改进的近似模式匹配算法

改进的近似模式匹配算法
改进的近似模式匹配算法

模式匹配的KMP算法详解

模式匹配的KMP算法详解 模式匹配的KMP算法详解 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为abcdef这样的,大没有回溯的必要。

字符串的模式匹配算法

在前面的图文中,我们讲了“串”这种数据结构,其中有求“子串在主串中的位置”(字符串的模式匹配)这样的算法。解决这类问题,通常我们的方法是枚举从A串(主串)的什么位置起开始与B串(子串)匹配,然后验证是否匹配。假设A串长度为n,B串长度为m,那么这种方法的复杂度是O(m*n)的。虽然很多时候复杂度达不到m*n(验证时只看头一两个字母就发现不匹配了),但是我们有许多“最坏情况”,比如: A=“aaaaaaaaaaaaaaaaaaaaaaaaab”,B=“aaaaaaaab”。 大家可以忍受朴素模式匹配算法(前缀暴力匹配算法)的低效吗?也许可以,也许无所谓。 有三位前辈D.E.Knuth、J.H.Morris、V.R.Pratt发表一个模式匹配算法,最坏情况下是O(m+n),可以大大避免重复遍历的情况,我们把它称之为克努特-莫里斯-普拉特算法,简称KMP算法。 假如,A=“abababaababacb”,B=“ababacb”,我们来看看KMP是怎样工作的。我们用两个指针i和j分别表示,。也就是说,i是不断增加的,随着i 的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。 例子: S=“abcdefgab” T=“abcdex” 对于要匹配的子串T来说,“abcdex”首字符“a”与后面的串“bcdex”中任意一个字符都不相等。也就是说,既然“a”不与自己后面的子串中任何一字符相等,那么对于主串S来说,前5位字符分别相等,意味着子串T的首字符“a”不可能与S串的第2到第5位的字符相等。朴素算法步骤2,3,4,5的判断都是多余,下次的起始位置就是第6个字符。 例子: S=“abcabcabc” T=“abcabx”

关于快速高效的模式匹配算法的剖析与改进

关于快速高效的模式匹配算法的剖析与改进 摘要:模式匹配算法是现代化网络入侵检测中的关键环节,本文主要介绍了几种常用的模式匹配算法,并在此基础上,提出一种更快捷、更高效的改进方法,以提高模式匹配的效率与质量,确保网络安全。 关键词:模式匹配入侵检测改进 随着我国计算机与网络技术的飞速发展,网络应用已涉及到人们生产、生活的各个领域,其重要性日益凸显。随之而来的网络攻击问题也备受关注,给网络安全性带来挑战。传统的网络防御模式,主要采取身份认证、防火墙、数据加密等技术,但是与当前网络发展不适应。在此背景下,入侵检测技术营运而生,并建立在模式匹配基础上,确保检测的快捷性、准确性,应用越来越广泛。 1、模式匹配原理概述 模式匹配是入侵检测领域的重要概念,源自入侵信号的层次性。结合网络入侵检测的底层审计事件,从中提取更高层次的内容。通过高层事件形成的入侵信号,遵循一定的结构关系,将入侵信号的抽象层次进行具体划分。入侵领域大师kumar将这种入侵信号划分为四大层次,并将每一个层次与匹配模式相对应。以下将分别对四大层次进行分析: (1)存在。只要存在审计事项,就可以证明入侵行为的发生,并深层次挖掘入侵企图。存在主要对应的匹配模式就是“存在模式”。可以说,存在模式就是在固定的时间内,检查系统中的特定状态,

