煤气净化系统

煤气净化系统
煤气净化系统

内蒙古科技大学本科生

设计说明书

题目:宝山地区原料条件下2200M3

高炉高炉煤气净化系统设计学生姓名:周乐伟

学号:0977145126

专业:稀土工程

班级:稀土09-1班

指导教师:侯贵平研究员

宝山地区原料条件下2200M3高炉煤气净化系统设计

摘要

高炉煤气净化系统是高炉的重要组成部分。本设计对炼铁工艺和高炉炉型进行了详细的计算,并对煤气除尘设备和除尘系统的平面布置进行了设计。其中设备主要包括重力除尘器和布袋除尘器。本设计采用的是先进的干法布袋除尘器技术,详细阐述了布袋除尘器的分类、结构设计、清灰装置设计、温度控制装置设计、灰斗和卸灰装置的设计及TRT的选择。

关键词:高炉煤气:净化:布袋除尘器

Baoshan material conditions of 2200M3 blast furnace gas

purification system

Abstract

Blast furnace gas purification system is an important component Of furnace. The design for the blast furnace ironmaking process and carried out detailed calculations, gas and dust removal equipment and layout of the system was designed. The equipment includes gravity and bag house dust. This design uses advanced dry bag filter technology, elaborated bag house classification, structural design, cleaning equipment design, temperature control device design, hopper and discharging device design and the choice of TRT.

Key words: blast furnace: purification: bag filter

目录

摘要................................................................ I Abstract........................................................... I I 第一章文献综述.. (1)

1.1 概述 (1)

1.2 高炉炼铁 (2)

1.2.1 高炉炼铁的技术进步 (2)

1.2.2 高炉炼铁面临的问题及改善措施 (3)

1.3 高炉煤气 (4)

1.3.1 高炉煤气简介 (4)

1.3.2 高炉煤气净化回收的必要性 (4)

1.3.3 高炉煤气净化工艺 (5)

1.3.4 主要除尘器特点及除尘工艺比较 (6)

1.3.5 三种除尘器的比较 (6)

1.3.6 布袋除尘结构和除尘机理 (7)

1.4 设计方案确定 (8)

第二章炼铁工艺计算及主要参数选择 (10)

2.1 原始数据整理计算 (10)

2.1.1 原料成分 (10)

2.1.2 燃料成分见表 (10)

2.2 配料计算 (11)

2.2.1 冶炼条件确定 (11)

2.2.2 吨铁矿石用量计算 (11)

2.2.3 生铁成分计算 (11)

2.2.4 石灰石用量计算 (12)

2.2.5 渣量及炉渣成分分析 (12)

2.3 物料平衡计算 (13)

2.3.1 风量计算 (14)

2.3.2 煤气组成及煤气量计算 (14)

2.3.3 考虑炉料的机械损失后实际入炉量 (16)

2.3.4 编制物料平衡表 (17)

2.4 高炉热平衡计算 (17)

2.4.1 热量收入Q收 (17)

2.4.2 热量支出 (18)

2.4.3 编制热量平衡表 (20)

第三章炉型计算及参数选择 (22)

3.1 日产铁量计算 (22)

3.2 炉缸尺寸计算 (22)

3.3 炉缸高度计算 (22)

3.3.1 渣口高度计算 (22)

3.3.2 风口计算 (22)

3.4 死铁皮层厚度 (23)

3.5 炉腰直径、炉腹嚼、炉腹高度计算 (23)

3.6 炉身角、炉身高度、炉喉高度 (23)

3.7 校核炉容 (24)

第四章重力除尘器设计 (27)

4.1 粗煤气管道 (27)

4.1.1 粗煤气管道布置及主要尺寸计算 (27)

4.1.2 设计除尘器参考的数据: (27)

4.2 高炉煤气发生量与煤气含尘量的计算 (28)

4.2.1 炼铁工艺计算数据 (28)

4.2.2 重力除尘器及管道设计 (28)

4.3 煤气管道设计 (28)

4.3.1 除尘器及煤气管道中煤气流速 (28)

4.3.2 导出管设计 (28)

4.3.3 上升管设计计算 (29)

4.3.4 下降管设计计算 (29)

4.3.5 放散管直径 (29)

4.3.6 高炉炉顶管道设计参数 (30)

4.4 重力除尘器的设计 (30)

4.4.1 重力除尘器的设计要求 (30)

4.4.2 重力除尘器部分设计参数选择 (30)

4.4.3 重力除尘设备尺寸的选择 (30)

4.4.4 积灰量及灰斗设计 (32)

4.4.5 出口含尘浓度 (32)

4.4.6 重力除尘器参数 (32)

4.5 除尘器及粗煤气管道设备 (32)

4.5.1 煤气遮断阀 (32)

4.5.2 清灰阀及煤气灰搅拌机 (33)

第五章布袋除尘器设计 (34)

5.1 布袋除尘器形式 (34)

5.2 滤料的选择 (34)

5.3 清灰方式的确定 (35)

5.4 过滤气体速度、过滤面积、滤袋尺寸、滤袋数目的确定 (35)

5.5 除尘器平面布置 (36)

第六章除尘系统附属设备 (38)

6.1 阀门 (38)

6.1.1 煤气遮断阀 (38)

6.1.2 煤气放散阀 (38)

6.1.3 煤气调节阀组 (39)

6.1.4 叶形插板 (40)

第七章余压发电 (41)

7.1 煤气余压回收装置的工艺流程及特点 (41)

7.1.1 工艺流程 (41)

7.1.2 煤气余压回收装置的主要特点 (42)

7.2 TRT的基本结构和工作原理 (42)

7.2.1 TRT的基本结构 (42)

7.2.2 TRT的工作原理 (43)

7.3 TRT的运行操作过程及注意事项 (43)

7.3.1 TRT启动 (43)

7.3.2 TRT运行 (44)

7.3.3 TRT停机 (44)

第八章除尘器中的自动控制系统 (46)

8.1 温度自动控制系统 (46)

8.2 电压差控制仪 (46)

8.3 脉冲控制仪 (46)

8.4 箱体自动检漏 (47)

参考文献 (48)

致谢 (50)

第一章文献综述

1.1 概述

高炉发源于中国,高炉何时在我国发明,各路专家尚无统一意见.有人推断是公元前8世纪[1,2],现在己有出土的铸铁实物,证实了这一推断[3],是世界上最早掌握冶铁技术少数文明古国之一欧洲出现高炉约在170年以后。20世纪是中国炼铁大发展时期,并成为世界炼铁大国。20世纪是中国钢铁工业发展的世纪。这100年的中国钢铁工业发展史表明,钢铁工业是一个国家经济实力的基础。

21 世纪的钢铁作为一个重要的结构材料、功能材料的位置不会发生重大变化。从高炉炼铁生产规模和效率成本看,世界上还没有任何一种非高炉流程能达到和接近大型高炉目前已达到的生产和效益水平可以,21 世纪相当长的时间内,国际、国内高炉炼铁流程都将占绝对优势。多年来,我国炼铁界认真贯彻了高炉炼铁以精料为基础的方针,认识到精料对炼铁技术进步的影响率在70 %以上。一批企业在不断改善焦炭、烧结、球团质量,炼铁炉料结构日趋科学、合理、经济。在改善炼铁原燃料质量的过程中,出现了各企业发展不平衡。总体上讲,大企业进展慢,一批中小企业在加快向国际先进水平靠拢。

中国炼铁处于高速发展阶段, 2007年全国生铁产量达到4. 6944亿t比上年度增长15. 19%[4],其增幅低于钢产量的同期增幅,占世界总产量的49. 74%。2007年全国重点钢铁企业(指71家)产铁3. 69亿t比上年增长13. 74%,其他企业产铁1. 20亿t增长19. 60%。地方企业铁产量增速高于大中型钢铁企业。2008年上半年全国产铁2. 4642亿t比上年度增长7. 89%,降低了发展势头[5,6]。中国炼铁技术进步主要表现在:①综合采用精料、上下部调剂、高压炉顶、高风温、富氧鼓风、喷吹辅助燃料(煤粉和重油等)等强化冶炼和节约能耗新技术,特别在喷吹煤粉上有独到之处。1980年中国重点企业高炉平均利用系数为 1.56吨/(米·日),焦比为539公斤/吨生铁;②综合利用含钒钛的铁矿石取得了突破性进展,含稀土的铁矿石的利用也取得了较大的进展。即使如此,高炉工艺也仍然存在一些问题:工艺流程复杂、能耗高、环境污染严重与投资庞大等。另外高炉工艺对冶金焦有很强的依赖性,然而从已探明的世界煤炭储量来看,焦煤仅占总储煤量的5%,而且分布很不均匀,因此高炉炼铁的发展面临着焦煤缺乏的困难。

为解决这一困难,众多的非高炉炼铁技术就应运而生了,而且得到了较快的发展[7]。非高炉炼铁技术根据其工艺特征、产品类型及用途不同可以分为熔融还原和直接还原两大类。熔融还原法是以非焦煤为能源,在高温熔态下进行铁氧化物还原,渣铁能完全分离,得到类似高炉的含碳铁水。直接还原法则是以气体燃料、液体燃料或非焦煤为能源,在铁矿石(或含铁团块)软化温度以下进行还原得到金属铁的方法。其产品呈多孔低密度海绵状结构,被称为直接还原铁(DRI)或海绵铁。

传统的高炉炼铁工艺仍保持着旺盛的发展势头。国外高炉炼铁的产量约占整个铁产量90%,如扣除直接还原铁,则约占99%。受炼钢需求量的驱动,西方采取提高现有高炉生产率或改扩建大高炉的方式来扩大高炉流程的产能。钢铁工业快速发展的印度等国家,也基本都是以高炉流程为基础。例如,已建了2座COREX装置的印度JINDAL厂,目前正在建设4000 m3的高炉来完成新的产能扩张。而韩国现代集团的2座5250 m3高炉的建设,同中国以首钢曹妃甸大高炉为代表的众多大高炉一起,更进一步增强了未来高炉流程的主导地位[8]。

