阻No ,电流截断限制0kA ,图形显示单线线路,是否展现电力潮流No 。

选项二:断路器主要参数,断路器命名B1,断路器开通电阻1.0e6ohm,断路器关断电阻0.1ohm。

选项三:超前嵌入数据无。

选项四:内部输出,电路器三相电流加零序电流,断路器三相状态,无功功率。

选项五:激励状态,有功功率22.18MW,无功功率4.184MVAR。

3.1.4故障模型

这部分有三块组成,最左边的组件是控制故障的开始和结束,类似转盘的组件是旋转开关可以选择不同的输出状态,最右边的是简单地故障模型。三者组合在一起形成一个多功能故障装换器。双击定时故障逻辑,故障开始时间0.2s,故障持续时间0.05s。

双击旋转开关,命名开关Fault Type,组名Faults,是否呈现在图形上No,装盘位置数6,起始位置数2,对应位置1(0.0),位置2(1.0),位置3(6.0),位置4(7.0),位置5(10.0),位置6(11.0)。

双击三相故障,选项一:配置选项,故障控制外部控制,是否清空可能电流No,是否接地Yes,图像显示单线线路,截断电流限制0kA。

选项二:故障电阻,导通电阻0.01ohm,关断电阻1.0E6ohm。选项三:故障类型不用设置。选项四:电流故障命名无。选项五:激励选项无。

3.2 二次系统模型

距离保护具体仿真构建分为两个模块:1、信号处理模块,2、保护动作模块。

3.2.1信号处理模块:

在系统模型中我们已经用万用表采集到电压电流信号,在信号处理模块,我们要将电流电压信号处理已获得我们想要的数据。首先将电压与电流信号通过傅里叶变化这里主要取七次谐波对应分解出ABC三相对应电压电流的幅值与相位,如图

傅里叶变换

这是一个在线快速傅里叶变换(FFT),可以确定谐波大小和相位的输入信号作为时间的函数。输入信号的第一个取样前分解成谐波成分。提供了选项来使用一个、两个或三个输入。对于三个输入,组件可以提供输出序列组件的形式。双击傅里叶变换,选项一:配置选项,类型3相,谐波数量7,基频50Hz,震级输出RMS,相位输出单位弧度,相位输出波形余弦波。

选项二:频率输出变量无。

通过傅里叶变换得到三相的幅值与相角通过正序、负序零序三相分解得到对应的正序、负序零序三相幅值与相角,如图

三序分解

这个序列滤波器计算相位序列的组件,能计算出大小和相位角度。双击三序分解可以设定输入输出的单位皆选弧度。

通过得到的三序分量将其合并得到对应输入保护动作的输入量。 3.2.2保护动作模块

将数据处理模块得到的数据送到保护动作对于接地故障采用0

kI I V a a

可以得到对应相的阻抗值,

如图

单相接地故障计算

这个组件计算线路接地阻抗眼中的接地阻抗继电器。输出阻抗是在矩形格式(R 和X),优化了使用距离继电器——苹果多边形特征、距离继电器特征或姆欧圆继电器特征。双击单相接地故障元件,选项一:主要数据,K 的常数1.6,相角为弧度。

选项二:初始化设置,初始时间0.1s ,输出电阻R 为458.8ohm ,输出电抗X 为56.7ohm 。

对于相间短路故障采用

b

a b

a I I V V --可以得到对应的阻抗值,如图

相间短路故障计算

这个组件计算相间阻抗眼中的接地阻抗继电器。输出阻抗是在矩形格式(R 和X),优化了使用距离继电器——苹果多边形特征、距离继电器特征或姆欧圆继电器特征。双击相间短路故障计算元件,设置和接地故障计算元件一样

计算输入的数据得到对应的阻抗值,将阻抗值输到姆欧阻抗继电器中与设定值比较通过图像可以观察动作区域,

姆欧继电器

姆欧圆的组件被划分为一个“阻抗区元素”,检查是否存在一个点被输入R和X,躺在一个指定区域的阻抗平面。R和X代表电阻和活性部位的监视阻抗,可以输入在单位或欧姆。请注意但是,单元组件的输入参数应该搭配R和X输入。组件产生一个输出' 1 '如果点定义为R和X是在指定的区域,否则输出将' 0 '。双击姆欧阻抗继电器元件,选项一:配置选项,坐标选项选择(X,Y),圆的半径32。

