随机结构激励模型及随机振动反应分析

随机结构激励模型及随机振动反应分析
随机结构激励模型及随机振动反应分析

随机结构激励模型及随机振动反应分析

结构在服役期间,必将受到各种荷载的作用。对于建筑结构,在服役期间不可避免的会受到风力的作用,而且甚至会受到地震的作用;海洋上的结构,如海上风力发电高塔,海洋平台等,会受到海洋波浪的作用;行驶在路面上的车辆,由于路面的不平顺使得车辆受到动力作用;飞机在飞行中由于大气的自由流动也会受到扰动。这些作用在结构上的荷载,不仅随着时间发生变化,而且具有明显的随机性。而对于随机动力荷载下结构响应的问题,确定性的动力分析无法考虑随机性,随机振动理论应运而生。

随机振动的物理数学基础早在30年代已基本奠定。1827年Brown对悬浮在水中微小花粉粒子杂乱运动的观察,为最早的系统对随机激励响应的实验研究。19世纪后期Maxwell和Boltzmann用统计方法描述系统可能状态和达到的概率,但没有考虑统计随时间的演化。1919年Rayleigh用“随机振动”一词描述一等价于平面随机行走的声学问题。用随机方法研究动力学行为始于1905年,Ein stein从理论上解释了Brown运动,1915年Smoluchowski扩展了Einstein的结果并进行实验研究。1908年Langevin导出含有随机项的微分方程,成为随机微分方程的第一个例子,Fokker于1915年、Plank于1917年、Колмогоров于1931年、伊藤于1946年都对随机微分方程的研究作出贡献。1933年Андронов等应用随机微分方程讨论随机扰动下一般动力系统的运动。1920年Taylor引入相关函数概念,Wiener于1930年和Хинчин于1934年分别建立了谱的理论,这些数学工具首先应用于通讯和控制系统而不是结构和机械的强度分析,因为工程技术尚无此要求。随机振动的研究始于50年代中期。由于喷气和火箭技术的发展在航空和航天工程中提出一系列问题,如大气湍流引起的飞机颤振,喷气噪音导致的飞行器表面结构声疲劳,传动系统中滚动件不光滑而啮合不完善的损伤积累,火箭推进中运载工具有效负载可靠性等,都促使研究者运用已有数学工具,并借鉴这些工具在通讯等学科中的应用以解决面临的工程问题。Miles于1954年和Powell于1955年分别研究了飞行器结构颤振损伤积累的时间无规和空间涨落。1955年Morrow和Muchmore把谱分析引进随机振动并建立了结构随机响应等基本概念。1957年Erigen研究了连续体的随机振动并讨论振型相关性。1958年Crandall主编《随机振动》的出版标志着随机振动这一振动力学分支的诞生。60年代以来,随机振动在应用和理论方面都发展迅速。振动测试技术是随机振动应用的前提。在70年代之前基本采用模拟式仪器。由于计算机技术的迅速发展及1965年Cooley和Tukky发明快速Fourier变换算法,70年代以来数字式测试设

备广泛采用。在此基础上系统的识别与诊断及随机振动实验技术有很大发展,应用范围也愈来愈广泛,由飞机和火箭扩展到汽车、船舶及高层建筑、海洋工程结构等。在理论研究中,非线性随机振动备受重视。1959年Caughey 研究提出随机等效线性化方法,而该方法在1954年便被Booton 应用于控制系统。1961年Crandall 建立随机摄动法。1966年以后,Stratonovich 、Khasminskii 、Papanicolaou 与Kohler 等发展了随机平均法。

结构随机振动分析,一方面要研究随机激励模型,地震、海浪、风等荷载形式都是极为复杂的,模拟这些随机动力荷载,即要掌握大量的数据资料,也要把握其内在的物理机制,这些工作都不是轻而易举能够解决的;另一方面研究随机振动分析方法。对于线性的结构,由于服从叠加原理,能够较为容易的解决。而非线性结构,对于实际的结构,即使是确定性的动力问题,都是难以求解的,随机振动更是困难。

1. 随机结构激励的一般模型

随机激励的一般模型可分为平稳模型和非平稳模型两种。平稳模型就是平稳随机过程。结构随机激励的平稳模型记为()F s

t ,则()F s

t 的均值是常数、相关函

数只依赖于时间差,即

()()()()1221,,s

s

s

s

F F F F

m t m R t t R t t t t

===-

(1.1)

当()0

s

F m t =

时,()F s

t 的相关函数与其谱密度()F s

S w 之间有如下关系:

()()1()()2s s s s i F F i F F R S e

d S R e

d ωτ

ωτ

τωω

ωττ

π

∞-∞

∞--∞

==

?

?

(1.2)

即()s

F R τ和()s

F S ω构成Fourier 变化对。当()0

s

F m t 1

时,()F s

t 的协方差函数()

s

F τΓ与其()s

F S ω之间有上述关系式(1.2)。

对于结构随机激励的平稳模型,我们只要知道它的均值和相关函数、或者均值和谱密度就可完全确定这个模型的统计特性。在确定具体的结构随机激励平稳模型时,我们总是根据大量的实测时程曲线去统计确定均值和相关函数的具体表达形式、或者均值和谱密度的具体表达形式,二者只要知道其中一个,即可由关系式(1.2)求得另一个。不同的平稳随机模型主要反映在相关函数或谱密度的具体表达形式上的不向。

结构随机激励的平稳模型就是非平稳随机过程,可以分为两类:均匀调制非

平稳模型和调制非平稳模型。

(1) 均匀调制非平稳随机模型:这种随机模型又称为可分离式非平稳随机模型,它可以表示为确定性函数与平稳随机过程的乘积,即

()()()F F s t f t t =

(1.3)