1.2 高炉炼铁

1.2.1 高炉炼铁的技术进步

高炉炼铁精料技术包括:高(品位、强度高)、熟(熟料率)、净(筛除粉末)、均(粒度均匀)、小(粒度要小)、稳(成分稳定)、少(有害杂质少)、好(物化性能好)等。精料技术的核心是要提高入炉矿品位。高炉炼铁,品位每提高 1 %,焦比下降2 %,产量提高3 %,渣量减少30 kg/t(铁),还可增加喷煤量,创出一定的经济效益[9]。我国矿品位的提高主要是使用高品位进口矿比例增加的结果。一般进口矿的品位在64 %以上。我国进口矿的数量在逐年增加,从1995年的4115万t,增加到2002年的11149万t[10],占我国炼铁使用矿石总量的32 %以上。使用进口矿不仅提高了高炉入炉矿品位,而且也改善了烧结矿的冶金性能。

近年我国烧结技术进步取得了可喜的成果,应用小球烧结技术、厚料层铺料、细精矿烧结技术、制止烧结矿自然风化技术、含CaF2和TiO2的特殊矿烧结等技术,使烧结质量不断提高。2000年、2001年、2002年我国重点企业的烧结转鼓指数在逐年提高,其值为65.84 %、71.62 %、74.45 %;烧结碱度也在提高,其值为1.70、1.76、1.83[11]。

国外高炉炼铁的技术进步体现在高炉的高效化、低燃料比、高炉长寿、环保等方面。高炉高效化生产首先体现在高炉的大型化。在这方面日本的效果最为突出。在过去的20年里,日本高炉的平均容积从2570 m3增加到4200 m3 [15],而且现拥有1座5000 m3以上的高炉,包括最大的5775 m3高炉。欧洲高炉的数量已从1990年近90座减少到2005年的54座左右。平均的炉缸直径为10.3 m,平均工作容积为2100 m3。最大的炉缸直径是14.9m[16]。北美(加拿大,墨西哥,美国)有38座高炉,统计的37座高炉平均工作容积为1783 m3/座[17]。为满足产量的要求,美国AK Steel Middletown3号高炉(工作容积1462 m3)则使用吨铁超过200kg的直接还原热压块铁和废钢作为入炉原料,从而使高炉利用系数达到4.2 t/(m3·d)[17]。不断降低燃料比是高炉炼铁长久目标。欧洲最好的高炉总燃料比为440~460 kg/t(铁水)(都折算成焦炭),而且是长期运行的指标。最新的焦比指标是低于300 kg/t。大块焦焦比的最低值是240kg/t。使用小焦已成为普遍的实践。数座高炉的煤比超过200 kg/t。最高的是CORUS 6号和7号高炉,在高利用系数条件下,连续2年以上在225~230 kg/t的范围内[17]。传统的高炉炼铁工艺仍保持着旺盛的发展势头。国外高炉炼铁的产量约占整个铁产量90%,如扣除直接还原铁,则约占99%。受炼钢需求量的驱动,西方采取提高现有高炉生产率或改扩建大高炉的方式来扩大高炉流程的产能。

1.2.2 高炉炼铁面临的问题及改善措施

炼铁系统在钢铁生产体系中是最耗能的,且产生了最大的环境负荷(主要是CO:排放)。2002年炼铁系统的能量消耗占钢铁产业的69.4%,二氧化碳排放量占整个体系的73.4%。单就高炉生产这一环节而言,其能量消耗和二氧化碳排放量分别占整个钢铁产业的49.0%和53.0%[12],高炉炼铁生产面临的主要问题[13]是:①精料、富氧鼓风、高风温、煤粉喷吹以及低硅操作等常规技术的广泛应用,已使高炉各项指标处于较高水准,单凭常规技术很难进一步改善高炉性能。②高炉的原燃料条件日趋恶化,铁矿石品位逐渐下降,各大钢铁企业进口矿用量逐年递增,高炉用高三氧化二铝和高结晶水含量铁矿石量增加;另外,煤炭储量逐年下降,优质煤资源量减少,高炉的燃料及还原剂条件呈劣化趋势。③焦煤资源全球性匾乏以及焦炉的寿命等问题,将使得全球范围内焦炭供应难以满足高炉炼铁的需要。④炼铁生产主要使用的含碳能源(煤及其衍生物)产生大量的二氧化碳。常

规技术对二氧化碳减排无能为力,如喷煤虽可有效降低焦炭消耗,但不能明显缓解整个系统的环境负荷。在此背景下,一些炼铁新技术已被提出或实际应用[14],其中包括2个方向:一是用革新技术在高炉常规操作高效率的基础上,实现高炉的超高效率操作,通过高炉环节的高产低耗低污染来实现整个系统的高效和低环境负荷;二是将高炉炼铁与大规模发电相结合,优化整个钢铁流程的能量利用,实现系统节能。

1.3 高炉煤气

1.3.1 高炉煤气简介

高炉煤气为炼铁过程中产生的副产品,主要成分为:CO、CO

2、N

2

、H

2

、CH

4

等,

其中可燃成分CO含量约占25%左右,H

2、CH

4

的含量很少,CO

2

、 N

2

的含量分别占

15%、55%,热值仅为3500KJ/m3左右。高炉煤气的成分和热值与高炉所用的燃料、

所炼生铁的品种及冶炼工艺有关,现代的炼铁生产普遍采用大容积、高风温、高冶炼强度、高喷煤粉量的生产工艺,采用这些先进的生产工艺提高了劳动生产率并降低能耗,但所产的高炉煤气热值更低,增加了利用难度。高炉煤气中的CO

2

,

N

2

既不参与燃烧产生热量,也不能助燃,相反,还吸收大量的燃烧过程中产生的热量,导致高炉煤气的理论燃烧温度偏低。高炉煤气的着火点并不高,似乎不存在着火的障碍,但在实际燃烧过程中,受各种因素的影响,混合气体的温度必须远大于着火点,才能确保燃烧的稳定性。高炉煤气的理论燃烧温度低,参与燃烧的高炉煤气的量很大,导致混合气体的升温速度很慢,温度不高,燃烧稳定性不好。

1.3.2 高炉煤气净化回收的必要性

钢铁企业的炼铁高炉在生产过程中产生一些副产品高炉煤气,这些煤气作为一种含有热值的能源,如果直接放散,将对环境造成污染。多年来,由于我国没有先进的技术将回收后的这些煤气进行充分利用,大量的富余煤气只能将其燃烧后排放,俗称“点天灯”,白白浪费了资源。高炉煤气净化除尘系统是一种对高炉荒煤气进行净化处理的循环利用的系统,通过长时间的使用和研究,现在高炉煤气净化除尘系统一般采用干法布袋除尘和湿法除尘两种技术手段,是典型的节能环保技术,特别对我国大型高炉煤气布袋除尘的推广与发展具有重要意义。

高炉煤气净化后作为能源加以利用,既是炼铁生产工艺本身的要求(因炼铁工艺需要向高炉中鼓热风,而热风炉则用高炉煤气作能源),也是保护环境的要求。就目前而言,我国高炉煤气绝大多数企业均巳回收利用,但在回收率或放散串上差距很大,先进企业放散率仅4%,而较差酌企业是百分之十几,全国平均为8%[12]。多年来,环保工作者为降低高炉煤气的放散串,提高回收率作了很大的努力,取得了一定的成绩。

近年来,随着对大气污染治理的加强,人们对固体颗粒、粉末和厌恶的物理和化学特性的认识比以前有了更深入的了解。在空气污染治理、化工、机械行业的除尘器已涌现出了许多新技术。但是总体来讲,气体除尘技术与其他工程科学相比,基础比较薄弱,往往还不能预测所选用的除尘装置的最终性能,主要是由于很难掌握粉尘例子的物理性质,以及他们在湍流气流中的基本行为。对粉尘粒子与除尘装置之间的关系,更多的还要依赖经验来判断。

1.3.3 高炉煤气净化工艺

目前,高炉煤气除尘工艺主要分湿法和干法两大类。湿法除尘工艺主要有:塔文工艺、双文工艺和高炉煤气还缝洗涤工艺(俗称比肖夫煤气清洗工艺)等。塔文工艺流程是高炉煤气从高炉炉顶排出后进入干式重力除尘器,再进入洗涤塔,然后进入文氏管,最后通过脱水器进行脱水后,再进入高炉煤气总管。而双文工艺流程所不同的是用溢流文氏管取代了洗涤塔。高炉煤气环缝洗涤技术是一种具有控制高炉炉顶压力功能的煤气清洗工艺,在西欧的高炉煤气除尘系统。煤气通过重力除尘器后,进入环缝洗涤塔内,然后进入高炉煤气总管。现在国内外大型高炉煤气清洗主要采用串联双文系统和比肖夫洗涤塔系统。

干法除尘的方法很多,如布袋除尘器、移动床颗粒层除尘、沸腾床反吹法颗粒层除尘和干法电除尘等,但是除布袋除尘器净化工艺已用于工业生产外,其余均处于工业试验和实验室阶段。武钢3200m3高炉、邯钢1260m3均采用了干法电除尘净化工艺,但均未能长期、续、稳定运行,主要是由于使用的温度范围对电除尘器不合适时,运转就不稳定。

不同除尘设备只能除去某些粒子范围的灰尘。为了将煤气中的含尘量降到10mg/m3以下,宜采用多个或多种除尘设备组合的循序渐进的除尘形式。高炉煤气除尘一般分为两级完成,粗除尘采用惯性除尘器、重力除尘器、旋风除尘器,

粗除尘后的煤气含尘量一般为1-10g/m3,从高炉出来的荒煤气首先经过除除尘设备,除去粒径较大的炉尘。精除尘采用布袋、静电除尘器,也有采用双文氏管或环缝洗涤器的湿式除尘器。精除尘后煤气含尘量小于10mg/m3[10]。由于干式除尘具有环保节能的优势,推荐采用干式除尘。

1.3.4 主要除尘器特点及除尘工艺比较

湿式除尘器的特点:湿式除尘器的构造简单,设备费用低,净化效率高,对细粒粉尘也有较好的除尘效率,但运行费用较高;湿式除尘器对疏水性粉尘的净化效率不高,一般不宜用于水硬性粉尘的净化;湿式除尘器可净化粘结性粉尘,但应考虑冲洗合情理,以防堵塞;净化腐蚀性气体时,应考虑增设防腐蚀设施;除尘器耗水,对排出的污水必须处理,冬季应有防冻措施。