选项二:中心的XY坐标,X为5.5,Y为31.5。

选项三:Z的设定无。

经过这样的构建,一个距离保护的保护动作模块基本搭建完成,对具体参数具体设置即可运行,观察图像,得到相应的结果。

这两个模块搭建完成就具体距离保护动作仿真模型已经建立好。如图

第一个模块是信号处理模块,第二个是保护动作模块。通过这个模型可以很好地观察距离保护仿真的现象。

第四章仿真结果

仿真参数如下:

双侧电源均采用R-L-C中性点接地的230kV,50Hz的电源,其内部电阻9.186Ω,电抗是138mH。对于保护1采用距离保护,运用姆欧继电器进行保护动作判断。

仿真总时间0.5s,故障0.2s发生,持续0.05s。

4.1相间短路故障仿真

4.1.1区内故障

在建立模型时,已经计算出线路阻抗每千米0.3欧姆,当故障发生BC相间短路在距离保护处90kM 处时,姆欧继电器设定的整定阻抗以(5.5,,31.5)为圆心半径32,故障距离阻抗27欧姆在圆内,对应模拟仿真出的结果。

故障处信号图:

保护安装处电流图:

电压图:

PSCAD在电力系统电磁暂态仿真的应用

引言 电力工业是国民经济发展的基础工业。随着经济建设的发展,发电设备的容量也在相应增大。为了更好的保证安全运行,经济运行,并保证电能质量,我们应该考虑任何电力系统故障的情况,并加以研究。 电力系统正常运行的破坏多半是由短路故障引起的。在供电系统中,短路冲击电流会使两相邻导体间产生巨大的电动力,使元件损坏;大的短路电流将使导体温度急剧上升,会使元件烧毁;阻抗电压大幅下降,影响系统稳定性。发生短路时,系统从一种状态变到另一种状态,并伴随产生复杂的电磁暂态现象。所以有必要对电力系统电磁暂态进行研究。 目前,电力系统暂态分析的研究理论已越来越完善,但基本上是通过建立数学模型,并解数学方程来分析的。这让我们很难理解其推导过程,所以很有必要利用直观的方法来分析并得出相同的结论。 本设计利用PSCAD软件建立了简单电力系统和复杂电力系统两个仿真模型。简单电力系统模型包括:同步发电机模型、负荷模型等;复杂电力系统模型包括:同步发电机模型、变压器模型、输电线模型、负荷模型等。 本设计通过运用EMTDC模块对电力系统仿真进行计算,并分析其电磁暂态稳定性,其中计算了发生四类短路故障时的暂态参数,并对其分析比较,来研究电力系统的这四类短路之间的异同和暂态对电力系统的影响。 通过此次设计进一步巩固和加强了四年来所学的知识,并得到了实际工作经验。设计中查阅了大量的相关资料,努力做到有据可循。在设计中逐步掌握了查阅,运用资料的能力,总结了四年来所学的电力工业的相关知识,为日后的工作打下了坚实的基础。 由于我在知识条件等方面的局限,仍存在许多不足,但在指导老师和学院大力支持和帮助下,已有相当大的改进,在此表示衷心的感谢。