式中()f t 是表示随机激励非平稳特性的确定性函数;()F s

t 是平稳随机过程。假定模型(1.3)中()F t 的均值()0

F

m t =

因此,平稳随机过程()F s

t 的均值()0

s

F m t =

对于均值不为零的非平稳随机激励()F 't ,我们取()()()'

F F 'F

t t m t =

-,从而有模型

(1.3)的形式。当已知()F s

t 的相关函数()s

F R τ或者谱密度()s

F S ω时,非平稳随机干

扰()F t 的相关函数和谱密度可容易地求得为

()()12()()s F F R f t f t R ττ=

(1.4)

()2

()()s F F S f t S ωω=

(1.5)

与平稳随机模型类似,非平稳随机模型的统计特性也完全由其均值和相关函数或者是均值和谱密度所确定。在工程实际中,为了建立起这种随机激励的非平稳模型,在大量实测记录统计分析的基础上,首先合理确定平稳随机过程()

s

F R τ的统计特性——相关函数或者谱密度,其次合理确定反映该随机干扰非平稳待性的确定性函数()f t 。

(2)调制非平稳随机模型:这种非平稳随机模型可以表示为

()()(),i t

F t A t e

d w w w ¥

--

=

Z ò

(1.6)

式中(),A t w 是时间t 和频率w 的确定性函数,称为调制函数;()Z w 是均值为零的正交增量过程,它通过下式与某个平稳过程()s

F τΓ联系起来:

()()2s F E dZ S d w w w

=犏犏臌

(1.7)

式中()s

F S w 是()s F τ的谱密度。

这里假定模型(1.6)中()F t 的均值()0

F

m t =

。对于均值不为零的非平稳随机激

励()F 't ,总可以取()()()'

F F 'F

t t m t =-,从而有模型(1.6)的形式。

调制非平稳随机模型的相关函数和谱密度可分别表示为

随机振动分析报告

Alex-dreamer制作PSD:(可以相互传阅学习,但是鄙视那些拿着别人成果随意买卖!)PSD随机振动应用领域很广,比如雷达天线,飞机,桥梁,天平,地面,等等行业。虽然现在对这方面公开资料很少,但是我相信以后会越来越多,发展的越来越成熟。学术的浪潮总体是向前的,不会因为几个大牛保密自己的成果就会阻止我们对PSD研究,因此结合我的经验和爱好,我研究了一下两种PSD加载分析。我标价的原则是含金量大小和花费我的时间以及我的经验值,如果你觉得值,就买;不值就不要下了。因为我始终认为:士为知己者死,女为悦己者容。算是互相尊重。如果你得到这份资料,那就祝你好运! Good luck!-Alex-dreamer(南理工) 一:目的:根据abaqus爱好者提出的PSD随机振动分析,提出功率谱如何定义及如何加载?如果功率谱是加速度的平方,如何加载?如果在输入点施加载荷功率谱如何定义?本文将给出详细的分析过程。 二:随机振动基本概念 1. 随机振动的输入量和输出量都是概率统计值,因此存在不确定性。输入量为PSD (功率谱密度)曲线,分为加速度、速度、位移或者力的PSD曲线;最常见的是加速度PSD,常用语BASE MOTION基础约束加载。 2. 随机振动的响应符合正态分布,PSD实际上是随机变量的能量分布,也就是在不同频率上的方差值,反映不同频率处的振动能量,PSD曲线所围成的面积是随机变量总响应的方差值; 3. RMS为随机变量的标准方差,将PSD曲线包络面积开平方即为RMS。 4. 随机振动输出的位移、应力、应变等值都是对应不同频率的方差值(即PSD值),量纲为x^2,当然也可以输出这些变量的均方根值(即RMS值);abaqus6.10以上版本可以直接在场变量里面输出设置。见下文。 5. 如果是单个激励源,定义为非相关性分析,如是多个激励源,则需要定义相关性参数。因此出现type=uncorrelated。 三:模型简介: 1)该模型很简单,是hypermesh中一个双孔模型。 2)网格划分在hypermesh中完成,保证了雅克比>0.7以及网格其它质量的要求。网格与几何具有较高的吻合度。 3)方案1(对应connect模型):在上方两个孔采用全约束方式,且加载的功率谱PSD密度是加速度功率谱,也就是说基于BASE基础约束,进行随机振动 PSD分析。结果分析底部孔处某节点的结果响应。 4)方案2(对应connect模型):在底部圆孔施加载荷force类型的功率谱PSD,

随机振动名词解释

"脉冲响应函数" 英文对照 impulse response function; "脉冲响应函数" 在学术文献中的解释 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k-ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、Yεi,jtt+s作为时间间隔s的一个函数,度量了在其他变量不变的情况下Yi,t+s对Yj,t的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "频率响应函数" 英文对照 frequency response function; "频率响应函数" 在学术文献中的解释 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式 Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y(t)=A0eiωty(t)=iωA0eiωt(6)将(6)代入(3)得A0eiωt(RCiω+1)=Ajeiωt(7)和A0Aj=1RCiω+1=U(iω)(8)U(iω)称为频率响应函数 文献来源 "传递函数" 英文对照 transfer function of; transfer function; transfer function - noise; "传递函数" 在学术文献中的解释 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源