同时判断系统状态。 (2)序列。一些入侵的发生,是遵循一定的顺序,而组成的各种行为。具体表现在一组事件的秩序上。序列对应的是“序列模式”,在应用序列模式检测入侵时,主要关注间隔的时间与持续的时间。 (3)规则。规则表示的是一种可以扩展的表达方式,主要通过and 逻辑表达来连接一系列的描述事件规则。一般适用于这种模式的攻击信号由相关活动组成,这些活动之间往往不存在事件的顺序关系。 (4)其他。其他模式是不包含前面几种方法的攻击,在具体应用过程中,难以与其他入侵信号进行模式匹配,大多为部分实现方式。 2、几种常用的模式匹配算法 2.1 ac算法 ac算法(aho-corasick)是一种可以同时搜索若干个模式的匹配算法,最早时期在图书馆书目查询系统中应用,效果良好。通过使用ac算法,实现了利用有限状态自动机结构对所有字符串的接收过程。自动机具有结构性特征,且每一个前缀都利用唯一状态显示,甚至可同时应用于多个模式的前缀中。如果文本中的某一个字符不属于模式中预期的下一个字符范围内,或者可能出现错误链接的指向状态等,那么最长模式的前缀同时也可作为当前状态相对应的后缀。ac算法的复杂性在于o(n),预处理阶段的复杂性则在于o(m)。在采取ac算法的有限状态自动机中,应该在每一个字符的模式串中分别建立节点,提高该算法的使用效率与质量。目前,应用有限

模式匹配算法的设计与实现

五、详细设计 #include #include #include #include using namespace std; #define MAX 100000 #define M 69 class String { private: int n; char *str; int *count; //记录子串在主串中出现的位置 int Find(int i,String &P); // 简单匹配算法找到最近的匹配串后立即停止,而不向下继续且缺乏一个数组记录位置 int *f ; //记录失败函数 void Fail(); int KMPFind(int i,String &P); //改进的失败函数 void ImproveFail(); int KMPFindImprove(int i,String &P); public: String(); //建立一个空串 String(const char *p); String(const String &p); //拷贝函数 ~String(); int Length() {return n;}; //返回当前串对象长度 void Output() {cout<

int KMPFindImprove(String &P); //改进的KMP匹配算法 void Output2(); //输出子串在主串中出现的位置 }; int String::KMPFindImprove(String &P) { int sum=0; int j=KMPFindImprove(0,P); while(j!=-1) { count[sum++]=j; if(j<=n-P.n) j=KMPFindImprove(j+P.n,P); } return sum; } void String::Output2() //输出子串在主串中的位置 { int i=0; while(count[i]!=count[i+1] && i

模式匹配KMP算法实验报告

实验四:KMP算法实验报告 一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。 改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样:

实验三____串的模式匹配

实验三串的模式匹配 一、实验目的 1.利用顺序结构存储串,并实现串的匹配算法。 2.掌握简单模式匹配思想,熟悉KMP算法。 二、实验要求 1.认真理解简单模式匹配思想,高效实现简单模式匹配; 2.结合参考程序调试KMP算法,努力算法思想; 3.保存程序的运行结果,并结合程序进行分析。 三、实验内容 1、通过键盘初始化目标串和模式串,通过简单模式匹配算法实现串的模式匹配,匹配成功后要求输出模式串在目标串中的位置; 2、参考程序给出了两种不同形式的next数组的计算方法,请完善程序从键盘初始化一目标串并设计匹配算法完整调试KMP算法,并与简单模式匹配算法进行比较。 参考程序: #include "stdio.h" void GetNext1(char *t,int next[])/*求模式t的next值并寸入next数组中*/ { int i=1,j=0; next[1]=0; while(i<=9)//t[0] { if(j==0||t[i]==t[j]) {++i; ++j; next[i]=j; } else j=next[j]; } } void GetNext2(char *t , int next[])/* 求模式t 的next值并放入数组next中 */ { int i=1, j = 0; next[1]= 0; /* 初始化 */ while (i<=9) /* 计算next[i+1] t[0]*/ { while (j>=1 && t[i] != t[j] ) j = next[j]; i++; j++;

if(t[i]==t[j]) next[i] = next[j]; else next[i] = j; } } void main() { char *p="abcaababc"; int i,str[10]; GetNext1(p,str); printf("\n"); for(i=1;i<10;i++) printf("%d",str[i]); GetNext2(p,str); printf("\n"); for(i=1;i<10;i++) printf("%d",str[i]); printf("\n\n"); }