基于PSCAD4.2电力系统距离保护的仿真分析

基于PSCAD4.2电力系统距离保护的仿真分析 摘要:简要地介绍了PSCAD4.2软件及其工具箱,分析了输电线路距离保护的基本原理,并利用软件提供的工具箱搭建了距离保护仿真模型,设置了输电线路可能发生的接 地故障和相间故障,最终得出了不同故障类型下输电线路的电压、电流以及其他量 的变化规律的波形,从而实现了三段式距离保护的作用。仿真波形结果表明:利用 该软件建立的模型是能够准确反应距离保护的作用机理,即距离保护装置能够快速 响应故障信号并动作于断路器,实现输电线路的保护。 关键词: PSCAD4.2;距离保护;接地故障;仿真 Analysis of power system distance protection simulation based on PSCAD4.2 Abstract: Briefly introducing PSCAD4.2 software and its toolbox ,then analyzing the basic principle of the transmission line distance protection , and use the toolbox that the software provides to build a protection simulation model and set a ground fault and phase transmission line failures the system may occur, at last obtain the voltage, current and waveform variation of other different types of transmission line failures , enabling three- distances protection. Simulation waveform results showed that: using the model of the software is accurately able to establish the reaction mechanism of the distance protection , distance protection device can quickly respond to the circuit breaker failure signal and act on it to achieve protection of transmission lines . Key words: PSCAD4.2;Distance Protection;Ground Fault;Simulation 0 引言 电力系统保护中,输电线路的保护主要是距离保护,其不受运行方式的影响,继电保护性能得到提高,因而获得广泛的应用[1]。文献[2]过对继电器模块的搭建来得到对电力系统的继电保护,但如果保护原理发生变化则相应的继电器模块也会发生变化,保护模块的移植性不强。目前,虽然电力系统的保护已经进入微机自动化时[3],但距离保护体系并不十分完善, 其中接地电阻对距离保护的影响表现突出,文献[4-6] 详述了采用自适应的方法来消除接地电阻对距离保护的影响。 PSCAD4.2是一种电力系统电磁暂态仿真软件,尤其在控制系统、无功补偿系统、高压直流输电以及继电保护系统等领域较为活跃,该软件主要对电力系统时域和频率等变量进行 仿真分析,其结果一般以简单易懂的图形界面输出,使得仿真过程清晰、准确而灵活[7-8]。 1 电力系统距离保护的原理 在电力系统继电保护中,距离保护扮演着重要的角色。它满足电力系统的选择性、灵敏性、可靠性以及能够快速切除故障,从而快速恢复电网的正常稳定运行。距离保护是反应于保护安装地点到故障发生处之间的距离(阻抗),以此来根据阻抗的大小而整定动作时间的一 种保护装置[9]。为了满足选择性、速动性和灵敏性的要求,现在广泛采用的是三段式距离保护,其网络接线如图1。

武汉大学电气工程学院丁涛老师综合自动化PSCAD仿真实验

武汉大学 电气工程学院 综合自动化PSCAD仿真实验 姓名:*** 学号:20**302540*** 班级:电气**级*班

一、同步发电机的准同期并列操作 发电机的准同期并列操作,是在同步发电机已经投入调速器和励磁装置,当发电机电压的幅值,频率和相位接近相等时,通过并列点断路器合闸将发电机并入电网运行的一系列动作。 具体参见教材《电力系统自动化》或《自动装置原理》。 1.实验预习 清楚同步发电机准同期并列的概念和原理。 2.实验目的 了解数字仿真软件中发电机组的构成,仿真同步发电机准同期并列操作。 3.实验步骤 (1)将仿真示例copy到电脑。进入PSCAD,打开sync_in_paralell; (2 ) 三个时间的设置 点右键,再点Project setting, 再点Runtime,注意Time setting 三个参数的设置。 Duration of run (sec): 程序计算时间,以秒为单位; Solution time step (sμ): 计算步长,以微秒为单位,两个相邻计算点之间是一个 计算步长; μ,用计算输出的数据来说明,第一个数据的时间坐标是0s, 如上图的200s, 50s μ。 最后一个数据的时间是200s,每两个数据的时间坐标相差50s Channel plot step (sμ): 作图步长,以微秒为单位,图上相邻两个点之间的时间 是一个画图步长。 请将模型计算时间和运行时间区分开,同学们可以看看要得到200s的计算数 据,运行时间是多少。记下点击菜单开始运行和结束运行的实际时间,两者之 差就是运行时间,该时间与电脑性能密切相关。 (3)学习各个元件的使用。 a. 在帮助中没有介绍的元件 例如,双击后有, 表明:点击菜单运行图标,程序计算时间从0开始计时,当计算时间是时,

PSCAD的电力系统仿真大作业3

仿真计算 1、在PSCAD中建立典型的同步发电机模型,对同步发电机出口三相短路进行仿真研究。要求: (1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包含的各种分量是否一致; 图一同步发电机短路模型