结构的强迫振动响应分析

第五章 结构的强迫振动响应分析 §5.1 概述 如果结构已经用有限元方法进行了离散化,当一个结构系统受到外激励作用时,其响应就是一个多自由度系统的强迫振动问题的解。求解多自由度系统强迫振动响应的方法之一就是直接积分法。考虑到实际结构的高维数(自由度数很大)而给求解带来的困难,往往在实际求解中采用模态叠加法。直接积分法和模态叠加法这两种方法都可以得到具有相当精度的振动响应解,并且各有其特点。 §5.2 求解强迫振动响应的直接积分法 对动力学基本方程 )}({}]{[}]{[}]{[t P U K U C U M =++ (5-1) 进行直接积分,其含义是指在对方程进行积分之前,不对其进行任何形式的变换,在积分中,实际上是按时间步长逐步积分的。这样做的实质是基于如下考虑: (1) 只在相隔t ?的一些离散时间区间上、而不是在整个时间区间上的任一个 时刻t 上满足方程,即平衡是在求解区间上的一些离散时刻上获得的。 (2) 假定位移、速度、加速度在每一个时间区间t ?内按一定规律变化,也正 是采用不同的变化形式,决定了各种直接积分解的精度、稳定性和求解速度。 首先,设}{}{}{0 00U U U 表示初始时刻(0=t )的位移、速度和加速度为已知向量,要求出从0=t 到T t =的解,则把时间段T 均分为n 个间隔n T t /=?,所用的积分是在T t t ,2,??上求方程的近似解。即要在t t t ,2,??的解已知的情况下,求解t t ?+时刻的解。 【中心差分法】 若基本方程式的平衡关系作为一个常系数微分方程组,则可以用任一种差分格式通过位移来表示速度和加速度。通常采用中心差分格式,这是一个行之有效的求解微分方程的格式。

随机振动知识点个人小结

《随机振动》 《随机振动》这门课主要讲了以下五部分内容: 1、随机信号的描述与分析; 2、系统动态特性的描述; 3、线性定常系统在平稳随机激励下的动态响应; 4、损坏理论; 5、非线性随机振动。 第一部分:随机信号的描述与分析 1.信号的概念及分类 图1-1 信号的分类 确定信号是指能用明确的数学关系式表达的信号。确定信号可分为周期信号和非周期信号两类。频率单一的正弦或余弦信号称为谐波信号。准周期信号也是由多个频率成分叠加的信号,但叠加后不存在公共周期。一般周期信号是在有限时间段存在,或随时间的增加而幅值衰减至零的信号,又称为瞬变非周期信号。

随机信号又称为非确定性信号,是无法用明确的数学关系式表达的信号。随机信号是工程中经常遇到的一种信号,其特点为: 时间函数不能用精确的数学关系式来描述; 不能预测它未来任何时刻的准确值; 对这种信号的每次观测结果都不同。但大量地重复试验可以看到它具有统计规律性,因而可用概率统计方法来描述和研究。 根据是否满足平稳随机过程的条件,又可以分为平稳随机信号和非平稳随机信号。平稳随机信号又可分为各态历经和非各态历经两类。若随机过程的统计特征参数不随时间变化,则称之为平稳随机信号。如果平稳随机过程的任一个样本函数的时间统计特征均相同,且等于总体统计特征,则该信号称为各态历经过程。 2.随机信号的分析与处理 由于测试系统内部和外部各种因素的影响,必然在输出信号中混有噪声,所以必须对所得的信号进行必要地分析和处理,才能准确地提取它所包含的有用信息。信号分析和处理的目的是:(1)、剔除信号中的噪声和干扰,即提高信噪比;(2)、消除测量系统误差,修正畸变的波形;(3)、强化、突出有用信息,消弱信号中的无用部分;(4)、将信号加工、处理、变换,以便更容易识别和分析信号的特征,解释被测对象所变现的各种物理现象。 2.1 随机信号的时域及幅值域分析 随机信号是从一个做随机运动的随机信源产生的。每一个记录是随机信号的一个实现,称为它的一个样本函数。所有时间连续的样本函数的总集组成连续随机信号},3,2,1),({)}({)(???==i t x t x i 。对连续随机信号做等时距采样可得到离散随机信号}),(),(),(,{)()3()2()1( n x n x n x n x =。

随机振动名词解释

impulse response function; "脉冲响应函数" 英文对照 1、h(t)是在初始时刻作用以单位脉冲而使单自由度系统产生的响应,所以称为脉冲响应函数.1·1·2频率响应函数H(ω)=1k -ω2m+iωcH(ω)是角频率为ω的单位简谐激励所引起的结构稳态简谐响应的振幅,称为频率响应函数,也称为转换函数 文献来源 2、 Y εi,jtt+s 作为时间间隔s 的一个函数,度量了在其他变量不变的情况下Yi,t+s 对Yj,t 的一个脉冲的反应,因此称为脉冲响应函数 文献来源 "脉冲响应函数" 在学术文献中的解释 frequency response function; "频率响应函数" 英文对照 1、频率响应函数是指系统输出信号与输入信号的比值随频率的变化关系它是衡量高速倾斜镜工作性能的一个重要指标.通过抑制谐振峰可以改善高速倾斜镜的使用性能 文献来源 2、经傅利叶变换,得到频域内的导纳(一般用速度导纳来表示)表达式Hv(ω)=v(ω)F(ω)=jω-ω2M+jωC+K(2)H(ω)又称为频率响应函数 文献来源 3、y (t )=A0eiωty (t )=iωA0eiωt (6)将(6)代入(3)得A0eiωt (RCiω+1)=Ajeiωt (7)和A0Aj =1RCiω+1=U (iω)(8)U (iω)称为频率响应函数 文献来源 "频率响应函数" 在学术文献中的解释 transfer function of; transfer function; transfer function - noise; "传递函数" 英文对照 1、由于传递函数的定义是两个拉普拉斯变换之比,所以使用时必须准确知道传递函数的类型,即,是位移、速度,还是加速度传递函数,才能避免出错 文献来源 2、而传递函数的定义是两个分量之比为两个传感器之间优势波的传递函数.它给我们的启发是任取两个已知传感器组成一个传递函数通过分析传递函数的特征可以判断两个分量的优势波和非优势波 文献来源 "传递函数" 在学术文献中的解释

利用ANSYS随机振动分析功能实现随机疲劳分析.