串的模式匹配算法实验报告

竭诚为您提供优质文档/双击可除串的模式匹配算法实验报告 篇一:串的模式匹配算法 串的匹配算法——bruteForce(bF)算法 匹配模式的定义 设有主串s和子串T,子串T的定位就是要在主串s中找到一个与子串T相等的子串。通常把主串s称为目标串,把子串T称为模式串,因此定位也称作模式匹配。模式匹配成功是指在目标串s中找到一个模式串T;不成功则指目标串s中不存在模式串T。bF算法 brute-Force算法简称为bF算法,其基本思路是:从目标串s的第一个字符开始和模式串T中的第一个字符比较,若相等,则继续逐个比较后续的字符;否则从目标串s的第二个字符开始重新与模式串T的第一个字符进行比较。以此类推,若从模式串T的第i个字符开始,每个字符依次和目标串s中的对应字符相等,则匹配成功,该算法返回i;否则,匹配失败,算法返回0。 实现代码如下:

/*返回子串T在主串s中第pos个字符之后的位置。若不存在,则函数返回值为0./*T非空。 intindex(strings,stringT,intpos) { inti=pos;//用于主串s中当前位置下标,若pos不为1则从pos位置开始匹配intj=1;//j用于子串T中当前位置下标值while(i j=1; } if(j>T[0]) returni-T[0]; else return0; } } bF算法的时间复杂度 若n为主串长度,m为子串长度则 最好的情况是:一配就中,只比较了m次。 最坏的情况是:主串前面n-m个位置都部分匹配到子串的最后一位,即这n-m位比较了m次,最后m位也各比较了一次,还要加上m,所以总次数为:(n-m)*m+m=(n-m+1)*m从最好到最坏情况统计总的比较次数,然后取平均,得到一般情况是o(n+m).

字符串匹配算法总结

Brute Force(BF或蛮力搜索) 算法: 这是世界上最简单的算法了。 首先将匹配串和模式串左对齐,然后从左向右一个一个进行比较,如果不成功则模式串向右移动一个单位。 速度最慢。 那么,怎么改进呢? 我们注意到Brute Force 算法是每次移动一个单位,一个一个单位移动显然太慢,是不是可以找到一些办法,让每次能够让模式串多移动一些位置呢? 当然是可以的。 我们也注意到,Brute Force 是很不intelligent 的,每次匹配不成功的时候,前面匹配成功的信息都被当作废物丢弃了,当然,就如现在的变废为宝一样,我们也同样可以将前面匹配成功的信息利用起来,极大地减少计算机的处理时间,节省成本。^_^ 注意,蛮力搜索算法虽然速度慢,但其很通用,文章最后会有一些更多的关于蛮力搜索的信息。 KMP算法 首先介绍的就是KMP 算法。 这个算法实在是太有名了,大学上的算法课程除了最笨的Brute Force 算法,然后就介绍了KMP 算法。也难怪,呵呵。谁让Knuth D.E. 这么world famous 呢,不仅拿了图灵奖,而且还写出了计算机界的Bible (业内人士一般简称TAOCP). 稍稍提一下,有个叫H.A.Simon的家伙,不仅拿了Turing Award ,顺手拿了个Nobel Economics Award ,做了AI 的爸爸,还是Chicago Univ的Politics PhD ,可谓全才。 KMP 的思想是这样的: 利用不匹配字符的前面那一段字符的最长前后缀来尽可能地跳过最大的距离 比如 模式串ababac这个时候我们发现在c 处不匹配,然后我们看c 前面那串字符串的最大相等前后缀,然后再来移动 下面的两个都是模式串,没有写出来匹配串 原始位置ababa c 移动之后aba bac 因为后缀是已经匹配了的,而前缀和后缀是相等的,所以直接把前缀移动到原来后缀处,再从原来的c 处,也就是现在的第二个b 处进行比较。这就是KMP 。 Horspool算法。 当然,有市场就有竞争,字符串匹配这么大一个市场,不可能让BF 和KMP 全部占了,于是又出现了几个强劲的对手。