图二、定子三相短路电流 定子三相短路电流中含有直流分量和交流分量,其中周期分量会衰减。三相短路电流直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大约在0.2s。交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。 (2)修改电抗参数Xd(Xd’,X’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析; 图一是Xd`=0.314 p.u,Xd``=0.280 p.u情况下的定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u情况下的定子电流波形。显然,随着Xd`的增大定子的电流在减少。

图三、定子三相短路电流 (3)修改时间常数Td(Td’,T’’d),增加或者减小,截取定子三相电流,并与第一步结果对比分析。 参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然

图四、定子三相短路电流 2、利用暂态仿真软件对下面的简单电网进行建模,对模型中各元件参数进行详细说明,并进行短路计算。将故障点的电流电压波形及线路M端的电流电压波形、相量图粘贴到课程报告上。 要求:

(1)短路类型为①三相故障;②A相接地;③BC两相故障。 (2)两端系统电势夹角取15o δ=。 (3)故障点设置为线路MN中点(25km处)。 (4)仿真结果包括M、N两侧和短路点处的三相电压、电流的瞬时值波形和短路发生后时刻的三相电压、电流相量图。 三、课程学习心得 通过本课程的学习,你有哪些体会和心得,请写出来。可以从以下几个方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些方法;对电力系统的认识;对课程的建议等。 课程的开始复习了一下简单的电力系统稳态分析部分,然后就进行了课程的重点就是电力系统的暂态分析,其中包括PARK变换、标么值下的磁链方程和电压方程、同步发电机各种电势的表达式、发电机阻抗的概述、(次)暂态电抗和(次)暂态电势、发电机三相短路电流、对称分量法、叠加定理、电力系统简单故障分析。学习了几种电力系统分析中的方法,例如分析同步发电机短路时PARK变换将静止三相坐标系的量转化为旋转坐标系dq0的量,还有分析不对称故障时对称分量法转化到相对简单的对称故障分析中。

PSCAD的电力系统仿真大作业

电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。 图3 同步发电机模型参数Ta对应位置

1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=(标幺制,下同)时,仿真波形如图10所示 图10 Xd=时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。 i.Xd`=时A相短路电流的波形如图14所示: 图14 Xd`=时A相短路电流波形 ii.Xd`=1时A相短路电流的波形如图15所示: 图15 Xd``=1时A相短路电流波形 3)Xd``的影响 这里次暂态电抗Xd``与暂态电抗Xd`相似,Xd``影响的是短路后的次暂态过程。

电力系统仿真软件介绍

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP 的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由Drs.

几种常用电力系统仿真软件的比较分析

几种常用电力系统仿真软件的比较分析 电力系统仿真软件的分类较为复杂,按照不同标准可分为:实时与非实时,短时与长时间等不同种类,而各个仿真软件在功能上都具有综合性,只是侧重点有所不同,在报告的最后有各类仿真软件功能的比较,以下为较著名的仿真软件的介绍。 1 RTDS RTDS由加拿大RTDS公司出品,一个CPU模拟一个电力系统元器件,CPU间的通讯,采用并行-串行-并行的方式。RTDS具有仿真的实时性,主要用于电磁暂态仿真。目前RTDS应用规模最大的是韩国电力公司(KEPCO)的装置, 有26个RACK,可以模拟400多个三相结点。RTDS仿真的规模受到用户所购买设备(RACK)数的限制。这种开发模式不利于硬件的升级换代,与其它全数字实时仿真装置相比可扩展性较差。由于每个RACK的造价很高, 超过30万美元, 因此仿真规模一般不大。基于上述原因,RTDS目前主要用于继电保护试验和小系统实时仿真。 2 EMTDC/PSCAD EMTDC是一种世界各国广泛使用的电力系统仿真软件, PSCAD是其用户界面,一般直接将其称为PSCAD。使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能。PSCAD/EMTDC基于dommel电磁暂态计算理论,适用于电力系统电磁暂态仿真。EMTDC(Electro Magnetic Transient in DC System)即