袋式除尘器的特点:除尘效率高,对超细粉尘的捕集效率也可达99%以上,处理风量大,运行稳定可靠;处理烟气的含尘浓度范围广,可以从数百毫克至数百克;不宜用于净化含有油污的气体或粘结性粉尘,否则应作特殊处理;净化相对湿度大的含尘气体(包括湿度大的高温烟气)时,除尘设备的外壳应进行保温,必要时烟气应加热,以防结露;净化高温或腐蚀性气体时,应选择耐高温或抗腐蚀的滤料;净化有爆炸危险的含尘气体时,要选用防静电滤料并接地,外设防爆孔和传动机构,排灰阀要考虑防爆,并严格控制漏风率;净化吸湿性或潮解性粉尘时,滤袋应采用表面光滑的滤袋;对含有火花的烟气,除尘器要先进行预处理。

电除尘器的特点:电除尘是一种高效率的除尘设备,除尘器随效率的提高,设备的造价也随之提高;电除尘器压力损失小,耗电量小,运行费低;电除尘器适用于大风量的除尘系统,高温烟气及净化含尘浓度高的气体;电除尘器能捕集细粒径的粉尘,适用于捕集币电阻在104~5×1010Ω·m范围内的粉尘;电除尘器气流分布要均匀;对净化湿度大的气体或露点温度高的烟气,要求采取保温措施以防结露;粘结性粉尘可选用干式电除尘器,但应调振打强度;沥青与尘混合物的粘结粉尘,采用湿式电除尘器;捕集腐蚀性很强的粉尘时,应选用特殊结构和防腐蚀性能好的电除尘器;电机风速一般在0.4m/s~1.5m/s范围内,不宜过大,粒径和密度偏小的粉尘,电机风速不宜超过1.0m/s。

1.3.5 三种除尘器的比较

通过对以上三种除尘器特点的介绍,我们可以发现湿法除尘存在耗水量大﹑

存在二次污染﹑能耗高﹑运行费用高的弊端。相对而言,干法除尘具有不耗水﹑无污染﹑能耗小﹑运行费低的优点,属于环保节能项目,符合社会发展的趋势,位于国家钢铁行业当前首要推广的“三干一电”(高炉煤气干法除尘﹑转炉煤气干法除尘﹑干熄焦和高炉煤气余压发电)之首。每一种除尘工艺都有其优势和弊端,但相比较而言,干法除尘比湿法除尘更具优势,与湿法相比,它具有节能﹑煤气质量好﹑运行费用低﹑投资省又能解决因煤气洗涤水对环境的污染问题等优点,有显著的经济和社会效益。

高炉采用全干法除尘技术后,不用水洗和冷却,每吨节水7~9 m3,其中节约新水0.2 m3,并省掉了湿法除尘所需要的大型水洗塔和沉淀池等投资及所占空间,同时杜绝了大量有毒污水、泥的产生。干法除尘比湿法节电60%~70%,具有能量损失小、透平压力高的特点,配以TRT余压发电设备后,每吨铁发电量比湿法提高30%,并能够把高达140分贝的噪音降低到85分贝以下,有效减少了环境噪音污染。布袋除尘煤气出口温度比湿法除尘高100℃左右且含尘量低,有利于提高高炉风温。从长远看,大中型高炉采用煤气干法除尘取代湿法除尘是技术发展的方向,目前的关键问题是如何提高和完善干法除尘技术,而布袋除尘技术与静电除尘技术相比,虽然电除尘工艺效率高,所收集粉粒粒径范围大,电能消耗少等优点,但是,电除尘对粉尘敏感度大,一次投资高,运行技术要求严格,,占地面积大,因此布袋除尘与电除尘相比仍有许多无可替代的优越性。布袋除尘似乎特别适用于高炉煤气的净化,不论使用何种滤布,不论煤气入口含尘浓度高低,净化后含尘量均小于10mg/ m3,以较低的投资和较小的阻力损失或价格达到电除尘器相同的效果,不能不说是一大进步。高炉煤气干法除尘技术是系统的环保节能工艺,也是冶金行业清洁生产技术主要推荐项目,是国家钢铁协会重点推荐的高炉煤气除尘技术。随着这项新技术在全国高炉上的推广应用,对我国钢铁工业可持续发展和提高竞争力具有重要意义。

1.3.6 布袋除尘结构和除尘机理

布袋除尘器是一种干式除尘器。含尘煤气通过滤袋,煤气中的尘粒附着在织孔和袋壁上,并逐渐形成灰膜。当煤气通过灰袋和灰膜时得到净化。随着过滤的不断进行,灰膜增厚,阻力增加,达到一定数值时要进行反吹,抖落大部分灰膜使阻力降低,恢复正常的过滤。反吹是利用自身的连续性和工艺上的要求,一个

除尘系统要设置多个箱体(一般4~10个),反吹时分箱体轮流进行。反吹后的灰尘落到箱体下部的灰斗中,经卸灰﹑输灰装置排出外运。

含尘气体由下面进口管进入中箱体,其中装有若干排滤袋。含尘气体由袋外进入袋内,粉尘被阻留在滤袋外表面。净化的气体经过文氏管进入上箱体,最后由排气管排出。滤袋通过钢丝枢架固定在文氏管上。每排滤袋上部均装有一喷吹管,喷吹管上有6.4mm的喷射孔与每条滤袋相对应。喷吹管前装有与压缩空气包相连的脉冲阀,控制仪不停地发出短促的脉冲信号,通过控制阀有序地控制各脉冲阀之开启。当脉冲阀开启(只需0.1~0.12s)时,与脉冲阀相连的喷吹管与气包相通,高压空气从喷吹孔以极高的速度喷吹,在高速气流周围形成一个比自己体积大5~7倍的诱导气流一起进入滤袋,使滤袋急剧膨胀引起冲击振动,同时在瞬时内产生由外向内的气流,使粘在袋外及吸入袋内的粉粒被吹扫下来,吹扫下来的粉粒落入下箱体及灰斗,最后经卸灰阀排出。

布袋材质有两种,一种是我国自行研制的无碱玻璃纤维滤袋,广泛应用于中小高炉(目前规格有Φ230、Φ250、Φ300mm),另一种是合成纤维滤袋(又称尼龙针刺毡,简称BDC)。玻璃纤维滤料可耐高温(280~300℃),使用寿命一般在1.5年以上,价格便宜,其缺点是抗折性较差。合成纤维滤料的特点是过滤网速高,是玻璃纤维的2倍左右,抗折性好,但耐温低,一般为240℃,瞬时可达270℃,且价格较高,是玻璃纤维的3~4倍,所以目前反在大型高炉上使用。

1.4 设计方案确定

本设计是宝山地区原料条件下2200m3高炉煤气净化系统。经过大量的文献查阅及调查研究,决定采用高压氮气反吹脉冲喷吹类袋式除尘器。过滤方式采用外滤式,滤筒形状为圆筒形,滤料为氟美斯复合针刺毡,进气方式为下进气,并有先进的煤气检漏、自动控温及煤气降温装置、灰位自动控制装置。此次毕业设计方案如下:

第二章炼铁工艺计算及主要参数选择

2.1 原始数据整理计算

2.1.1 原料成分

高炉采用烧结矿、球团矿、生矿三种矿冶炼,其混合矿按75:15:10,整理计算后见表2.1。

表2.1 矿石成分表(%)

物料TFe Mn P S Fe2O3FeO CaO MgO SiO2Al2O3烧结矿57.471 0.609 0.044 0.010 74.987 6.310 10.413 2.017 3.433 1.696 球团矿66.191 0.032 0.018 0.006 94.271 0.246 2.489 0.111 2.389 0.395 生矿63.163 0.174 0.042 0.011 88.379 1.647 0.435 0.140 2.943 2.664 混合矿59.348 0.479 0.040 0.010 79.219 4.934 8.227 1.543 3.227 1.598 硅矿 1.083 0.000 0.000 0.000 1.547 0.000 0.180 0.072 95.387 2.823 石灰石0.275 0.078 0.000 0.000 0.355 0.000 55.601 0.080 0.367 0.161

续表2.1

物料TiO2CO2H2O Na2O K2O MnO MnO2FeS FeS2P2O5烧结矿0.204 0.000 0.000 0.007 0.018 0.787 0.000 0.028 0.000 0.100 球团矿0.000 0.000 0.000 0.000 0.000 0.410 0.000 0.017 0.000 0.041 生矿0.097 0.000 3.265 0.013 0.023 0.000 0.276 0.000 0.021 0.097 混合矿0.163 0.000 0.327 0.007 0.016 0.652 0.028 0.024 0.002 0.091 硅矿0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 石灰石0.000 43.334 0.000 0.000 0.000 0.102 0.000 0.000 0.000 0.000

2.1.2 燃料成分见表

表2.2 焦碳成分(%)

附表:

(S全=S有机+FeS×32/88=0.590+1.978×32/88=1.309)

表2.3 煤粉成分

2.2 配料计算

2.2.1 冶炼条件确定

(1)冶炼制钢铁,规定生铁成分[Si]=0.7% ;[S]=0.03%。

(2)假设炼铁焦比K=320 kg ;煤比 M=180 kg 。

(3)选取铁的直接还原度r d =0.45 ;氢的利用率ηH =35%。

(4)规定炉渣的碱度R=CaO/SiO 2=1.02。

(5)元素在生铁、炉渣与煤气中的分配率见下表:

表2.4 常见元素分配率(%)

原料

Fe Mn P S V 生铁

0.998 0.400 1.000 0.068 0.800 炉渣

0.002 0.600 - 0.85 0.200 煤气 - - - 0.082 -

表2.5 生铁成分(%)

成分

Si Mn S P C Fe Σ % 0.7 0.03 0.03 0.090 3.86 95.29 100.00

2.2.2 吨铁矿石用量计算

燃料带入铁量Fe f :

Fe f =370×(0.00576×56/72+0.00274×56/88)+180×0.00640×56/72

=2.30+0.90=3.20 kg

矿石用量A

A =()()f (1)12(1)21000(95.70.73[Si][S])100;(0.997;0.5)0.68 1.03n Fe TFe P M ηηηηη?---?==?++?()

矿矿 = 1000(95.70.730.70.03)100 3.200.99758.5980.9970.680.040 1.030.4790.5

?-?--???+?+?? = 95158.68/58.70=1621.10 kg

2.2.3 生铁成分计算

[](1)

(%)/10f Fe A TFe Fe η=?+?

