单相桥式整流电路设计

单相桥式整流电路设计
单相桥式整流电路设计

景德镇陶瓷学院

《电力电子与电机拖动综合课程设计》题目单相桥式整流电路设计

姓名:王帅

所在学院:_ 机电学院_

所学专业:自动化

班级_ 11自动化2班

学号 2 __

指导教师:__ 曹利刚__

完成时间:_ _ 20140610__

电力电子与电机拖动综合课程设计任务书班级:自动化06 姓名:指导教师:曹利钢2010年6月7日

教研室主任签字:年月日

目录

一.目录 (1)

二.引言 (2)

三.设计思想 (2)

四.设计方案 (3)

五.主电路设计 (5)

5.1主电路的工作原理及原理图 (5)

5.2 整流电路的参数计数 (6)

5.3 晶体管元件的选择 (7)

六.单元电路设计 (8)

七.保护电路设计 (11)

八.电路总接线图 (15)

九.设计总结 (16)

参考文献 (16)

摘要

单相桥式可控整流电路是最基本的将交流转换为直流的电路,其效率高原理及结构简单在单相整流电路中应用较多,在设计单相桥式可控整流电路时,从总电路电路出发根据负载择优选着方便的同步触发电路,并逐一设置各种保护电路使电路安全有效的运行,最终达到整流的目的。

关键字:单结晶体管,触发电路,阻感负载,整流电路

二.引言

随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角α的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的SPWM控制技术用于整流电路,就构成了PWM整流电路。通过对PWM整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景

电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。

整流电路是电力电子电路的一种,将交流电变为直流电,应用十分广泛,电路形式多种多样。按组成器件可分为不可控、半控、全控三种;按

电路结构可分为桥式和零式电路;按交流输入相数分为单相电路和多相电路。

三.设计思想

研究单相桥式整流电路的工作原理并进行分析,设计出具有稳定脉冲的触发电路并进行仿真。设计的电路要满足输出500W电源220V,50H输出电压1~50V 等条件

电源→变压器→整流电路→负载

↓变压器→触发电路↑

四.设计方案

1 方案的选择

我们知道,单相整流电路形式是各种各样的,可分为单相桥式相控整流电路和单相桥式半控整流电路,整流的结构也是比较多的。因此在做设计之前我们主要考虑了以下几种方案:

方案一:单相桥式半控整流电路

电路简图如下:

图4-1 单相桥式半控整流电路

对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管

代替,有利于降低损耗!如果不加续流二极管,当α突然增大至180°或出发脉冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期为ud为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。所以必须加续流二极管,以免发生失控现象。

方案二:单相桥式全控整流电路

电路简图如下:

图4-2 单相桥式全控整流电路

此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。

方案三:单相半波可控整流电路:

电路简图如下:

图4-3 单相半波可控整流电路

此电路只需要一个可控器件,电路比较简单,VT的a 移相范围为180 。但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。为使变压器铁心不饱和,需增大铁心截面积,增大了设备的容量。实际上很少应用此种电路。

方案四:单相全波可控整流电路:

电路简图如下:

图4-4 单相全波可控整流电路

此电路变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。不存在直流磁化的问题,适用于输出低压的场合作电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。

而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。

综上所述,针对他们的优缺点,我们采用方案二,即单相桥式全控整流电路。

五.主电路设计

(1) 主电路工作原理

在电源电压2u 正半周期间,VT1、VT2承受正向电压,若在αω=t 时触发,VT1、VT2导通,电流经VT1、负载、VT2和T 二次侧形成回路,但由于大电感的存在,2u 过零变负时,电感上的感应电动势使VT1、VT2继续导通,直到VT3、VT4被触发导通时,VT1、VT2承受反相电压而截止。输出电压的波形出现了负值部分。

在电源电压2u 负半周期间,晶闸管VT3、VT4承受正向电压,在απω+=t 时触发,VT3、VT4导通,VT1、VT2受反相电压截止,负载电流从VT1、VT2中换流至VT3、VT4中在πω2=t 时,电压2u 过零,VT3、VT4因电感中的感应电动势一直导通,直到下个周期VT1、VT2导通时,VT3、VT4因加反向电压才截止。

值得注意的是,只有当时2πα≤,负载电流d i 才连续,当时2

πα>,负载电流不连续,而且输出电压的平均值均接近零,因此这种电路控制角的移相范围是20π-。

图5-1 主电路原理图

相关主题
相关文档
最新文档