可以研究交直流电力系统问题,又能完成电力电子仿真及其非线性控制的多功能工具。

PSCAD由Manitoba HVDC research center开发。 3 PSASP PSASP由中国电力科学研究院开发。PSASP的功能主要有稳态分析、故障分析和机电暂态分析。稳态分析包括潮流分析、网损分析、最优潮流和无功优化、静态安全分析、谐波分析和静态等值等。 故障分析包括短路计算、复杂故障计算及继电保护整定计算。机电暂态分析包括暂态稳定计算、电压稳定计算、控制参数优化等。 4 ARENE 法国电力公司(EDF)开发的全数字仿真系统ARENE, 有实时仿真和非实时仿真版本。实时版本有: (1)RTP版本,硬件为HP公司基于HP-CONVE工作站的多CPU 并行处理计算机,该并行处理计算机的最大CPU数量已达32个,可以用于较大规模系统电磁暂态实时仿真; (2)URT版本,HP-Unix工作站,用于中小规模系统电磁暂态实时仿真; (3)PCRT版本,PC-Linux工作站,用于中小规模系统电磁暂态实时仿真。 ARENE实时仿真器可以进行如下物理装置测试:继电保护,自动装置,HVDC和FACTS控制器,可以用50微秒步长进行闭环电磁暂态实时仿真。ARENE不作机电暂态仿真。采用基于HP工作站的并行处理计算机,其软硬件扩展也受到计算机型号的制约。

PSCAD电力系统仿真软件介绍

PSCAD电力系统仿真软件介绍 只要您能想得到,就能模拟得出 随着电力系统的发展,对精确的、直观的仿真工具的需求变得越发重要了。用PSCAD,您能够 创建、仿真、并能轻易地模拟您的系统,给电力系统仿真提供了无限可能。PSCAD包括一个完 整的系统模型库,系统模型从简单的无源元件和控制功能,到电机和其他复杂的设备。 PSCAD得益于30多年的不断研究和开发。我们从全球用户群的想法和反馈中得到启发。这个哲理使得PSCAD成为当今最受欢迎的电力系统暂态仿真软件。 提供知识、专业技术和解决方案 我们的专家在电力系统行业为我们的客户提供一系列全面的技术服务。我们为全球的电力行业提 供专业的知识、技术和解决方案,包括电力系统研究和项目管理服务。作为加拿大最大公共事业 公司之一的子公司Manitoba HVDC Research Centre ,将多年的经验和独特的视角跟技术研究结合到一起,是公认的应用电力系统分析和建模的世界领导者。 Man itoba HVDC Research Centre 所能提供的项目研究以及给世界各地的公司提供过的服务。 电力系统研究 作为世界知名的PSCAD仿真软件的开发者,我们有独特的优势和对仿真研究的深刻理解,这是很多其他技术服务提供商所不具备的。在电力系统规划和业务研究方面,我们对使用各种软件工 具有着丰富的经验,比如PSCAD, PSS/E, DSA Power Tools, ETAP , CYME, Risk_A 等等。我们 给公用事业,顾问公司,工业客户,设备制造商和行业领导者等提供过服务,并与研究学术机构, 运营商以及监管机构有着密切的合作。

PSCAD的电力系统仿真大作业1

电力系统分析课程报告 姓名****** 学院自动化与电气工程学院 专业控制科学与工程 班级***************** 指导老师****** .

二〇一六年六月十六.

1同步发电机三相短路仿真计算 1.1仿真模型的建立 根据老师给的三相同步发电机模型做了修改(空载)。同步发电机三相短路实验仿真研究的模型如下图所示: 图1.1 同步发电机三相短路仿真研究的模型 1.2 PSCAD中的仿真结果 1.2.1发电机出口电压Ea。 发电机出口电压Ea,如下图所示:

图1.2发电机出口电压Ea 1.2.1衰减时间常数Ta对于直流分量的影响 励磁电压和原动机输入转矩Ef与Tm均为定常值1.0,且发电机空载。当运行至0.5056s时,发电机发生三相短路故障。 定子三相短路电流中含有直流分量和交流分量,三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定,大约0.2s。PSCAD同步发电机模型衰减时间常数Ta (Ta=0.235s)对应位置下图所示。 图1.3同步发电机参数Ta设置图 (1)当衰减时间常数Ta=0.235s时,直流分量(If)的衰减过程如下图所示。