串的朴素模式匹配算法(BF算法)

//算法功能:串的朴素模式匹配是最简单的一种模式匹配算法,又称为 Brute Force 算法,简称为BF算法 #include #include #define MAXL 255 #define FALSE 0 #define TRUE 1 typedef int Status; typedef unsigned char SString[MAXL+1]; //生成一个其值等于串常量strs的串T void StrAssign(SString &T, char *strs) { int i; T[0] = 0; //0号单元存储字串长度 for(i = 0; strs[i]; i++) //用数组strs给串T赋值 T[i+1] = strs[i]; T[0] = i; } //返回子串T在主串S中第pos个字符开始匹配的位置,若不存在,则返回0 int Index(SString S, SString T, int pos) { int i = pos, j = 1; while(i <= S[0] && j <= T[0]) { if(S[i] == T[j]) //继续比较后面的字符 { i++; j++; } else//指针回退,重新开始匹配 { i = i -j + 2; j = 1; } } if(j > T[0]) return i - T[0]; else return 0;

int main() { SString S, T; int m; char strs1[MAXL]; //建立主串S char strs2[MAXL]; //建立模式串T printf("请输入主串和子串:\n"); printf("主串S: "); scanf("%s", strs1); printf("子串T: "); scanf("%s", strs2); StrAssign(S, strs1); StrAssign(T, strs2); m = Index(S, T, 1); if(m) printf("主串 S = {%s}\n子串 T = {%s}\n在第 %d 个位置开始匹配!\n", strs1, strs2, m); else printf("主串 S = {%s}\n子串 T = {%s}\n匹配不成功!\n", strs1, strs2); return 0; }