= (1621.10×59.348%+3.20)×0.997/10

=96.24 (%)

[]62(0.001/10142

P A P K =?+??矿)

=(1621.10×0.040%+370×0.001×62/142)/10=0.08 []2/10Mn A Mn η=??()

=(1621.10×0.479%+370×0.022%×55/71) ×0.5/10

=0.39(%) [][][][][][]100()C Fe P Mn Si S =-++++

=100-(96.24+0.08+0.39+0.700+0.030)

=2.56 (%)

表2.5 生铁成分(%)

成分

Si Mn S P C Fe Σ % 0.7 0.39 0.03 0.08 2.56 96.24 100.00

2.2.4 石灰石用量计算

矿石、燃料带入的石灰石量

=1621.10×0.08227+370×0.00703+180×0.0023=136.38 kg

矿石、燃料带入的SiO 2量(要扣除还原Si 消耗的)

=1621.10×0.03227+370×0.06482+180×0.0405-10×0.7×60/28

=68.39㎏

石灰石的有效溶剂性:

有效CaO =55.601-1.02×0.367=55.22(%)

石灰石的用量

Φ=(68.39×1.02-136.38)/0.5522=-120.65㎏

由以上可知需配加硅矿作溶剂

加入量计算

硅矿有效溶剂性 SiO 2有效=95.300-0.180/1.02=95.21 (%)

硅矿的用量

Ψ=(136.38-68.39×1.02)/0.9521=69.97kg

2.2.5 渣量及炉渣成分分析

燃料带入的各种炉渣组分的数量为

∑CaO =136.38+69.97×0.0018=136.50kg

∑SiO

2

=68.39+69.97×0.95387=135.13kg

∑MgO=1621.10×0.01543+370×0.00332+180× 0.0017 =26.55kg

∑Al

2O

3

=1621.10×0.01598+370×0.0503+180×0.0311 =50.11kg

渣中MnO量=1621.10×0.00479×0.5×71/55=5.01 kg

渣中FeO量=962.4×0.003/0.997×72/56=3.72kg

1t生铁炉料带入的硫量:(硫负荷)

∑S=1621.10×0.0001+370×0.0059+180×0.00473=3.20kg 进入生铁的硫量=10×0.03=0.3kg

进入煤气的硫量=3.20×0.05=0.16kg

进入渣中的硫量=3.20-0.3-0.16=2.74㎏

表2.7 炉渣组成表

项目CaO MgO SiO2Al2O3MnO FeO S/2 ∑

数量Kg 136.50 26.55 135.13 50.11 5.01 3.72 1.37 358.39 成分% 38.08 7.41 37.70 13.98 1.40 1.04 0.38 100.00 注:渣中S以CaS形式存在,计算中的Ca全部按CaO形式处理,氧相对原子质量为16,S 相对原子质量为32,相当已计入S/2,故表中再计入S/2。

炉渣性能校核

炉渣实际碱度=136.50/135.13=1.01

炉渣脱硫之硫的分配系数:L

s

=2×0.38/0.03=25.3

查阅炉渣相可知,该炉渣熔化温度为1350℃

黏度:1500℃时2.5 泊;1400℃时4泊

由炉渣成分性能校核可以看出,这种炉渣是能够符合高炉冶炼要求

2.3 物料平衡计算

对于炼铁设计的工艺计算,直接还原度R

d

及氢的利用率等指标是已知的,

它们在前面已给出,这里还假定入炉碳量的1%与氢反应生成CH

4

。鼓风湿度

=0.0134。

天然气净化厂工艺.docx

龙岗天然气净化厂概况 1龙岗天然气净化厂简介 龙岗天然气净化厂位于四川省南充市仪陇县阳通乡二郎庙村 1 社二郎庙,位于仪陇县西北面边沿山区,距仪陇县老城区直线距离约54km,西南距仪陇县新城区直线距离约71km,北侧距立山镇直线距离约。设计的原料天然气处理能力 4 3 为 1200×10 m/d ,设计的原料气压力~,单列装置的原料天然气处理能力为 43 600×10 m/d ,共 2 列,装置的操作弹性为50~ 100%,年运行时间 8000 小时。龙岗天然气净化厂主要包括主体工艺装置、辅助生产设施和公用工程几部分。 其原料气组成如下表所示: 组分摩尔分率,mol%组分摩尔分率,mol% H2S i-C4H10 CO2n-C4H10 H2O N2+He CH4H2 C2H6O2+Ar 注: 1)原料气不含有机硫 2)原料气温度 30~36℃ 2生产工艺 由集气总站来的原料天然气先进入脱硫装置,在脱硫装置脱除其所含的几 乎所有的 H2S 和部分的 CO2,从脱硫装置出来的湿净化气送至脱水装置进行脱水 处理,脱水后的干净化天然气即产品天然气,经输气管道外输至用户,其质量 按国家标准《天然气》(GB17820-1999)二类气技术指标控制。脱硫装置得到的酸气送至硫磺回收装置回收硫磺,回收得到的液体硫磺送至硫磺成型装置,经 冷却固化成型装袋后运至硫磺仓库堆放并外运销售,其质量达到工业硫磺质量 标准( GB2449-92)优等品质量指标。为尽量降低 SO2的排放总量,将硫磺回收装置的尾气送至尾气处理装置经还原吸收后,尾气处理装置再生塔顶产生的酸 气返回硫磺回收装置,尾气处理装置吸收塔顶尾气经焚烧炉焚烧后通过 100m高烟囱排入大气。尾气处理装置急冷塔底排出的酸性水送至酸水汽提装置,汽提 出的酸气返回硫磺回收装置,经汽提后的弱酸性水作循环水系统补充水。总工 艺流程方框图见图 2-1 。

煤气净化工艺工艺流程..

煤气净化工艺工艺流程及主要设备煤气净化设施 1概述 煤气净化车间生产规模按2×65 孔5.5m 捣固焦炉焦炉年产130万t 干全焦配套设计。焦炉煤气处理量为75300m3/h(标况)。 煤气净化车间由冷凝鼓风工段、脱硫工段、硫铵工段(含蒸氨系统)、终冷洗涤及粗苯蒸馏工段、油库及其相关的生产辅助设施组成。 2设计原则 对煤气净化车间本着经济、实用、可靠的原则,在满足国家环保、 职业卫生与安全、能源等法规要求的前提下,尽量简化工艺流程,并 合理配备工艺装备,以节省投资和工厂用地。 3设计基础数据 a)煤气量基础数据 焦炉装煤量(干基):206.98t/h 煤气产量:340Nm3/t(干煤) b) 煤气净化指标 表1 煤气净化指标表 序号指标名称单位净化前指标净化后指标 1 NH3g/m36~8 ≤0.05 2 H2S g/m35~7 ≤0.2 3 苯g/m324~40 ≤4 4 焦油g/m3≤0.02 5 萘g/m3≤0.3 4原材料及产品指标

4.1焦油——符合YB/T5075-2010 2号指标 序号指标名称质量指标 1 密度(20℃),g/cm3 1.13~1.22 2 甲苯不溶物(无水基),% ≤9 3 灰分,% ≤0.13 4 水分,% ≤4.0 5 粘度(E80) ≤4.2 6 萘含量(无水基),% ≥7.0(不作考核指标) 4.2硫酸铵—符合GB535-1995一级品 序号指标名称质量指标 1 氮N含量(以干基计),% ≥21 2 含水,% ≤0.3 3 游离酸含量,% ≤0.05 4.3粗苯—符合YB/T5022-1993 序号指标名称质量指标(溶剂用) 1 密度(20℃),g/ml ≤0.900 2 75℃前馏出量(重),% ≤3 3 180℃前馏出量(重),% ≥91% 室温(18~25℃)下目测无可见的不 4 水分: 溶解的水 4.4洗油指标 序号指标名称指标 1 密度(20℃),g/ml 1.03~~1.06 2 馏程(大气压760mmHg),%

天然气膜法脱水净化技术及具体工艺研究

天然气膜法脱水净化技术及具体工艺研究 发表时间:2019-03-07T14:16:41.250Z 来源:《建筑学研究前沿》2018年第33期作者:邱斌仵秉林吉伟平王毅 [导读] 本文主要针对天然气膜法脱水净化技术及具体工艺展开深入研究,先阐述了溶剂吸收法、冷却分离法等净化方法 长庆油田分公司第一采气厂陕西延安 717407 摘要:本文主要针对天然气膜法脱水净化技术及具体工艺展开深入研究,先阐述了溶剂吸收法、冷却分离法等净化方法,然后通过膜法脱水技术原理和技术对比、工艺过程、集成净化技术等,以此来更好地展现出膜法脱水净化技术的优势,适合在国内天然气脱水领域中进行广泛应用。 关键词:天然气;膜法;脱水净化技术 现阶段,天然气这一能源具有广阔的应用前景,在储量、价格以及环保等方面具有较强的优势,可以保证天然气消费呈现出明显的上升趋势,而且通过发展天然气工业,可以缓解我国能源供需矛盾,并进一步优化能源结构。对于天然气脱水净化来说,可以促进天然气正常传输和使用,膜法脱水技术具有较强的技术优势,有利于实现天然气能源的高效利用和配置。 一、天然气膜法脱水净化方法 (一)溶剂吸收法 对于溶剂吸收法来说,主要将溶剂和水混合在一起,以此来满足脱水要求,对于吸收溶剂来说,相对分子质量较高的醇类得到了广泛的应用,比如TEG、DEG等。其中,TEG属于非常重要的天然气脱水技术,这在大规模的天然气脱水中具有较强的适用性,具体的应用地点主要集中在集气站或集中脱水净化厂等。脱水露点降主要取决于再生甘醇的浓度,如果TEG质量分数在98%左右【1】,露点可以控制在33~42℃之间。 (二)冷却分离法 对于冷却分离法来说,主要对膨胀降温进行了应用,促使天然气中的水气冷凝并分离开来。针对以往传统的膨胀脱水方法,具有较多的局限性,比如缺少宽泛的适用范围、造价也比较高等。后来出现了天然气脱水净化技术,也就是气波制冷法。其工作原理就是要对天然气自身压力做功进行应用,高速气流射入特殊设计的旋转喷嘴周围均布的接收管内,产生膨胀波,进而可以迅速使气体降温,获得的冷量,可以促进天然气迅速制冷,分离脱水后外输。气波制冷所获得的外输露点在-10~40℃之间,可以满足节约投资目的,但是也存在一些缺点,比如在脱水以后,大大降低了天然气压力,这对长距离气体输送产生了极大的影响。 二、天然气膜法脱水净化技术的具体工艺 (一)膜法脱水技术原理和技术对比 1.原理 天然气膜分离技术,主要是通过制备的高分子气体分离膜,对天然气中酸性组分的优先选择渗透性,在原料天然气流经膜表面时,透过分离膜,可以脱除其酸性组分,比如H2O、CO2,具体如图1所示:

天然气净化

1、流体的密度包含哪些内容? 2、在一般温度和压力下,怎样求气体的密度? 3、如何理解流体静力学基本方程? 4、流体动力学的基本概念包含哪些? 5、稳定流动的本质是什么? 6、流体具有能量的表现形式? 7、如何实现流体从低压头处向高压头处的流动过程? 8、流体的流动形态可以通过什么来判断? 9、流体阻力计算包括哪几类? 10、非均相物系包括哪些? 11、非均相系分离的目的是什么? 12、计算沉降速度可根据哪几条定律? 13、处理悬浮液的沉降器分哪几种? 14、根据分散物质,过滤常包括哪些过滤? 15、工业上通常所说的“过滤”,指的是什么? 16、什么情况下可使用助滤剂? 17、影响过滤机生产能力的因素有哪些? 18、离心分离设备含有哪些? 19、按分离方式不同,离心机分为哪几类? 20、离心机与旋风(液)分离器的主要区别是什么? 21、惯性分离器的常见形式有哪些? 22、袋滤器有哪几部分组成? 23、什么是文丘里除尘器? 24、热的传递是由什么引起的? 25、热是怎样传递的? 26、什么是热负荷? 27、传热计算一般包括哪些计算? 28、换热器传热计算的基础是什么? 29、如何区别热负荷和传热效率? 30、不同避面传热系数有哪些? 31、换热器壁面上结垢的原因一般有几种? 32、传热面积的计算步骤通常中哪些? 33、套管换热器的主要优点有哪些? 34、强化传热的途径有哪些? 35、提高传热系数的措施是什么? 36、减少热阻的具体措施有哪些? 37、逆流操作的目的是什么? 38、热绝缘的目的有哪些? 39、热绝缘的方法有哪些? 40、溶液气液平衡关系包括哪几个方面? 41、拉乌尔定律表述的内容是什么? 42、简单蒸馏用于什么样的溶液分离? 43、精馏操作含有两种流程? 44、连续精馏塔的物料衡算包括哪些? 45、作全塔物料衡算的目的是什么? 46、求理论塔板数的依据是什么? 47、什么叫图解法? 48、连续精馏塔的热量衡算包括哪些? 49、全塔热量衡算包括那几个步骤? 50、影响精馏塔的操作因素有哪些? 51、什么是气体在液体中的溶解度? 52、亨利定律表明了什么? 53、吸收和机理是什么? 54、什么是吸收速率? 55、如何表达吸收速率方程? 56、气体溶解度如何影响吸收系数? 57、什么叫低浓度气体吸收? 58、选择填料的原则有哪些? 59、怎样确定塔的内径? 60、塔设备的性能会对哪些因素造成影响? 61、填料塔的优缺点各是什么? 62、影响吸收操作的因素有哪些? 63、吸收的目的是什么? 64、解吸的目的是什么?65、天然气资源通常分为哪几大类? 66、我国天然气探明储量的现状怎样? 67、从1990年到2000年,我国天然气生产有何变化? 68、天然气主要含有哪些组分? 69、天然气中的有机物含有哪些? 70、天然气中的其他组分有哪些? 71、天然气的物理性质通常指哪些? 72、天然气的临界参数是指哪些? 73、管输天然气的露点有何要求? 74、天然气的热力学性质包括哪些? 75、防止天然气水合物形成的方法有哪些? 76、我国管输天然气的气质指标在什么地方有明确规定? 77、管输天然气气质指标规定的有害成分有哪些? 78、天然气的储存方式有哪些? 79、以水合物形式储存天然气有何优点? 80、天然气输配系统主要由哪几部分组成? 81、天然气在一次能源消费结构中的地位怎样? 82、世界天然气需求状况怎样? 83、天然气的消费结构怎样? 84、以天然气为主要原料的其他产品有哪些? 85、二硫化碳主要用于什么的生产原料? 86、已具备工业化条件的天然气化工新技术有哪些? 87、传统的提氦工艺有哪些? 88、氦具有哪些用途? 89、硫磺的用途怎样? 90、我国工业硫酸的质量指标执行哪个标准? 91、我国工业硫磺的质量指标执行哪个标准? 92、二氧化碳资源的来源有哪些? 93、二氧化碳利用的发展方向包括哪几个方面? 94、三甘醇的密度、浓度同温度有何关系? 95、三甘醇的粘度、浓度同温度有何关系? 96、甘醇脱水装置的工艺流程通常有哪几种类型? 97、通常用的三甘醇脱水装置工艺流程由哪几部分组成? 98、三甘醇脱水的再生方式有哪几种? 99、减少三甘醇损失量的措施有哪些? 100、造成三甘醇脱水装置腐蚀的介质有哪些? 101、影响脱水操作的因素有哪些? 102、脱水操作中应注意哪些问题? 103、酸性天然气对三甘醇脱水有何影响? 104、物理吸附有何特点? 105、化学吸附有何特点? 106、与甘醇吸收法比较,吸附法脱水有何优点? 107、天然气净化过程中主要使用的吸附剂有哪些? 108、我国天然气净化工艺的现状怎样? 109、国内天然气脱硫的主要方法有哪些? 110、国外天然气脱硫的主要方法有哪些? 111、在世界范围内主要的脱硫方法有哪几种? 112、四种主要脱硫方法的技术特点包括哪些? 113、四种主要脱硫方法的应用范围有何区别? 114、MDEA选择性脱硫工艺在天然气净化领域内的应用包括哪几个方面? 115、MDEA法选择性脱硫有何工艺特点? 116、MDEA选择脱硫的流程及设备有何特点? 117、以MDEA为主剂的其他体系包括哪些? 118、MDEA法的工艺操作问题有哪些? 119、溶液除去热稳定盐的方法有哪些? 120、天然气脱硫的其他方法按其工艺类型可分为哪些? 121、已获得工业应用的物理溶剂有哪些? 122、与醇胺法相比,直接转化法具有哪些特点? 123、目前,硫回收工艺流程通常有哪几种? 124、如何选择使用硫回收工艺流程? 125、硫回收装置的过程气通常有哪几种再热方式? 126、目前,大中小型硫回收装置分别采用哪种再热方式? 127、在硫回收工艺中,化学反应主要发生在什么地方?

天然气脱硫工艺介绍

天然气脱硫工艺介绍公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矾法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。(2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H 2 S同时脱除相 当量的CO 2,原料气压力低,净化气H 2 S要求严格等条件下,可选择醇胺法作为脱 酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H 2 S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③ H 2 S含量较低的原料气中,潜硫量在d~5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1 和图2 分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。

图1 脱硫方案选择与酸气分压的关系 图2 脱硫方案选择与进、出口气质量指标的关系(3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1 原料气组分表 表2 原料气工艺参数表

焦炉煤气净化工艺流程的选择

焦炉煤气净化工艺流程的选择 (2011-01-24 13:14:42) 标签: 分类:焦化类 煤化工 杂谈 笑看人生 摘要:本文对我国煤气净化工艺的发展进行了回顾,提出了我国焦炉煤气净化工艺发展的方向以及选择工艺流程的原则。并推荐采用的焦炉煤气净化工艺流程以及各单元中应采用的行之有效的环保、节能技术。 1 焦炉煤气净化工艺的历史回顾 我国焦炉煤气净化发展是与炼焦工业的发展紧密相连的。建国以前,我国焦化工业几乎是一片空白。建国以来,随着炼焦工业的发展,煤气净化工艺从无到有,蓬勃发展,技术水平和装备水平得到了不断提高。概括起来,大体上经历了三个阶段。第一个阶段是从20世纪50年代末到60年代中期,我国焦化厂的焦炉煤气净化工艺主要是以50年代从原苏联引进的工艺为基础、消化翻板饱和器法生产硫铵的老流程,以当时的武钢焦化厂、包钢焦化厂、鞍钢化工总厂、太钢焦化厂、马钢焦化厂等一批大型厂为代表。但该工艺存在流程陈旧、能耗高、环保措施不健全、装备水平低等问题。主要表现在初冷采用立管冷却器,冷却效率低;硫铵装置设备庞大,煤气阻力大,产品质量差,设备腐蚀严重;没有配套建设脱硫装置,终冷系统不能闭路,对大气和水体污染严重;在粗苯蒸馏系统采用蒸汽法,不但耗用大量蒸汽,产品质量也得不到保证。第二阶段是从60年代中期至70年代末期,随着我国自行设计的58型焦炉不断推广及炭化室高5.5米焦炉的诞生,对煤气净化工艺开展了与石油、化工行业找差距进行技术革新的阶段。在广大技术人员的努力下,在此期间我们将初冷流程改为二段冷却;开发了多种油洗萘代替终冷水洗萘;研制成功了终冷水脱氰生产黄血盐,解决了终冷水的污

煤气净化工艺工艺流程..

煤气净化工艺工艺流程及主要设备 煤气净化设施 1概述 煤气净化车间生产规模按2×65 孔5.5m 捣固焦炉焦炉年产130万t 干全焦配套设计。焦炉煤气处理量为75300m3/h(标况)。 煤气净化车间由冷凝鼓风工段、脱硫工段、硫铵工段(含蒸氨系统)、终冷洗涤及粗苯蒸馏工段、油库及其相关的生产辅助设施组成。 2设计原则 对煤气净化车间本着经济、实用、可靠的原则,在满足国家环保、 职业卫生与安全、能源等法规要求的前提下,尽量简化工艺流程,并 合理配备工艺装备,以节省投资和工厂用地。 3设计基础数据 a)煤气量基础数据 焦炉装煤量(干基):206.98t/h 煤气产量:340Nm3/t(干煤) b) 煤气净化指标 表1 煤气净化指标表 序号指标名称单位净化前指标净化后指标 1 NH3g/m36~8 ≤0.05 2 H2S g/m35~7 ≤0.2 3 苯g/m324~40 ≤4 4 焦油g/m 3 ≤0.02 5 萘g/m 3 ≤0.3 4原材料及产品指标 4.1焦油——符合YB/T5075-2010 2号指标 序号指标名称质量指标 1 密度(20℃),g/cm3 1.13~1.22