利用ANSYS随机振动分析功能实现随机疲劳分析 ANSYS随机振动分析功能可以获得结构随机振动响 应过程的各种统计参数(如:均值、均方根和平均频率等),根据各种随机疲劳寿命预测理论就可以成功地预测结构 的随机疲劳寿命。本文介绍了ANSYS随机振动分析功能,以及利用该功能,按照Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法进行ANSYS随机疲劳计算的具体过程。 1.随机疲劳现象普遍存在 在工程应用中,汽车、飞行器、船舶以及其它各种机械或零部件,大多是在随机载荷作用下工作,当它们承受的应力水平较高,工作达到一定时间后,经常会突然发生随机疲劳破坏,往往造成灾难性的后果。因此,预测结构或零部件的随机疲劳寿命是非常有必要的。 2.ANSYS随机振动分析功能介绍 ANSYS随机振动分析功能十分强大,主要表现在以下方面: 1.具有位移、速度、加速度、力和压力等PSD类型; 2.能够考虑a阻尼、 阻尼、恒定阻尼比和频率相关阻 尼比;

3.能够定义基础和节点PSD激励; 4.能够考虑多个PSD激励之间的相关程度:共谱值、二 次谱值、空间关系和波传播关系等; 5.能够得到位移、应力、应变和力的三种结果数据: 1σ 位移解,1σ速度解和1σ加速度解; 3.利用ANSYS随机振动分析功能进行疲劳分析的一般原 理 在工程界,疲劳计算广泛采用名义应力法,即以S-N 曲线为依据进行寿命估算的方法,可以直接得到总寿命。下面围绕该方法举例说明ANSYS随机疲劳分析的一般原理。 当应力历程是随机过程时,疲劳计算相对比较复杂。但已经有许多种分析方法,这里仅介绍一种比较简单的方法,即Steinberg提出的基于高斯分布和Miner线性累计损伤定律的三区间法(应力区间如图1所示): 应力区间 发生的时 间 -1σ ~+1σ68.3%的时间 -2σ ~+2σ27.1%的时间

传递矩阵法在结构振动响应分析中的应用

传递矩阵法在结构振动响应分析中的应用 【摘要】传递矩阵法因其简便、快捷,已被广泛应用于机械、航空和航天等领域。本文以航空发动机低压转子临界转速分析为例,对传递矩阵法在结构振动响应分析中的应用方法和分析步骤进行了详细的介绍,并给出了某型发动机低压转子在不同支承刚度下的临界转速。 【关键词】传递矩阵;振动响应;临界转速;转子动力学 0 引言 经典传递矩阵法是20 世纪20 年代建立起来的用于研究弹性构件组成的一维线性系统振动问题的方法。经过多年的发展和完善,已经可以用于求解多圆盘轴的扭转振动问题、梁的弯曲振动模态、轴的横向振动问题、系统的静态响应和扭矩载荷响应问题、以及一维结构的振动特性分析和复合梁的振动特性等结构动力学问题。并且,由于传递矩阵法建模灵活、计算效率高等优点,已在包括光学、声学、电子学、机器人学、机械、兵器、航空、航天等诸多现代工程技术领域中得到了广泛应用[1]。 应用传递矩阵法进行分析的一般步骤为:1)结构离散化;2)建立系统传递矩阵;3)特征方程求解。 1 结构离散化 航空发动机低压转子结构简化模型见图1: 其主要组件为压气机、涡轮和低压轴。低压转子通过前、中、后3个支点与发动机转子系统相连[2]。 将该结构进行离散化处理[3-5],并将各支点简化为线弹性体后,得到图2所示模型。 离散化处理后,整个低压转子的质量将被转换为分布式质量节点。表1给出了离散化后各质量节点的质量分布情况。 2 建立系统传递矩阵 将连续结构进行离散化处理后,实体结构将被简化成等刚性无质量梁单元及分布质量点。 3 特征方程求解 以转子转速做为变量,在不同刚度参数下对特征值进行求解。在某一给定刚

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

随机振动分析

随机振动分析实例 Yunyunsunsun 1 导入几何体。 1.1 启动ANSYS Workbench后点击“browse”,打开安装目录D:\Program Files\ANSYS Inc\v110\AISOL\Samples\Simulation,选中“BoardWithChips”文件后,在Workbench工作窗口中显示如图1所示。 图1 模型图 1.2 在主菜单中将单位设置为Units> U. S. Customary (in, lbm, lbf, °F, s, V, A)。 2 模态分析 2.1 在主菜单“New Analysis”中选择模态分析。在模型树中,点击“Analysis Settings”,在左下角出现的“Details of Analysis Settings”中,将“Max modes to find”设为12,如图2所示。 图2 提取12阶模态图3 固定约束左右两个小孔内壁 2.2 施加固定约束。 将左右两个小孔内壁固定住,如图3所示。 2.3 求解模态分析。 计算完毕后,在“Tabular Data”窗口(如果工作窗口下部不显示说明隐藏在右部)中选中12阶频率(图4-1),右击选中“Create Mode Shape Results”,模型树中自动出现12阶“Total Deformation”(图4-2);高亮显示模型树中“Solution”,右击选中“Evaluate all results”;

最后高亮显示模型树中所有“Total Deformation”,右击选中“Rename Based on Definiton”,如图4-3所示。 (此步过于详细,大家可根据需要执行) 图4-1 图4-2 图4-3 3 随机振动分析 3.1 在主菜单“New Analysis”选择“Random Vibration”,点击“Initial Condition Environment”后面的黑三角,选择“Modal”,如图5-1所示。 图5-1 图5-2 3.2 点击“Analysis Settings”,默认情况下“Number of Modes To Use”,选择所有模态,此处也可根据需要设置模态阶数,如图5-2所示。 3.3 施加PSD 基础激励载荷 将鼠标放置在“Analysis Settings”上右击插入“PSD Base Excitation”,点击“Load Data”后的黑三角,选择“New PSD Load”,如图6-1所示,弹出窗口如图6-2所示,选择PSD载荷类型为PSD G Acceleration,点击OK按钮。