高效的多模式匹配算法

东方企业文化·百家论坛 2011年9月 163 高效的多模式匹配算法 马 力 (重庆青年职业技术学院,重庆,400712) 摘 要:本文提出一种新的多模式匹配算法,以提高匹配检测的执行速度和效率。该算法采用了基于集合的多模式匹配思想,重新构造了HASH 函数以便在处理大规模模式集时执行时间能比传统的匹配算法的执行时间要少。经过实验证明,运用该算法不仅具有时间复杂度较低的优点,且与传统算法相比具有更为优越的性能,同时在实际工作状态下的检测能力也更强大。 关键词:多模式匹配 HASH 函数 中图分类号:TP393 文献标识码:A 文章编号:1672—7355(2011)09—0163—01 一、算法描述 通常在自然文本中,经常会发生所谓的坏字符移动。此时会极大提高Boyer-Moore 算法的检测效率。但是当文本与多个模式进行匹配时,文本中的多数字符都可能与某些模式的最后一个字符相匹配(即匹配冲突),这时发生坏字符移动的可能性就非常小了。本文提出的算法解决了如何在上述情况下继续保持Boyer-Moore 算法的实质与效率的问题,采用散列(Hash )技术和高效过滤等方法,减小了匹配冲突对算法执行效率的影响。算法描述如下: 首先,算法需要计算出模式的最小长度,设其值为m ,为简化算法描述,假定所有模式均具有相同的长度,同时保证最小长度合理以免影响匹配效率。 假设P 为模式的集合,P={P 1P 2……P K },K=|P|,P 中所有模式的长度均为m 。T 为网络数据包,T=t 1t 2……t n (n ≧m )。 选取Q 为足够大空间的常数,定义长度为m 的支字符串R=r 1r 2……r m ,则构造出R 的Hash 函数:∑=?=m i i m i S r Q R Hash 1mod )(,其中S 为上文所提的模式的P 集合。 二、算法流程设计 1. 预处理阶段 首先需要对模式进行排序,形成有序模式链表;然后主要完成三张表(SHIFT 表、HASH 表和PREFIX 表)的创建。SHIFT 表主要用于确定扫描文本时可移动的字符数。根据SHIFT 表中的取值分为两种处理情况:SHIFT[i ]≠0:直接根据SHIFT[i ]中的取值,确定移动的字符数。SHIFT[i ]=0:即前面提到的匹配冲突。此时需要根据HASH 表和PREFIX 表确定匹配的候选模式并最终核实该模式。 (1)SHIFT 表的创建在此处起到与Boyer-Moore 算法中相同的移动指示作用,只不过移动字符的数目基于长度为B 的字符块。假设SHIFT 表中包含了每个大小为B 的字符串的入口,那么它的大小为|∑|B 。为了减少表存储空间,采用了散列函数,将每个长度为B 的字符串映像为一个索引SHIFT 表的整数。设X=x 1x 2……x b 为文本中的b 个字符串,并假设X 已经被映像为SHIFT 表中的一个入口,则过程SHIFT Table Set Value ()有以下两种情况: X 不属于substring (P ) :SHIFT[i]=m-B+I ; X 属于substring (P ) :SHIFT[i]=m-q ; (q 为P i 中X 发生匹配的最右端位置)。 SHIFT 表中的所有初始值均为m-B+1,考虑每个模式 P=P 1P 2……P K ,将每个大小为i j B j B j P p p p B )(21"+?+?的子 串映像到SHIFT 表中。 通常情况下,SHIFT 表项的取值总是大于0,因此能够成功地跳过文本块并继续扫描文本。但是当模式数量增多时,情况就完全不同了。当模式数量增多时,SHIFT 表项取值为0的概率也呈线性递增趋势,即发生匹配冲突的可能性越来越大。本文设计的该算法的核心思想就是采用散列技术来最小化需要处理模式的数目,避免与模式链表中的每个模式逐一进行匹配,同时结合PREFIX 表的过滤作用,加速搜索过程。 (2)HASH 表的创建创建HASH 表,并使用前面计算出的用于索引SHIFT 表的B 个字符串映像整数作为该表的索引。设HASH 表的第i 个入口为HASH[i],它包含了一个指向最后B 个字符散列值为i 的模式链表的指针。链表PAT_POINT 用于存储指向模式的指针,每个模式按其最后B 个字符的散列值大小排序。设h 为文本当前后缀的散列值,并假设SHIFT[i ]=0,此时HASH[h]的取值指针p 指向散列值为h 的模式链表首部。为查找链表尾,指针不断递增直至它等于HASH[h+1]。如果SHIFT[i ]≠0,则有HASH[h]= HASH[h+1],因为不存在后缀散列值为h 的模式。 (3)PREFIX 表的创建多模式中肯定会出现相同后缀的情况,导致HASH 表冲突,即所有具有相同后缀的模式将映像到HASH 表中的同一入口。为了加快在相同后缀中查找确切匹配模式的速度,算法还引入了用于区分这些模式的一个称为PREFIX 的表。除了将所有模式的后B 个字符做一映像之外,还须将所有模式的前B 个字符映像到PREFIX 表中。 如果发现SHIFT 值为0,并且要在HASH 表中确定是否存在匹配,那么就在PREFIX 表中检查该值。对每个后缀而言,HASH 表不仅包含具有所有此后缀的模式,而且还包含了他们相应的前缀。可以通过左移m-B 个位置计算出文本中的相应前缀,并用它来过滤那些后缀相同但是前缀不同的模式。 2. 扫描阶段 扫描阶段的流程如下:(1)计算tm-B+1到tm 的基于文本当前B 个字符的散列值h ;(2)检查SHIFT[h]的取值,如大于0,移动文本返回(1),否则转至(3);(3)从当前位置向左m 个字符处开始计算文本中的前缀散列值,称为文本前缀;(4)检查每个p ,SHIFT[h]≦p <HASH[h+1],是否有PREFIX[P]=text-prefix 。如果相等,那么就直接检查与文本相对应的实际模式(由PAT_POINT[p]给出)。 参考文献: [1] Crosbie , Gene Spafford. Defending a Computer System using Autonomous Agent[R].COAST Technical Report No.95-022, March 1994. [2] Aho A , Corasick M. Efficient String Matching an Aid to Bibliographic Search [J]. Communication of the ACM , 1975, 18(6) : 333-340.