序号指标名称质量指标 2 甲苯不溶物(无水基),% ≤9 3 灰分,% ≤0.13 4 水分,% ≤4.0 5 粘度(E80) ≤4.2 6 萘含量(无水基),% ≥7.0(不作考核指标)4.2硫酸铵—符合GB535-1995一级品 序号指标名称质量指标 1 氮N含量(以干基计),% ≥21 2 含水,% ≤0.3 3 游离酸含量,% ≤0.05 4.3粗苯—符合YB/T5022-1993 序号指标名称质量指标(溶剂用) 1 密度(20℃),g/ml ≤0.900 2 75℃前馏出量(重),% ≤3 3 180℃前馏出量(重),% ≥91% 4 水分:室温(18~25℃)下目测无可见的不 溶解的水 4.4洗油指标 序号指标名称指标 1 密度(20℃),g/ml 1.03~~1.06 2 馏程(大气压760mmHg),% 230℃前馏出量(容),% ≥3.0 300℃前馏出量(容),% ≥90.0 3 酚含量(容),% ≤0.5 4 萘含量(重),% ≤8 5 水分≤1.0

天然气净化技术

7000m3/h天然气净化装置操作说明书

目录 第一章前言 (3) 第二章工艺说明 (4) 第三章自动控制及调节系统 (13) 第四章装置的试车 (21) 第五章装置开车和停车 (30) 第六章装置正常操作与维护 (36) 第七章分析项目频率 (42) 第八章安全技术 (43) 附录一吸附剂、干燥剂装填方案 (46)

第一章前言 概述: 7000m3/h天然气净化装置是LNG工程项目的一部份,主要是脱除原料气中的CO2、H2O酸性气体和H2S、重烃和汞等,避免设备管道受到腐蚀和结晶堵塞管道设备,提高天然气热值,满足气体质量标准。该工段的操作说明书用于指导该装置操作人员对装置进行原始开车和维持装置正常运行。其主要内容包括:工艺原理、工艺流程、工艺过程、开停车程序、操作方法、故障诊断和相关的安全知识。本手册是按设计条件编写的操作方法及操作参数,在偏离设计条件不大的情况下,操作者可根据生产需要对操作方法及操作参数作适当和正确的调整。但在任何情况下操作人员均不应违反工业生产中普遍遵循的安全规则和惯例。 在启动和操作运转本装置之前,操作人员需透彻地阅读本手册,因为不适当的操作会影响装置的正常运行,还影响产品质量,严重时会导致设备或吸附剂的损坏,甚至发生事故,危及人身及装置安全。 除专门标注外,本操作说明书中所涉及的压力为表压,组份浓度为体积百分数,流量为标准状态(760mmHg,273K)下的体积流量

第二章工艺说明 2.1原料条件 工作介质: 天然气(含饱和水蒸气) 压力 2.5~3.5 MPa(最低2.5MPa) 温度 -20℃~25℃ 流量 7000Nm3/h 天然气组成 2.2净化后的要求: 水含量≤2.5 ppm 苯含量≤10 ppm CO2≤20 ppm ΣS ≤1 ppm 常压露点≤-70℃

焦炉煤气净化工艺流程的评述

作者:范守谦时间:2008-7-8 10:25:53 焦炉煤气净化工艺流程的评述 范守谦(鞍山焦化耐火材料设计研究院) 焦炉煤气净化工艺流程的选择,主要取决于脱氨和脱硫的方法。众所周知,在炼焦过程中,煤中约有30%的硫进入焦炉煤气,95%的硫以硫化氢的形式存在。焦炉煤气中一般含有硫化氢6~8g /m3 , 氰化氢 1. 5~2g/m'。若不事先脱除,就有50%的氰化氢和10%~40%的硫化氢进入氨、苯回收系统,加剧了设备的腐蚀,还会增加外排污水中的酚、氰含量。含有硫化氢和氰化氢的煤气作为燃料燃烧时, 会生成大量SO 2和NO x 而污染大气。为了防止氨对煤气分配系统、煤气主管以及煤 气设备的腐蚀和堵塞,在煤气作为燃料使用之前必须将其脱除。20世纪70年代以前,由于焦炉煤气主要供冶金厂作工业燃料,因此,大部分焦化厂的煤气净化工艺都没有设置脱硫装置,而回收氨的装置几乎全采用半直接法饱和器生产硫铵流程。 随着国民经济的发展以及我国环保法规的不断完善和日益严格,在焦炉煤气净化工艺过程设置脱硫脱氰装置和改进脱氨工艺就势在必行。进入80年代以后,改革开放逐步深入,我国焦化行业和煤气行业相继从国外引进了多种煤气净化装置,国内科技人员在原有基础上也开发研制了新型脱硫工艺,大大推动了我国焦炉煤气净化工艺的发展。现将几种脱氨和脱硫方法作扼要介绍和论述。 1 氨的脱除 1.1 硫铵工艺 生产硫铵的工艺是焦炉煤气氨回收的传统方法,我国在20世纪60年代以前建成的大中型焦化厂均采用半直接法饱和器生产硫铵,该工艺的主要缺点是设备

腐蚀严重,硫铵质量差,煤气系统阻力大。随着宝钢一期工程的建设,我们引进了酸洗法生产硫铵工艺,该工艺由酸洗、真空蒸发结晶以及硫铵离心、干燥、包装等三部分组成。与饱和器法相比,由于将氨吸收和硫铵结晶操作分开,可获得优质大颗粒硫铵结晶。酸洗塔为空喷塔,煤气系统的阻力仅为饱和器法的1/4,可大幅度降低煤气鼓风机的电耗。采用干燥冷却机将干燥后的硫铵进一步冷却,以防结块,有利于自动包装。我院开发的酸洗法工艺也已成功地用于天津煤气二厂。随着宣钢、北焦的建设,我们还引进了间接法饱和器生产硫铵工艺,该工艺是从酸性气体中回收氨,其产品质量要比饱和器法好,但因在较高温度(100℃左右)下操作,对设备和管道材质要求高,加之饱和器尺寸并不比半直接法小,因此投资高于半直接法。鞍钢二回收还从法国引进了喷淋式饱和器以代替半直接法的饱和器。喷淋式饱和器的特点是煤气系统阻力小,设备尺寸也相应减小,硫铵质量有所提高。但是,不管采用那种生产硫铵的工艺,从经济观点分析,其共同的致命缺点是回收硫铵的收入远远不够支付其生产费用。 1.2 无水氨工艺 另一种可供选择的脱氨方法是用弗萨姆法生产无水氨。弗萨姆工艺是由美钢联开发的,它可以从焦炉煤气中吸收氨(半直接法),也可以从酸性气体中吸收氨(间接法)。 宝钢二期工程是从美国USS公司引进的从焦炉煤气中吸收氨的弗萨姆装置,焦炉煤气导入吸收塔,,体气体xn磷酸铵溶液与煤气直接接触,吸收煤气中的氨,然后经解析、精馏制取产品无水氨。该工艺主要是利用磷酸二氢铵具有选择性吸收的特点,从煤气中回收氨,并精馏制得纯度高达99. 98 %的无水氨。但由于介质具有一定的腐蚀性,且解吸、精馏操作要求在较高的压力下进行,故对设备材质要求较高。但该工艺的经济性受生产规模影响较大,规模过小时,既不经济也不易操作。 攀钢焦化厂在引进AS法脱硫的同时引进了间接法弗萨姆法无水氨装置,将脱酸塔顶的酸性气体引入间接法弗萨姆装置的吸收塔,用磷酸溶液吸收酸性气体中的氨。由于不与煤气直接接触,几乎不产生酸焦油,与半直接法相比,可大大简化分离酸焦油的处理设施。弗萨姆装置生产的无水氨纯度高,产值也较高,经济效益较好,但储运不方便。 1.3 氨分解工艺

焦炉煤气净化工艺的有关思考

龙源期刊网 https://www.360docs.net/doc/d81482440.html, 焦炉煤气净化工艺的有关思考 作者:郭晓林 来源:《中国化工贸易·中旬刊》2018年第07期 摘要:焦炉煤气装置主要包括煤气脱苯、煤气脱硫、煤气脱氮等几个环节,不同工序具 有不同的施工工艺。在全球环保法规日益严格的背景下,以往煤气净化技术弊端逐渐凸显。而焦炉煤气中含有的HCN、H2S及其他燃烧后废料对大气也造成了严重的影响。因此本文根据现阶段焦炉煤气净化主要工序特点,对焦炉煤气净化工艺进行了优化分析,以便为焦化工业的可持续发展提供有效地借鉴。 关键词:煤炉;煤气;净化 某焦化厂主要包括4座4.2m焦炉、1座6.2m焦炉,其设计煤气处理能力为 125000Nm3/h。随着该焦化企业生产规模拓展,在2017年建成投产后,年度设计生产能力由 以往的210万t焦炭上升到300万t焦炭,同时焦炉煤气总发生量也由以往的120000Nm3/h上升到150000Nm3/h。这种情况下,实际生产系统指标就出现不匹配风险。本文对该焦化企业焦炉煤气净化工艺进行了优化分析。 1 焦炉煤气净化工艺主要工序 ①焦炉煤气脱氮:在焦炉干馏环节,大多数氮可转化为以氨根离子为基础的含氮化合物,在煤气粗提取环节也存在6-8g/m3的氮。由于氨具有腐蚀性质,因此在实际处理过程中,需要采用氨水焦油分离装置将其分层分离。 ②焦炉煤气脱苯:焦炉中煤气脱苯主要依据理论脱苯标准,依次通过冷冻、吸附、洗涤等工序进行处理。在焦化工业生产过程中,依据焦油来源共分为石油洗油洗苯、焦油洗油洗苯两种类型。在粗焦油加工系统的大规模焦化企业,大多选择自产焦油洗油洗涤模式。 ③焦炉煤气脱硫:在焦炉煤气中存在着少量的硫化氢及氰化氢气体。现阶段我国煤气脱硫方式主要包括干式氧化、湿式吸收、湿式氧化等几种类型。其中干式氧化主要采用氧化铁箱法,整体使用较普遍。 2 焦炉煤气净化工艺的改进 2.1 环保技术 焦炉煤气净化工艺根据净煤气质量指标及焦化产业市场标准,具有不同的工艺流程。而系统工艺改进则是通过物料流、能源流、信息流、资金流等各个环节设计控制及优化组织,结合环保技术的合理应用,实现过程分析优化。