随机振动案例讲解

辽宁工程技术大学力学与工程学院随机振动分析案例分析 题目工作中钻机钻杆的随机 振动分析 班级理力13-1班姓名 学号 指导教师苏荣华 成绩 辽宁工程技术大学 力学与工程学院制

辽宁工程技术大学 摘要: 孔底岩石表面凹凸不平,使得工作中的钻杆产生垂直方向的位移变动,岩石表面的凹凸不平是随机的,它对钻机产生随机激励,钻杆会产生随机振动。利用现代随机过程理论和已知的振动理论方法,可弄清具体的孔底反作用力。这样,就可用数学方法来确定钻头齿同孔底互撞时牙轮钻机钻杆的幅频特性和它的共振状态。根据线性累积疲劳损伤理论,便可估计钻杆的窄带随机疲劳平均寿命。关键词:随机振动;钻机钻杆;寿命估计

随机振动案例分析 工作中钻机钻杆的随机振动分析 一、钻机的工作原理 钻机(drill)是在地质勘探中,带动钻具向地下钻进,获取实物地质资料的机械设备。又称钻探机。主要作用是带动钻具破碎孔底岩石,下入或提出在孔内的钻具。可用于钻取岩心、矿心、岩屑、气态样、液态样等,以探明地下地质和矿产资源等情况。 牙轮钻机钻孔时,依靠加压、回转机构通过钻杆,对钻头提供足够大的轴压力和回转扭矩,牙轮钻头在岩石上同时钻进和回转,对岩石产生静压力和冲击动压力作用。牙轮在孔底滚动中连续地挤压、切削冲击破碎岩石,有一定压力和流量流速的压缩空气经钻杆内腔从钻头喷嘴喷出,将岩渣从孔底沿钻杆和孔壁的环形空间不断地吹至孔外,直至形成所需孔深的钻孔。 二、工作时的随机激励 孔底岩石表面凹凸不平,使得工作中的钻机产生垂直方向的位移变动,岩石表面的凹凸不平是随机的,它对钻机产生随机激励。如果这种激励过大,将导致驾驶员感到不适,同时也导致结构产生疲劳破坏。 孔底岩石表面凹凸不平,使得工作中的钻杆产生垂直方向的位移变动。岩石表面的凹凸不平是随机的,它对钻机产生随机激励,钻杆会产生竖向随机振动。利用现代随机过程理论和已知的振动理论方法,可弄清具体的孔底反作用力。这样,就可用数学方法来确定钻头齿同孔底互撞时牙轮钻机钻杆的幅频特性和它的共振状态。 三、钻杆随机振动分析 1.钻杆结构 钻杆可简化成杆的竖向振动模型

ANSYS随机振动理论

§4.5随机振动(PSD)分析步骤 PSD分析包括如下六个步骤: 1.建造模型; 2.求得模态解; 3.扩展模态; 4.获得谱解; 5.合并模态; 6.观察结果。 以上六步中,前两步跟单点响应谱分析一样,后四步将在下面作详细讲解。ANSYS/Professional产品中不能进行随机振动分析。 如果选用GUI交互方法进行分析,模态分析选择对话框(MODOPT命令)中包含有是否进行模态扩展选项(MXPAND命令),将其设置为YES就可以进行下面的:扩展模态。这样,第二步(求得模态解)和第三步(扩展模态)就合并到一个步骤中进行计算。 §4.4.9建造模型 该步与其它分析类型建立模型的过程相似,即定义工作名、分析的标题、单元类型、单元实常数、材料性质、模型几何形状等。注意以下两点: ·只有线性行为在谱分析中才是有效的。任何非线性单元均作为线性处理。如果含有接触单元,那么它们的刚度始终是初始刚度,不再改变; ·必须定义材料弹性模量(EX)(或其他形式的刚度)和密度(DENS)。材料的任何非线性将被忽略,但允许材料特性是线性的、各向同性或各向异性以及随温度变化或不随温度变化。 §4.5.0获得模态解 结构的模态解(固有频率和振型)是计算谱解所必须的。模态分析的具体过程在《模态分析》中已经阐述过,这里还需注意以下几点: ·使用Block Lanczos法(缺省)、子空间法或缩减法提取模态。非对称法、阻尼法、QR阻尼法以及PowerDynamics法对下一步谱分析是无效的;

·所提取的模态数目应足以表征在感兴趣的频率范围内结构所具有的响应; ·如果使用GUI交互式方法进行分析,模态分析设置[MODOPT]对话框的扩展模态选项置为NO状态,那么模态计算时将不进行模态扩展,但是可以选择地扩展模态(参看MXPAND命令的SIGNIF输入项的用法)。否则,将扩展模态选项置为YES状态。 ·材料相关阻尼必须在模态分析中进行指定; ·必须在施加激励谱的位置添加自由度约束; ·求解结束后退出SOLUTION处理器。 §4.5.1扩展模态 无论选用子空间法、Block Lanczos法还是缩减法,都必须进行模态扩展。关于模态扩展,《动力学分析指南—模态分析》部分“扩展模态”一节有详细讲述。另外还需注意以下几点: ·只有扩展后的模态才能在以后的模态合并过程中进行模态合并操作; ·如果对谱所产生的应力感兴趣,这时必须进行应力计算。在缺省情况下,模态扩展过程是不包含应力计算的,这同时意味着谱分析将不包含应力结果数据。 ·模态扩展可以作为一个独立的求解过程,也可以放在模态分析阶段; ·在模态扩展结束之后,应执行FINISH命令退出求解器(SOLUTION)。 正如《动力学分析指南—模态分析》部分中讲述的那样,在进行模态分析时执行MXPAND命令就可以将模态求解和模态扩展合并成一步(GUI交互方法和批处理方法)。 §4.5.2获得谱解 功率谱密度谱求解时,系统数据库必须包含模态分析结果数据,以及模态求解获得的下列文件:Jobname.MODE、Jobname.ESAV、Jobname.EMAT、Jobname.FULL (仅子空间法和Block Lanczos法有)和Jobname.RST。 1.进入求解器(/SOLU命令) Command: /SOLU GUI: Main Menu > Solution