图1.4直流分量的衰减波形 (2)当衰减时间常数Ta=0.125s的参数设置、直流分量(If)的衰减过程如下图所示。 图1.3同步发电机参数Ta设置图

图1.4直流分量的衰减波形 1.2.2短路时间不同的影响 同步发电机出口三相短路的时间不同对三相短路电流的影响:短路电流的直流分量起始值越大,短路电流瞬时值就越大;直流分量的起始值与短路时间的电流相位直接关系。短路时间参数设置如下图所示:

PSCAD的电力系统仿真大作业

电力系统分析课程报告 姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值1.0,且发电机空载。当运行至0.5056s时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 2.1 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约0.2s)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=0.278s)。 图3 同步发电机模型参数Ta对应位置

1)Ta=0.278s时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=0.278s发生短路If波形 2)Ta=0.0278s时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=0.278s发生短路If波形 2.2 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=0.5056时发生三相短路,三相短路电流波形如图7所示。 图7 t=0.5056时三相短路电流波形 2)当在t=0.6时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 2.3 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=1.014(标幺制,下同)时,仿真波形如图10所示 图10 Xd=1.014时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=1.014时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。

电力仿真软件pscad需注意的问题

简单例子,设模块两输入一输出,输入的名称定义为in1和in2,输出为out !一行的开始的感叹号表示本行为注释 !输入输出端口的变量前面需要加一个$符号 if($in1>$in2) then $out=$in1 elseif($in1<$in2) then $out=$in2 else $out=0 Endif Pscad有2种方法可以保存采样数据。 一是recorder,另外一种是channel save。第一种方法最为常用,也最方便,平时应用已足够了。第二种方法则在特定的情况下能发挥奇效。 先说recorder。重点讲一下其中的几个设置。 1. Recording Time Step:必须是整数,小数位一律没用。比如说60Hz,64采样点/周波,输入260就行了,输入260.42和输入260是一个效果的。最大采样时间精度是1微妙,如果需要更小的采样周期,可以使用第二种方法。 2. Output file format:一般选RTP,或COMTRADE99。其中RTP格式简单,但是一些情况下,某些采样点会以xxxxxx保存,如果发生这种情况,把对应采样channel中的pt or ct ratio 改成一个很大的值,例如10000,重新运行就可以了。COMTRADE99的格式复杂一些,但是不会出上面的错误。 3. Analog Output Maximum:现在采样要16位吧,2的16次方-1=65535。缺省的4096是12位采样精度,我感觉4095更对,设计人员少硬件知识:-(。 4. 如果某个channel之前有ct或pt模块,别忘了给相应的channel选择二次测,并填写正确的pt or ct ratio。 5. System Frequency:具体没有什么用处,50,60对数据没影响,只是会在数据文件中保留这个频率。 6. 其他的缺省值就可以了。 需要注意几点: 1. 模块外部有采样起始和终止时间的控制。仿真如果在采样终止时间之前人为终止,则数据文件是.nam的临时文件,不能解读。如果仿真在采样终止时间之前自行终止,则依然会生成正常的数据文件。 2. 如果添加recorder模块后,程序反而编译不通过,出现Runtime error的对话框,有abnormal program termination的出错信息。如果检查其他都正常,可以尝试修改Output file name,因为你的输入文件名不合适。如果添加多个recorder模块后,在仿真中间出现错误,是因为多个recorder的输出文件名相同了。你也许会说文件名是不同的,但你可以检查一下每个文件名的前8位是否相同?recorder只认前8位,后面的一律省略。