BM模式匹配算法图解

Boyer-Moore 经典单模式匹配算法 BM模式匹配算法-原理(图解) 由于毕业设计(入侵检测)的需要,这两天仔细研究了BM模式匹配算法,稍有心得,特此记下。 首先,先简单说明一下有关BM算法的一些基本概念。 BM算法是一种精确字符串匹配算法(区别于模糊匹配)。 BM算法采用从右向左比较的方法,同时应用到了两种启发式规则,即坏字符规则和好后缀规则,来决定向右跳跃的距离。 BM算法的基本流程: 设文本串T,模式串为P。首先将T与P进行左对齐,然后进行从右向左比较,如下图所示: 若是某趟比较不匹配时,BM算法就采用两条启发式规则,即坏字符规则和好后缀规则,来计算模式串向右移动的距离,直到整个匹配过程的结束。 下面,来详细介绍一下坏字符规则和好后缀规则。 首先,诠释一下坏字符和好后缀的概念。 请看下图:

图中,第一个不匹配的字符(红色部分)为坏字符,已匹配部分(绿色)为好后缀。 1)坏字符规则(Bad Character): 在BM算法从右向左扫描的过程中,若发现某个字符x不匹配,则按如下两种情况讨论: i. 如果字符x在模式P中没有出现,那么从字符x开始的m个文本显然不可能与P匹配成功,直接全部跳过该区域即可。 ii. 如果x在模式P中出现且出现次数>=1,则以该字符所在最右边位置进行对齐。 用数学公式表示,设Skip(x)为P右移的距离,m为模式串P的长度,max(x)为字符x在P中最右位置。 可以总结为字符x出现与否,将max(x)=0作为初值即可。

例1: 下图红色部分,发生了一次不匹配。 计算移动距离Skip(c) = m-max(c)=5 - 3 = 2,则P向右移动2位。 移动后如下图: 2)好后缀规则(Good Suffix): 若发现某个字符不匹配的同时,已有部分字符匹配成功,则按如下两种情况讨论: i. 如果在P中位置t处已匹配部分P'在P中的某位置t'也出现,且位置t'的前一个字符与位置t的前一个字符不相同,则将P右移使t'对应t方才的所在的位置。 ii. 如果在P中任何位置已匹配部分P'都没有再出现,则找到与P'的后缀P''相同的P的最长前缀x,向右移动P,使x对应方才P''后缀所在的位置。