ABAQUS软件随机振动分析 final

ABAQUS软件随机振动分析 在工程中,结构一般需要对它进行随机振动分析。典型的例子是:通过机床的振动响应分析进行机床的结构设计,通过对结构的地震响应分析。在电子产品设计中,ABAQUS软件不仅仅能对电子产品进行冲击、热场、加工等过程进行数值模拟,还可以对电子产品在随机振动下产品的响应性能做出很好预测,以优化产品设计。 本例题就某电子产品在随机激励作用下的响应结构为例,采用如下图所示的简化模型,分析在特定随机激励(如图2)中,分析该结构的响应。 图 1 某电子产品结构简化图 图2 随机激励的谱分布 载荷边界条件为:四个底座固支,并在分析过程中,受到随机激励。需要分析整个结构在运动过程中的响应。 启动ABAQUS/CAE,在Start Session对话框中,选择Create Model Database按钮。

一导入模型 由于IGES文件给的是实体模型,我们在 计算中产用shell模型,所以我们需要通过 ABAQUS/CAE中对shell的编辑功能对模型进 行修改。 导入IGES文件成Shell格式。 1.在主菜单选择File ->Import->Part, 进入Import Part对话框。选择相应的 IGES文件,点击按钮。 2.在弹出的Create Part From IGES File 对话框中,如下图,对话框的Topology选择Shell选项,Name选项填写random。 二利用CAE编辑修改模型 在主菜单选择Shape ->Shell->Remove Face,用鼠标点击选择模型中的面,选上之后面会变红色,点击鼠标中键,就可以去掉该面。重复操作,得到下图模型。

振动分析常见图谱

振动分析常见图谱 一、跟踪轴心轨迹 轴心轨迹是轴心相对于轴承座的运动轨迹,它反映了转子瞬时的涡动状况。 对轴心轨迹的观察有利于了解和掌握转子的运动状况。跟踪轴心轨迹是在一组瞬态信号中,相隔一定的时间间隔(实际上是相隔一定的转速)对转子的轴心轨迹进行观察的一种方法。这种方法是近年来随着在线监测技术的普及而逐步被认可的,它具有简单、直观,判断故障简便等优点。 图4-20是某压缩机高压缸轴承处轴心轨迹随转速升高的变化情况,在能过临界转速及升速结束之后,轨迹在轮廓上接近椭圆,说明这时基频为主要振动成分,如果振幅值不高,应该说机组是稳定的。如果达到正运行工况时机组振幅值仍比较高,应重点怀疑不平衡,转子弯曲一类的故障。 二、波德(Bode)图 波德图是描述某一频带下振幅和相位随过程的变化而变化的两组曲线。频带可以是1×、2×或其他谐波;这些谐波的幅、相位既可以用FFT法计算,也可以用滤波法得到。当过程的变化参数为转速时,例如启、停机期间,波德图实际上又是机组随激振频率(转速)不同而幅值和相位变化的幅频响应和相频响应曲线。 当过程参数为速度时,比较关心的是转子接近和通过临界转速时的幅值响应和相位响应情况,从中可以辨识系统的临界转速以及系统

的阻尼状况。 图4-21 某压缩机高压缸波德图 图4-21是某转子在升速过程中的波德图。从图中可以看出,系统在通过临界转速时幅值响应有明显的共振峰,而相位在临界前后转了近180。。 除了随转速变化的响应外,波德图实际上还可以做机组随其他参数变化时的响应曲线,比如时间,不过这时的横坐标应是时间,这对诊断转子缺损故障非常有效。也可以针对工况,当工况条件改变时做波德图,这时的幅频响应和相频响应如果不是两条直线,说明工况变化对振动的大小和相位有影响,利用这一特点可以甄别或确认其他症兆相近的故障。 三、极坐标图 极坐标图实质上就是振动向量图,和波德图一样,振动向量可以是1×、2 ×或其他谐波的振动分量。极坐标图有时也被称为振型圆和奈奎特图(Nyquist图),但严格说来,二者是有差别的,因为极坐标图是按实际响应的幅值相位来绘制的,而Nyquist图一般理解为是按机械导纳来绘制的。 极坐标图可以看成是波德图在极坐标上的综合曲线,它对于说明不平衡质量的部位,判断临界转速以及进行故障分析是十分有用的。和波德图相比,极坐标图在表现旋转机械的动态特征性方面更为清楚和方便,所以其应用也越来越广。

ug振动响应分析详细分析教程

HESSI Satellite Assembly FEM/Response Simulation Workshop

In the last workshop, you built the satellite in the deployed configuration. For the launch loads applied with in this workshop we need the satellite in the deployed configuration. Since this would be a repeat of steps that you had done, this was done for you using the following steps: https://www.360docs.net/doc/d83349067.html,ed the solid properties and calculated the mass of a panel. 2.Unmapped the panels from the assembly FEM. 3.Added 3 concentrated masses at the connection points for the solar panels.