基于PSCADEMTDC软件的过电压保护教学仿真

第30卷第2期2008年4月 电气电子教学学报 JOURNALOFEEE VoL30No.2 Apr.2008 基于PSCAD/EMTDC软件的过电压保护教学仿真 张小青,杨大晟 (北京交通大学电气工程学院,北京100044) 摘要:由加拿大马里托巴高压直流研究中心推出的PSCAD/EMTDC软件包以其强大的功能在电力系统及相关领域里已获得了广泛的应用,同时它也为高等学校电气工程专业教学仿真提供了一种有效的工具。本文介绍PSCAD/EMTDC教育版软件包在电力系统过电压仿真教学中的应用,对该软件包的过电压模拟基本功能、系统网络元件及算法和计算流程进行了较为详细的讨论,并给出了操作和雷电过电压仿真的具体算例。 关键词:教学仿真;PSCAD/EMTDC;过电压;暂态模拟 中图分类号:TP319文献标识码:A文章编号:1008-0686(2008)02—0084-04SimulationTrainingofOvervoltageProtectionBasedonPSCAD/EMTDC ZHANGXiao-qing,YANGDa-sheng (SchoolofElectricalEngineering,BeOingJiaotongUniversity,BeOing100044?China) Abstract:PSCAD/EMTDCdevelopedbyManitobaHVDCResearchCenterofCanadahaswideapplicationsinthepowersystemsandtherelevantareasandprovidesanefficientmeansforthesimulationtrainingof‘electricalengineeringmajorsofcollegesanduniversities.TheapplicationofPSCAD/EMTDCofeducationversionisintroducedinthispapertonumericalanalysisofovervohageprotectioninpowersystems.Thefunctionofovervoltagesimulation,systemnetworkelements,algorithmandsimulativeprocedureofthesoftwarepackagearediscussedindetail.Also,thenumericalexamplesaregivenforsimulatingswitchingandlightningovervohages. Keywords:simulationtraining;PSCAD/EMTDC;overvohage;transientsimulation PSCAD/EMTDC是当前国际上普遍流行的一种电磁暂态分析软件包,它主要用来研究电力系统的暂态过程。该软件包也能适用于一般电气电子线路以及可等价地用电路来描述系统的仿真分析。该软件包是由加拿大马里托巴高压直流研究中心(ManitobaHVDCResearcherCentre)开发出来的。该软件由PSCAD(PowerSystemComputerAddedDesign)和EMTDC(ElectromagneticTran—sientsIncludingDC)两部分软件组成。两者的关系是:前者负责界面图形,后者负责模拟计算。从国内外对PSCAD/EMTDC软件包的使用情况来看,该软件包不仅能用于电力系统及相关领域的工程设计与科研,还可用于高等学校电气工程及相关专业的仿真教学。在一些发达国家和国内一些高等学校的电气工程类专业教学中,PSCAD/EMTDC已成为一种行之有效的仿真教学工具。为了适应高电压工程系列课程研究型教学的新需求,我们于2005年引进了教育版PSCAD/EMTDC.(4.1),共计装设 收稿日期:2008-01-05;修回日期:2008—03—06北京市高等教育“十--/[”专项规划重点项目和北京交通大学重点教改项目(230一II,44077)作者简介:张小青(1957一),男,博士,研究员,主要研究方向为电力系统电磁暂态,E-mail:zxqiong@hotmail.oom 杨大晟(1980-),男,博士研究生,主要研究方向为雷电防护。 万方数据

基于PSCAD的电力系统暂态分析课程设计

基于PSCAD的电力系统暂态分析课程设计 1 绪论 1.1意义及背景 暂态是电力系统运行状态之一,由于受到扰动系统运行参量将发生很大的变化,处于暂态过程;暂态过程有两种,一种是电力系统中的转动元件,如发电机和电动机,其暂态过程主要是由于机械转矩和电磁转矩(或功率)之间的不平衡而引起的,通常称为机电过程,即机电暂态,另一种是变压器、输电线等元件中,由于并不牵涉角位移、角速度等机械量,故其暂态过程称为电磁过程,即电磁暂态。同时它又是研究电力系统的一项重要分析功能,是进行故障计算,继电保护鉴定,安全分析的工具。在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统短路计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。在三相系统中,短路故障又可分成三相短路、两相短路、单相短路、单相接地短路、两相接地短路等多种。当电路发生短路时,能使导体温度迅速升高,绝缘破坏,甚至使导体发红,熔化,导致设备损坏。高压电网的短路故障可引起电网瓦解。短路产生的电弧、火花可引发火灾、爆炸、电伤等恶性事故。 最初,电力系统短路计算是通过人工手算的。后来为了适应电力系统日益发展的需要,采用了交流计算台。随着电子数字计算机的出现,1956 年 Ward 等人编制了实际可行的计算机短路计算仿真软件。这样,就为日趋复杂的大规模电力系统提供了极其有力的计算手段。经过几十年的时间,电力系统短路计算已经发展得十分成熟。 1.2 国内外电力系统发展现状 1995年全世界的发电装机总容量为30.0亿kW,1998年为32.5kW。全世界人均用电量为2400kW?h。预计在1995,2020年的25年中,世界能源消耗将增加