天天然气净化装置工艺设计

本科毕业设计(论文)开题报告 题目:天天然气净化撬装装置工艺设计 学生姓名学号 教学院系化工院 专业年级 指导教师 20年月日 1.设计的选题意义

天然气可分为酸性天然气和洁气。酸性天然气是指含有显著量的硫化物和CO2等酸性气体,必须经过处理后法能达到关输标准或商品气气质指标的天然气,洁气是指硫化物和CO2含量甚微或根本不含,不需要净化就可以外输和利用地的天然气。天然气中存在的硫化物主要是H2S,此外还可能还有一些有机硫化物,如硫醇,硫醚,COS及二硫化碳等;除硫化物外,二氧化碳也是需要限制的指标。酸性天然气的威海有:酸性天然气在谁存在的条件下会腐蚀金属;污染环境;含硫组分有难闻的臭味,剧毒;刘可能是下游工厂的催化剂中毒;H2S可能堆人造成伤害;CO2含量过高会使天然气热值达到不到要求。 天然气是一次能源中最为清洁,高效,方便的能源,不仅在工业与城市民用燃气中广泛应用,而且在发电业中也起到越来越重要的作用,近20年来在我国呈现出快速发展的态势,从西气东输和川气东送为标志的天然气管道工程建设到2009年1月份气荒,都促进了天然气市场的发展。 煤炭在我过一次能源消费中的比例将近70%,以煤为主的能源消费结构二氧化碳排放过多,对环境压力较大。合理利用天然气,充分净化天然气,可以优化能源消费结构,改善大气环境,提高人民生活质量,对实现节能减排,建设环境友好型社会具有重要意义。

天然气是指自然界中天然存在的一切气体,包括大气圈,水圈,生物圈和岩石圈中各种自然过程形成的气体。而人们长期以来通用的“天然气”是从能量角度出发的狭义定义,是指气态的石油,转指在岩石圈中生成并蕴藏于其中的以低分子饱和烃为主的烃类气体和少量非烃类气体组成的可燃性气体混合物。它主要存在于油田气,气田气,煤层气,泥火山气和生物生成气中。天然气是一种多组分的混合气体,主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷,丙烷和丁烷,此外一般还含有硫化氢,二氧化碳,氮和水汽,一级微量的惰性气体,如氦和氩等。在标准状况下甲烷至丁烷以气体状态存在,戊烷以上为液体。 从矿藏中开采出来的天然气是组分非常复杂的烃类混合物,且含有少量的非烃类杂质。其中非烃类杂质常常含有 H2S,CO2和有机硫化物。由于有水的存在,这些气体组分将生成酸或酸溶液,造成输气管道和设备的严重腐蚀。天然气中的硫化物及其燃烧物会破坏周围的环境,损害人类的健康。因此天然气中的H2S量受到严格限制,开采出的天然气往往需经脱硫预处理以满足传输及使用要求。而像H2S和硫醇这样的硫化物,我们可以通过技术手段将其从天然气中分离,并使之转化为可供工业应用的元素硫,这样便构成一条天然气工业中普遍采用的净化回收硫磺的基本技术路线。此外,当硫磺回收装置的尾气不符合打起排放标准时,还应建立尾

焦炉荒煤气净化工艺

焦炉荒煤气净化工艺 焦炉荒煤气中一般含硫化氢为4~8 g/m3、含氨为4~9 g/m3、含氰化氢为0.5~1.5 g/m3。硫化氢(H2S)及其燃烧产物二氧化硫(SO2)对人身均有毒性,氰化氢的毒性更强。氰化氢和氨在燃烧时生成氮氧化物(NOx)。二氧化硫(SO2)与氮氧化物(NOx)都是形成酸雨的主要物质,煤气的脱硫脱氰洗氨主要是基于环境保护的需要。此外在冶金工厂,高质量钢材的轧制,对其使用的燃气含硫也有较高的要求。随着科学技术的进步和焦化工业的发展,产生了众多各具特色的煤气脱硫洗氨净化工艺。 HPF 法脱硫属湿式催化氧化法脱硫工艺,是PDS 脱硫工艺的改进工艺,两者的区别在于所使用的催化剂略有差异:前者使用对苯二酚加PDS 及硫酸亚铁的复合催化剂(HPF),后者使用PDS 催化剂。HPF 催化剂在脱硫和再生过程中均有催化作用,是利用焦炉煤气中的氨做吸收剂,以HPF 为催化剂的湿式氧化脱硫。煤气中的H2S 等酸性组分由气相进入液相与氨反应,转化为硫氢化铵等酸性铵盐,再在空气中氧的氧化下转化为硫。HPF 法脱硫选择使用HPF(醌钴铁类)复合型催化剂,可使焦炉煤气的脱硫效率达到99%左右。 HPF 法脱硫工艺置于喷淋式饱和器法生产硫铵的工艺之后。从鼓风冷凝工段来的温度约55 ℃的煤气,首先进入直接式预冷塔与塔顶喷洒的循环冷却水逆向接触,被冷至30~35 ℃;然后进入脱硫塔。 工艺特点 (1)以氨为碱源、HPF 为催化剂的焦炉煤气脱硫脱氰新工艺,具有较高的脱硫脱氰效率(脱硫效率99%,脱氰效率80%),而且流程短,不需外加碱,催化剂用量小,脱硫废液处理简单,操作费用低,一次性投资省。 (2)硫磺收率一般为60%,硫损失约为40%,其废液量约为300~500 kg/(103m3·h),废液回兑至配煤中,对焦碳的质量有一定的影响。 (3)硫膏产品质量不理想,外观多为暗灰色,纯度90%左右,产品销售难度大。若后续能再配置硫膏生产硫酸的工艺,硫酸用于硫铵生产,则HPF工艺不失为一种完善的工艺。

浅析天然气净化工艺的要求及其前景

浅析天然气净化工艺的要求及其前景 发表时间:2020-02-25T13:16:52.800Z 来源:《基层建设》2019年第29期作者:李海龙张军宁李昊玺裴银杰[导读] 摘要:在天然气的实际生产中,存在一些杂质致使生产质量难以满符合各方面的高质量要求,对使用效果产生不良影响。长庆油田分公司第一采气厂第四净化厂陕西延安 717500摘要:在天然气的实际生产中,存在一些杂质致使生产质量难以满符合各方面的高质量要求,对使用效果产生不良影响。为促进对生态环境的改善,促进天然气更好地开采与净化,保证实际使用质量,需要促进对其净化工作的提升。基于此,本文对当前在天然气净化厂中天然气净化工艺进行分析,促进其技术措施的更好采取。 关键词:天然气;净化工艺;优化措施提高天然气净化效果的前提是对净化工艺进行专业的设计,具体是对净化过程中的每一个流程进行分析和设计。另一方面,在天然气净化方面也具有很大的发展前景,当净化处理得当时,将会给处理单元带来更大的经济利益,综合考虑,提高净化效果对于处理单位的发展而言十分关键。 一.天然气净化厂及处理方法概述天然气净化厂是天然气净化的主要场所,具有较高的处理能力。在实际处理过程中,天然气净化厂的气体主要是先从各集气站通过集气干线直接向处理厂输送,之后再经过科学、合理的净化工艺将天然气分离、匹配,最后再利用专业管道输送到相关生产企业,其中一部分副产品则借助槽车输送到城市居民区供用户使用。因此,这种对天然气中化学成分进行集中处理、净化的场所被统称为天然气净化厂。在天然气净化厂中处理的方法有很多种:一种是脱硫、脱碳使用的醇胺法,主要是利用碱性溶液对天然气中的硫、酸等有害物质进行吸附;另一种是水分处理的吸附法及低温脱水法。这两种方法主要是利用相关工艺降低天然气中的含水量,让天然气的成分更加地纯净,从而满足企业和用户的使用需求。 二、天然气净化工艺技术的要求净化厂中最常见的处理技术有:胺法装置处理技术。该技术可以很好地将天然气中的污染物进行排除,同时还可以处理掉那些因液体、发泡增多给净化设备带来的热阻力,这对天然气开采有着一定的帮助。因此天然气净化厂在进行该项作业时,相关人员就要对相关设备的运行情况以及工艺技术运转中可能遇到的诸多问题进行观察,同时在利用胺液法进行天然气处理时,相关技术人员还要时刻关注吸收塔和胺液再生塔的运行情况和工艺技术,要尽可能地保证每套净化装置与工艺技术可以相互协调,下面笔者就天然气的有关要求分析如下:(一)正确把控塔盘板之间的距离天然气净化厂在进行净化设备安装时,相关技术人员一定要严格依照安装流程进行操作,要尽可能地将设备与人员之间的距离控制在800 mm 之间,以便从源头上有效降低胺液处理气体时所产生的气泡对人体的伤害,保证设备与人员安全。(二)精确计算浮阀数量浮阀数量的精准计算可帮助企业选择较为正确的生产设备和处理措施。天然气在进行处理时会遇到很多不确定因素,因此,较为准确的把控浮阀数量,就可提前预防处理过程中的鼓泡现象,这对推动企业发展和保障个人安全非常有利。(三)有效控制吸收塔上天然气的进口流量进口流量的把控在很大程度上可以很好地提高天然气中硫化氢及二氧化碳的吸收率,同时还可以有效调和气体之间的比例。一般的天然气净化厂中吸收塔在进行天然气处理时会有一定的流量限制要求,因此,相关技术人员在完成该工艺环节时,一定要严格把控进口流量,防止因流量过大而引起的气体泄漏或管道破裂现象发生,从而优化开采气体的纯净度。(四)要注重与其他工艺技术之间的配合天然气净化厂在进行天然气净化时,一定不能局限于一种净化设备和工艺技术,要尽可能地学习和使用国际上较为先进的净化技术与设备。同时,还要多采用几种处理方法,如:利用浮阀塔增加气体的处理效率和净化度,从而实现天然气高产值、高效率开发。(五)控制填料的放置位置在进行天然气处理时,相关技术人员一定要根据企业的厂区环境以及设备安装要求,将填料放置在吸收塔的底部,这样做的目的是为了更好地便于观察设备在生产过程中可能出现的一切问题,同时,还可以帮助工人提早防止旋涡对处理设备和人员的影响。 三、天然气净化前景(1)废物回收利用在进行天然气净化的过程中,必然会产生大量的衍生物,例如废水、硫化物等,如果将这些物质直接排放,必然会产生一定的环境污染问题,如果对这些物质进行合理的利用,则可以创造更大的经济利益。例如,可以将产生的污水进行处理以后注入地层之中,进而使得地层中油气资源的压力增加,更好的开采出油气资源,处理后的酸气可以通过硫磺回收装置,生产成品硫磺。(2)优化净化工艺在认识到天然气净化的重要性以后,天然气净化单位已经开始重视净化工作,因此,对净化工艺进行适当的优化是未来发展的重要方向;另一方面,当净化工艺得到有效的提高以后,企业的经济效益必然会得到一定程度的提高,同时也将会对该行业的发展起到推动作用。(3)安全联锁技术在进行天然气净化处理的过程中,必然会使用到大量的设备,这些设备将会共同工作,设备共同运行很容易出现安全问题,针对该问题,就需要使用安全联锁技术将其连接,进而形成一个整体,根据设定的联锁条件,一旦发生超温、超压等危害设备安全的情况时,能够自动切断或泄压,将生产安全问题的几率降到最低,确保天然气净化装置的安全平稳运行。(4)模拟计算技术。目前,模拟技术已经在各个领域中都得到了应用,模拟技术的应用使得各个行业都得到一定的发展,对于天然气净化而言,使用模拟技术也十分重要,不但可以使得净化效率得到有效的提升,还可以及时发现净化过程中存在的问题,进而对该行业的发展做出更大的贡献。结语