Steps of this Workshop: 1.Apply Enforced Displacement Restraints 2.Create the global damping 3.Solve for the normal modes 4.Create a response simulation 5.Review the results for the mass participation 6.Create the sensors 7.Create a random excitation 8.Calculate the acceleration at the sensors 9.Calculate the RMS for the middle platform

第13章-随机振动试验复习过程

第13章-随机振动试 验

第13章随机振动试验 13.1 试验目的、影响机理、失效模式 产品在运输和实际使用中所遇到的振动,绝大多数就是随机性质的振动(而不是正弦振动)。例如,宇航器和导弹在发射和助推阶段的振动;火箭发动机的噪声和气动噪声使结构产生的振动;飞机(特别是高速飞机)的大功率喷气发动机的振动;飞机噪声使飞机结构产生的振动和大气湍流使机翼产生振动;飞机着陆和滑行时的振动;车辆在不平坦的道路上行驶时产生的振动;多变的海浪使船舶产生的振动等等都属于随机性质的振动。因此,随机振动试验才能更真实反映产品的耐振性能。 随机振动和正弦振动相比,随机振动的频率域宽,而且有一个连续的频谱,它能同时在所有频率上对产品进行激励,各种频率的相互作用远比用正弦振动仅对某些频率或连续扫频模拟上述振动的影响更严酷更真实和更有效。另外,用随机振动来研究产品的动态特性和结构的传递函数比用正弦振动的方法更为简单和优越。 随机振动和正弦振动一样能造成导线摩擦、紧固件松动、活动件卡死,从而破坏产品的连接、安装和固定。当随机振动激励造成的应力过大时,会使结构产生裂纹和断裂,特别在严重的共振状态下更为显著。长时间的随机振动,由于交变应力所产生的累积损伤,会使结构产生疲劳破坏。随机振动还会导致触点接触不良、带电元件相互接触或短路、焊点脱开、导线断裂以及产生强电噪声等。从而破坏产品的正常工作,使产品性能下降、失灵甚至失效。 为了能在试验室内模拟产品在现场所经受到的实际随机振动及其影响,工程技术人员为此付出了许多的努力。早在六十年代,国际上对随机振动的研究就十分活跃。不仅在理论上有了重大突破,而且有了较完善的试验方法和试验设备。1962年美国军标810中首先规定了随机振动试验方法。1964年英国国防部标准07-55中也提出了随机振动试验。1973年IEC公布了四个具有不同再现性宽带模拟式随机振动试验方法,到上世纪90年代又公布了数字式随机振动试验方法。目前国内的随机振动试验已很普及,随机振动试验设备,特别是一般用途的随机振动控制仪价格也不高。 13.2 随机振动的描述 在随机振动试验中,由于振动的质点处于不规则的运动状态,永远不会精确的重复,对其进行一系列的测量,各次记录都不一样,所以没有任何固定的周期。在任何确定的时刻,其振幅、频率、相位都不能预先知道,因此就不可能用简单的周期函数和函数的组合来描述。图13-1为典型的宽带随机振动时间历程。

ANSYS谐响应分析实例-振动电机轴分析

最小网原创教程——AnsysWorkBench11.0振动电机轴谐响应分析 AnsysWorkBench11.0振动电机轴谐响应分析 最小网站长:kingstudio 最小网Ansys 教程频道为您打造最IN 的教程 https://www.360docs.net/doc/d83349067.html,/ 1.谐响应分析简介 任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。 谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。 该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。(见图1)。谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起的有害效果。 谐响应分析是一种线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题。谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。谐响应分析的定义与应用介绍:https://www.360docs.net/doc/d83349067.html,/ArticleContent.asp?ID=785 2. 工程背景 在长距离振动输送机、概率振动筛等变载荷振动机械中,由于载荷的变化幅度较大,且多为冲击或交变载荷,使得作为动力源与振动源的振动电机寿命大为缩短,其中振动电机阶梯轴的弹塑性变形又会中速振动电机的失效,故研究振动电机轴的谐响应,进而合理设计其尺寸与结构,是角决振动电机在此类场合过早失效的主要途径之一。 现以某型振动电机阶梯轴为分对象,振动电机属于将动帮源与振动源合为一体的电动施转式激振源,在振动电机轴两端分别装有两个偏心块,工作时电机轴还动两偏心块作顺转无能无力产生周期性激振力t sin F F 1ω=,其中为施加载荷,由些电机轴受到偏心块施加的变载荷冲击,极易产生变形和疲劳损坏,更严重者,当激振力的频率与阶梯轴的固有频率相等时,就会发生共振,造成电机严重破坏,故对电机进行谐应力分析很必要。 1F 3.分析关键 1.谐响应分析的载荷描述方式 概据定义,谐响应分析假定所施加的所有载荷随时间简谐(正弦)规律变化。指定一个完整的简谐载荷需要输入3条信息:amplitude (幅值),phase angle (相位角)和forcing frequency range (强制频率范围)。 Amplitude (幅值)指载荷的最大值。phase angle (相位角)指载荷滞后(或领先)于参考时间的量度。在复平面上,相位角是以实轴为起始的角度,当同是要定义多个相互间存最小网原创教程 w w w .m i n e s t .n e t

随机振动分析实例

ANSYS 动力分析(18) - 随机振动分析- 实例(1) 2010-09-26 07:41:23| 分类:ANSYS 动力分析| 标签:随机振动实例模型飞机机翼psd|举报|字号订阅 PSD 实例:模型飞机机翼的随机振动 说明: 确定由于施加在机翼根部的Y 向加速度PSD,在模型飞机机翼中造成的位移和应力。假设机翼在Z=0 处固支。 操作指南 1. 清除数据库并读入文件wing. inp 以创建几何模型和网格。

2. 定义材料属性: 弹性模量= 38000 psi 泊松比= 0.3 密度= 1.033E-3/12 lbf-sec2/in4 = 8.6083E-5 3. 施加边界条件。 提示:选择在areas 上施加位移约束,拾取Z=0 处所有的Areas,约束所有自由度。

4. 定义新分析为Model,使用Block Lanczos 方法,抽取和扩展前15 个自然模态。然后求解Current LS。 5. 查看模态形状,如图为前 4 阶振型。