基于PSCAD仿真的配电网小电流接地系统建模

基于PSCAD仿真的配电网小电流接地系统建模 摘要:本文主要介绍了利用PSCAD/EMTDC仿真软件提供的电力仿真模块构建 10kV馈线及负荷系统,对系统进行仿真试验,得到发生单相接地时线路的电流波形,并给出零序电压、电流、功率的仿真测量方法,为故障选线的研究作铺垫。 关键词:小电流接地系统;单相接地;建模;仿真 0 引言 在我国10kV配电网中,广泛采用的是非有效接地系统,当发生单相接地故障时由于不能构成低阻抗的短路回路,接地短路电流很小,故此种系统也称为小电流 接地系统[1]。由于其稳态故障电流幅值较小,因此故障无法轻易的检测与判定, 所以给故障选线增加了不少难度[2]。伴随国家经济的迅速增长以及电网规模不断 扩大,用户对供电可靠性的需求也越来越高,因此,对非有效接地系统接地故障 的研究显得尤为重要。本文利用PSCAD构建10kV馈线及负荷系统,建立单相接 地故障的仿真模型。 1 配电网小电流接地系统的建立 配电网仿真系统模型原理图如图1(a),一条110kV母线经一个110kV/10kV 的变电站到10kV母线,变电站低压侧有六条馈线,这些馈线当中两条是架空线,一条是电缆,另外三条是混连线路,Z型变压器中性点经彼得逊线圈串上一个等 效电阻再接地。图1(b)为利用PSCAD软件所建立10kV配电网模型。 (a)实际模型 (b)PSCAD仿真模型 图1 10kV配电网模型 2 系统参数介绍 2.1 线路参数 通过计算架空线路与电缆线路参数,可以获得系统零序电容总。 2.2 彼得逊线圈参数 通过系统零序等值电路可知,中性点经彼得逊线圈接地时,有三种补偿方式,实际工作中,通常为过补偿,补偿系数一般取到1.05。要精确地取到1.05,先 要计算出全补偿时彼得逊线圈的值。当处在全补偿状态,流经短路点的容性电流 与感性电流相等,即,从中可以得出式中:为电网工频50Hz,为彼得逊线圈零 序电感。 系统中性点的彼得逊线圈通过零序电流时,设彼得逊线圈的阻抗为上将通过 三倍的零序电流,并产生相应的电势差,由于实际线路和等效电路的中性点对地 的电势差相同,所以在等效电路中,彼得逊线圈阻抗取为,即实际的电感L应该 为零序等值电路中电感的,代入数据计算得到。过补偿度取1.05,算得彼得逊 线圈。在实际工作中的彼得逊线圈并不是一个纯电感,其还带有有功损耗,有功 损耗通常为感性无功损耗的2.5%-5%,因此在仿真图中我们可以用一个等效电阻 来替代彼得逊线圈的有功损耗,将其取为感性无功损耗的3%,通过计算得到彼 得逊线圈有功损耗等效电阻。 2.3 负荷、变压器等其他参数 每条馈线负荷为500-1000KVA不等,馈线的负荷侧变压器为三角形/星型接法,变压器变比为10kV/380V,母线侧变电站变压器变比为110kV/10kV。发电机出口

PSCAD的电力系统仿真大作业

P S C A D的电力系统仿 真大作业 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

电力系统分析课程报告 姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad 同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。

图3 同步发电机模型参数Ta对应位置 1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形

短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。

相关文档
最新文档