K近邻近似模式匹配查询

小型微型计算机系统Journal of Chinese Computer Systems 2018年12月第12期Vol.39No.122018 收稿日期:2018-01-03 收修改稿日期:2018-02-06 基金项目:国家重点研发计划项目(2018YFB 1003902)资助;中央高校基本科研业务费专项资金项目(NS 2017073)资助. 作者简介:梁珺秀,女,1994年生,硕士研究生,研究方向为移动对象数据库;许建秋(通信作者),男,1982年生,博士,副教授,CCF 会员,研究方向为移动对象数据库;秦小麟,男,1953年生,硕士,教授,博士生导师,CCF 会员,研究方向为分布式环境的 数据管理与安全. K 近邻近似模式匹配查询 梁珺秀,许建秋,秦小麟 (南京航空航天大学计算机科学与技术学院,南京211106)E-mail :jianqiu @https://www.360docs.net/doc/d8724204.html, 摘 要:随着智能终端的广泛普及,传统的移动对象描述中增加了许多语义相关信息.现有语义移动对象查询大多在语义匹配的前提下再进一步考虑时空属性,造成部分结果在时空维度距离较远.为此,针对时空标签轨迹的语义描述,提出近似模式匹配,并给出相关定义表示,以考虑轨迹语义部分匹配查询条件.在此基础上,提出K 近邻近似模式匹配查询,以实现同时考虑时空距离和语义匹配程度,引入新的剪枝策略,并给出基于标签R 树的K 近邻近似模式匹配查询算法.实验结果表明,与基于RR-Tree ,3DR-Tree ,TB-Tree 及SETI 索引的查询算法对比,在不同参数下,基于LR-Tree 的K 近邻近似模式匹配算法表现出更好的剪枝能力. 关键词:时空标签轨迹;k 近邻算法;近似模式匹配;索引 中图分类号:TP 311 文献标识码:A 文章编号:1000-1220(2018)12-2735-08 K Nearest Neighbor Approximate Pattern Match Query LIANG Jun-xiu ,XU Jian-qiu ,QIN Xiao-lin (College of Computer Science and Technology ,Nanjing University of Aeronautics and Astronautics ,Nanjing 211106,China ) Abstract :With the proliferation of smart terminals ,many semantic information has been added to the traditional moving objects.Exist-ing moving object query with semantic attributes further consider the space-time attributes under the premise of semantic matching ,which leads to far distance over spatial and temporal dimensions in some results.Motivated by this ,approximate pattern match query is developed with formal representations of relevant definition according to semantic descriptions of spatio-temporal label trajectory ,which considering semantic matching pattern partially.Based on this ,k nearest neighbor approximate pattern match query is introduced which put the spatio-temporal distance and semantic matching degree in the same priority ,a new pruning strategy is introduced ,and corresponding algorithm based on LR-Tree is presented.Experiment results show that k nearest neighbor approximate pattern match query based on LR-Tree showing better pruning ability contrasting with query algorithms based on RR-Tree ,3DR-Tree ,TB-Tree and SETI under different parameters. Key words :spatial-temporal label trajectories ;k nearest neighbor algorithm ;approximate pattern match ;index 1 引 言 随着智能终端的广泛应用,包含语义的时空轨迹在用户查询中越来越常见,用户查询内容不再局限于时空属性,更包括轨迹上相应的语义属性.对包含语义属性的移动对象进行管理在众多领域中都具有广阔的应用前景 [1-3] . 常见的语义查询给出空问限制及查询语义,大多是在查询语义完全满足的情况下再进一步考虑在时空属性上是否满足,当查询用户并不要求语义属性完全满足且期望在时空距离上更接近时,现有包含语义属性的时空轨迹查询并不能全面地描述这类问题.为此,需要提出一种适用于此类近似匹配查询语义的技术,以支持更多查询请求. 给定语义模式:在迪斯尼乐园中,从小小世界出发,经过迪斯尼画廊和加勒比海盗,一段时问后经过巴斯光年的星际历险,游玩了若干景点最后到达歌舞基地.查询在2017年7 月期问,满足部分给定语义模式,且距离用户上传轨迹较近的前K 条轨迹,作为好友推荐目标. 如图1所示,[t 1,t 2]表示查询时问区问范围,Qtraj 表示查询轨迹,traj 1和traj 2为轨迹集合中的两条轨迹,虚线部分表示与查询模式近似匹配的轨迹段.当查询条件中K 为1,即返回与查询模式近似匹配且与查询轨迹较近的唯一一条轨迹,从语义属性角度来说,traj 1与给定查询模式完全匹配,而traj 2只匹配查询模式中部分模式,而从时空距离观察可得,traj 2与查询轨迹距离比traj 1更近.由于traj 2模式匹配程度高,且从与查询轨迹的距离角度来说,与traj 1相比,traj 2距离Qtraj 更近,当同时考虑模式匹配程度及时空距离时可以将traj 2作为K 近邻近似模式匹配查询结果返回. 目前还未有针对上述查询的研究成果发表,本文将这类查询定义为K 近邻近似模式匹配查询,查询返回在给定时问区问内,模式匹配时空距离值最大的前K 条轨迹,即返回结 万方数据

KMP字符串模式匹配算法解释

个人觉得这篇文章是网上的介绍有关KMP算法更让人容易理解的文章了,确实说得很“详细”,耐心地把它看完肯定会有所收获的~~,另外有关模式函数值next[i]确实有很多版本啊,在另外一些面向对象的算法描述书中也有失效函数f(j)的说法,其实是一个意思,即next[j]=f(j-1)+1,不过还是next[j]这种表示法好理解啊: KMP字符串模式匹配详解 KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度为O(m+n).。 一.简单匹配算法 先来看一个简单匹配算法的函数: int Index_BF ( char S [ ], char T [ ], int pos ) { /* 若串S 中从第pos(S 的下标0≤pos