6. 使用所显示的 PSD 谱,执行 PSD Spectrum 分析。 首先定义分析类型为 Spectrum 分析类型为 PSD,使用全部模态,计算单元应力:注意激活“Calculate elem stresses”选项。 7. 在基础上施加指定的 PSD 谱 (注意:确保 PSD 的单位是 G2/Hz)。

施加 Y 向激励 (方法是:在基础节点上施加单位 Y 向位移)。 设置常阻尼比 0.02:

设置有关参数–重力加速度值 注意:响应谱类型选择 Accel (g**2/Hz),否则后面的 PSD 谱应该输入实际加速度值: 定义 PSD 谱表格:

谐响应分析

谐响应: 谐响应分析用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下的响应值(通常是位移)对频率的曲线,从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。 计算方法 谐响应分析的输入为:(i)已知大小和频率的谐波载荷(力、压力或强迫位移);(ii)同一频率的多种载荷,可以是同相或是不同相的。 谐响应分析的输出为:(i)每一个自由度上的谐位移,通常和施加的载荷不同相;(ii)其他多种导出量,例如应力和应变等。 谐响应分析可采用完全法,缩减法,模态叠加法求解。当然,视谐响应分析为瞬态动力学分析的特例,将简谐载荷定义为时间历程的载荷函数,采用瞬态动力学分析的全套方法求解也是可以的,但需要花费较长的计算时间。 谐响应分析 1.谐响应分析的定义: 谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。分析的目的是计算结构在几种频率下的响应并得到一些响应值对频率的曲线。该技术只计算结构的稳态受迫振动,不考虑结构发在激励开始时的瞬态振动。谐响应分析

使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计是否能够克服,疲劳,共振,及其他受迫振动应起的有害效果。 谐响应分析是一种线性分析,非线性特性被忽略。 2.谐响应分析的求解方法。 full(完全法) reduced(缩减法) mode superpos'n(模态叠加法) full(完全法)允许定义各种类型的荷载;预应力选项不可用; reduced(缩减法)可以考虑预应力;只能施加单元荷载(压力,温度等) mode superpos'n(模态叠加法)通过对模态分析的道德振型(特征向量)乘以因子并求和来计算出结果的响应。 可以包含预应力,可以考虑振型阻尼,不能施加非零位移 谐响应分析的基本步骤: 完全法分析过程有3个主要步骤:建模,加载求解,结果后处理

随机振动讲义全文

目录 第一章绪论 (2) 1.1 随机振动的基本概念和特征 (2) 1.2 随机振动研究的内容和意义 (3) 第二章随机振动的数学描述 (5) 2.1 随机过程的基本概念和特征 (5) 2.2 随机过程的数学描述 (6) 2.2.1 随机变量定义 (6) 2.2.2一维随机变量的概率分布函数与概率密度函数 (7) 2.2.3多维随机变量 (8) 2.2.4随机变量的数字特征 (10) 2.2.5随机变量的分布以及运算 (14) 2.3 随机过程的幅域描述 (14) 2.3.1 随机过程概率统计特征量 (14) 2.3.2 平稳随机过程 (16) 2.4 随机过程的时域描述 (17) 2.4.1 各态历经随机过程 (18) 2.4.2 平稳随机过程的自相关函数 (18) 2.4.3互相关函数 (19) 2.5随机过程的频域描述: (20) 2.5.1 典型函数的傅里叶变换 (20) 2.5.2功率谱密度函数 (22) 2.5.3 平稳随机过程的谱分类: (25) 2.5.4 随机过程的分布 (27) 2.6随机过程的运算 (28) 2.6.1微分运算 (28) 2.6.2积分运算 (28) 2.6.3随机振动位移、速度和加速度的相关函数和谱密度函数关系 (29) 第三章SDOF系统的随机响应 (32) 3.1 系统的脉冲响应函数和频率响应函数描述 (32) 3.2 单自由度系统随机响应分析 (33) 第四章多自由度系统的随机响应分析 (41) 4.1 多自由度系统的脉冲响应函数、频率响应函数 (41) 4.2单输入问题的MDOF系统的随机响应 (43) 4.3多输入问题的MDOF系统的随机响应 (45) 4.4 MDOF系统随机响应分析的模态方法 (52) 4.5 随机响应分析的虚拟激励方法 (55) 第五章连续系统的随机响应分析 (62) 参考文献 (68)

随机振动分析实例

ANSYS动力分析(18) -随机振动分析-实例(1) 2010-09-26 07:41:23|分类:ANSYS动力分析| 标签:随机振动实例模型飞机机翼psd|举报|字号订阅 PSD实例:模型飞机机翼的随机振动 说明: 确定由于施加在机翼根部的Y 向加速度PSD,在模型飞机机翼中造成的位移和应力。假设机翼在Z=0处固支。 操作指南 1. 清除数据库并读入文件wing.inp 以创建几何模型和网格。

2. 定义材料属性: 弹性模量= 38000psi 泊松比=0.3 密度= 1.033E-3/12lbf-sec2/in4 =8.6083E-5 3. 施加边界条件。 提示:选择在areas上施加位移约束,拾取Z=0 处所有的Areas,约束所有自由度。

4. 定义新分析为Model,使用Block Lanczos 方法,抽取和扩展前15 个自然模态。然后求解Current LS。 5. 查看模态形状,如图为前 4 阶振型。

6. 使用所显示的 PSD 谱,执行 PSD Spectrum分析。 首先定义分析类型为Spectrum 分析类型为 PSD,使用全部模态,计算单元应力:注意激活“Calculate elem stresses”选项。

7.在基础上施加指定的PSD 谱(注意:确保 PSD 的单位是 G 2/Hz)。 施加 Y 向激励 (方法是:在基础节点上施加单位 Y 向位移)。

设置常阻尼比 0.02: 设置有关参数–重力加速度值 注意:响应谱类型选择 Accel (g**2/Hz),否则后面的 PSD 谱应该输入实际加速度值:

相关文档
最新文档