天然气净化厂工艺

龙岗天然气净化厂概况 1 龙岗天然气净化厂简介 龙岗天然气净化厂位于四川省南充市仪陇县阳通乡二郎庙村1社二郎庙,位于仪陇县西北面边沿山区,距仪陇县老城区直线距离约54km,西南距仪陇县新城区直线距离约71km,北侧距立山镇直线距离约2.2km。设计的原料天然气处理能力为1200×104m3/d,设计的原料气压力7.6~7.8MPa,单列装置的原料天然气处理能力为600×104m3/d,共2列,装置的操作弹性为50~100%,年运行时间8000小时。龙岗天然气净化厂主要包括主体工艺装置、辅助生产设施和公用工程几部分。 其原料气组成如下表所示: 2 生产工艺 由集气总站来的原料天然气先进入脱硫装置,在脱硫装置脱除其所含的几乎所有的H2S和部分的CO2,从脱硫装置出来的湿净化气送至脱水装置进行脱水处理,脱水后的干净化天然气即产品天然气,经输气管道外输至用户,其质量按国家标准《天然气》(GB17820-1999)二类气技术指标控制。脱硫装置得到的酸气送至硫磺回收装置回收硫磺,回收得到的液体硫磺送至硫磺成型装置,经冷却固化成型装袋后运至硫磺仓库堆放并外运销售,其质量达到工业硫磺质量标准(GB2449-92)优等品质量指标。为尽量降低SO2的排放总量,将硫磺回收装置的尾气送至尾气处理装置经还原吸收后,尾气处理装置再生塔顶产生的酸气返回硫磺回收装置,尾气处理装置吸收塔顶尾气经焚烧炉焚烧后通过100m 高烟囱排入大气。尾气处理装置急冷塔底排出的酸性水送至酸水汽提装置,汽提出的酸气返回硫磺回收装置,经汽提后的弱酸性水作循环水系统补充水。总

工艺流程方框图见图2-1。 2.1 脱硫装置 自集气总站来的原料天然气进入过滤分离器,经过滤分离除去天然气中夹带的机械杂质和游离水后,自下部进入脱硫吸收塔与自上而下的MDEA贫液逆流接触,天然气中几乎所有H2S和部分CO2被脱除,湿净化气送至下游的脱水装置进行脱水处理。吸收塔底出来的富液经闪蒸并与热贫液换热后进入再生塔上部,解吸出H2S、CO2、有机硫气体。再生塔底出来的贫液经换热、冷却后,由过滤泵升压,升压后分一小股贫胺液进入闪蒸塔,以脱除闪蒸气中的H2S。其余贫液进入溶液过滤系统,过滤后的贫胺液由溶液循环泵送至脱硫吸收塔完成胺液的循环。再生塔顶的酸气送至下游硫磺回收装置。闪蒸气送至工厂尾气处理装置用作焚烧炉燃料气。 2.2 脱水装置 本装置采用三甘醇(TEG)作脱水剂,脱除湿净化天然气中的绝大部分饱和水,经TEG吸收塔脱水后的干净化天然气(在出厂压力条件下水露点≤-10℃)作为产品气外输。TEG 富液从塔底流出,经换热后进入闪蒸罐闪蒸,闪蒸气进入燃料气系统。再生塔重沸器采用火管加热。为确保贫液甘醇浓度,在贫液精馏柱上设有汽提气注入设施。从塔顶出来的再生气,进入再生气灼烧炉焚烧后经尾气烟囱排入大气。贫液在 TEG 缓冲罐与富液换热并经贫液冷却器冷却后经TEG循环泵升压返回吸收塔上部循环使用。 2.3 硫磺回收装置

煤气净化车间工艺流程

1.煤气净化车间 3.1概述 本煤气净化车间是与年产2×96万吨冶金焦的焦炉配套的,煤气处理量为115590 m3/h。其组成为:冷凝鼓风工段、脱硫工段、硫铵工段(含剩余氨水蒸氨装置)、终冷洗苯工段、粗苯蒸馏工段、油库工段。 3.2设计基础数据 3.2.1 净化前煤气中杂质含量 杂质成分NH3H2S HCN 苯 含量g/m3 6 6 1.5 34 3.2.2净化后煤气中杂质含量 杂质成分焦油NH3H2S HCN 苯萘含量g/m30.05 0.05 0.02 0.3 4 0.3 3.2.3产品产率 焦油 3.5%(对干煤) 硫铵0.84%(对干煤) 粗苯 1.0%(对干煤) 3.2.4焦油——符合YB/T5075-93 密度(20?C) 1.15~1.21g/cm3 甲苯不溶物(无水基) 3.5~7% 灰分不大于0.13% 水分不大于4.0%

粘度(E80) 不大于4 3.2.5硫磺: 含硫≥90% 3.2.6硫铵——符合GB535-1995 氮(N)含量(以干基计)≥21.0% 水分(H2O)含量≤0.3% 游离酸H2SO4含量≤0.05% 3.2.7粗苯——符合YB/T5022-93 外观黄色透明液体 密度(20?C) 0.871~0.900g/cm3馏程: 180℃前馏出量(重)不小于93% 水分室温(18~25℃)下目测无可见的不溶解的水 3.3煤气净化工艺流程、特点及主要操作指标 3.3.1冷凝鼓风工段 a)工艺流程 来自焦炉~80?C的荒煤气,与焦油和氨水沿吸煤气管道流至气液分离器,气液分离后的荒煤气由分离器上部出来,进入四台并联操作的横管初冷器上部,在此用32?C的循环水将煤气冷却至~35?C;由横管初冷器下部排出的煤气,进入直冷塔下部,用直冷塔循环水喷洒煤气,将煤气冷却至~22?C;由直冷塔上部排出的煤气,进入三台并联操作的电捕焦油器,捕集煤气中夹带的焦油,再由煤气鼓风机压

焦炉煤气净化技术现状

焦炉煤气净化技术现状 在2004年国家公布的《焦化准入条件》中,明确规定新建或改造焦炉要同步配套建设煤气净化设施。至2006年底,经国家发改委核准的厂家仅108家,这些家的产能之合仅占当年焦炭总产能的30%左右。还有大量企业未被核准,其主要原因之一就是煤气净化设施配套不完善。煤气净化设施主要包括冷凝鼓风装置、脱硫脱氰装置、氨回收装置及苯回收装置。所谓配套不完善,是指缺某个或某些装置,特别是缺脱硫脱氰装置。 主流工艺技术 我国焦炉煤气净化工艺通过不断引进国外先进技术和创新发展,已经步入世界先进行列;煤气净化工艺已基本涵盖了当今世界上较为先进的各种工艺流程。目前,年产焦炭100万t以上的大型焦化厂全部设有煤气净化系统,对来自炼焦炉的荒煤气进行净化处理,脱除其中的硫化氢、氰化氢、氨、焦油及萘等各种杂质,使之达到国家或行业标准,供给工业或民用用户使用;同时,对化工副产品进行回收利用。 煤气净化工艺采用的主要技术包括:焦炉煤气的冷凝冷却及排送、焦油氨水分离、焦油、萘、硫化氢、氰化氢、氨等杂质的脱除以及粗苯的回收等。 焦炉煤气的冷凝冷却 焦炉煤气的冷凝冷却,即初步冷却,普遍采用了高效横管间冷工艺。其特点是:煤气冷却效率高,除萘效果好;当煤气温度冷却至20~22℃,煤气出口含萘可降至0.5g/m3,不需另设脱萘装置即可满足后续工艺操作需要。

高效横管间冷工艺通常分为二段式或三段式初冷工艺。当上段采用循环冷却水,下段采用低温冷却水对煤气进行冷却时,称为二段式初冷工艺。为回收利用荒煤气的余热,通常在初冷器上部设置余热回收段,即构成三段初冷工艺。采用三段初冷工艺,回收的热量用作冬季采暖或其它工艺装置所需的热源,不仅可以回收利用荒煤气的余热,同时也可节省大量循环冷却水,节能效果显著,应大力倡导采用。 除上述普遍采用的横管间冷工艺外,焦炉煤气的冷凝冷却也可采取先间冷,后直冷的“间直冷工艺”对焦炉煤气进行冷却。间直冷工艺的优点在于煤气在通过直冷塔冷却的同时,可对煤气中夹带的煤粉进行洗涤、净化,使去后续装置的煤气更加洁净;缺点是工艺流程较长,运行费用高,脱萘效果差,一般需单独设置后续脱萘装置。 焦炉煤气的排送 焦炉煤气的排送由煤气鼓风机完成。从焦炉来的荒煤气经初冷工艺冷凝冷却后,通常经电捕焦油器(当电捕设在负压侧)进入煤气鼓风机,由煤气鼓风机加压后,送至后续装置。 目前,国内焦化厂煤气鼓风机较多采用电动离心式煤气鼓风机,其流量调节通常采用液力偶合器调速、电机变频调速或鼓风机前导向技术完成上述三种煤气鼓风机流量调节技术均可根据煤气输送负荷的变化,对煤气流量进行自动调节、降低鼓风机的电能消耗、降低运行费用;其中,变频技术由于技术成熟,节能效果显著,在工业生产中应用广泛,因此值得广泛采用。 除电动煤气鼓风机外,蒸汽透平驱动的煤气鼓风机在国内外煤气排送工艺中也常采用。由于同电动鼓风机相比,汽动鼓风机具有能源利用率更高,更加节能

相关文档
最新文档