基于WM算法改进的多模式匹配算法

第29卷第4期吉林大学学报(信息科学版)Vol.29No.4 2011年7月Journal of Jilin University(Information Science Edition)July2011 文章编号:1671-5896(2011)04-0383-05 基于WM算法改进的多模式匹配算法 董迎亮a,玄雪花a,王德民b (吉林大学a.计算机科学与技术学院;b.网络中心,长春130012) 摘要:为提高入侵检测系统整体的性能和效率,在研究经典的WM(Wu-Manber)多模式匹配算法的基础上,提出一种改进的WM多模式匹配算法。该算法使用后缀表方法,减少了匹配过程中模式字符串与文本的比较 次数。实验结果表明,该算法有效提高了入侵检测系统匹配的速度和效率。 关键词:入侵检测;多模式匹配;Wu-Manber算法 中图分类号:TP393.08文献标识码:A Improved Multiple Patterns Matching Algorithm Based on WM Algorithm DONG Ying-liang a,XUAN Xue-hua a,WANG De-min b (a.College of Computer Science and Technology;b.Network Center,Jilin University,Changchun130012,China) Abstract:To improve the efficiency of intrusion detection system,we analyzed WM(Wu-Manber)multiple patterns matching algorithms,and then presented an improved patterns matching algorithm.This algorithm uses trail table to decrease the comparison times in matching process.The experiment result shows that it improves the intrusion detection system matching efficiency. Key words:intrusion detection;multiple patterns matching;Wu-Manber algorithm 0引言 随着计算机网络技术的飞速发展,网络安全也受到人们越来越多的关注。为了更全面地保护网络环境,仅靠传统的防火墙技术已经不能完全满足网络安全的需求。入侵检测技术被公认为是防火墙之后的第二道安全闸门,可以弥补防火墙技术明显的不足,为网络安全提供实时的入侵检测以及相应的防护手段。 在高速网络环境中,如果模式匹配算法不能满足处理大量实时网络数据包的要求,入侵检测系统必然会丢弃部分网络数据包,而这些被丢弃的数据包中就可能包含入侵信息。由于模式匹配算法的性能直接影响入侵检测系统的检测效率,笔者将以基于误用检测技术的模式匹配算法为研究目标,提出一种改进后的WM多模式匹配算法。该算法与原WM(Wu-Manber)算法相比具有运算效率高的优点。 1模式匹配算法 模式匹配[1-7]是指在给定长度为n的文本串T=T[1]T[2]…T[n]中查找长度为m的模式串P= P[1]P[2]…P[m]的首次出现或多次出现的过程,其中T[i](1≤i≤n),P[j](1≤j≤m)∈∑(字符集)。若在T中能找到P的出现,则称匹配成功;否则称匹配失败。一次在文本中只能对一个模式串进行匹配的算法,称为单模式匹配算法,可同时对多个模式串进行匹配的算法称多模式匹配算法。 收稿日期:2011-04-13 作者简介:董迎亮(1982—),男,长春人,吉林大学硕士研究生,主要从事计算机网络安全研究,(Tel)86-136********(E-mail)liangdyl @https://www.360docs.net/doc/d8724204.html,;王德民(1958—),男,长春人,吉林大学教授,硕士生导师,主要从事智能网络与数据库、网络安全研究 (Tel)86-138********(E-mail)wdm@https://www.360docs.net/doc/d8724204.html,。

模式匹配KMP算法实验步骤

一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。

改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样: ...ababd... ababc ->ababc 这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。 《数据结构》上给了next值的定义: 0 如果j=1 next[j]={Max{k|1aaab ->aaab ->aaab 像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。 到这里,就实现了KMP的大部分内容,然后关键的问题是如何求next值?先看如何用它来进行匹配操作。 将最前面的程序改写成: int Index_KMP(String S,String T,int pos) { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) {

相关文档
最新文档