高分子材料的物理性能

高分子材料的物理性能
高分子材料的物理性能

高分子材料的主要物理性能

高分子材料与小分子物质相比具有多方面的独特性能,其性能的复杂性源自于其结构的特殊性和复杂性。联系材料微观结构和宏观性质的桥梁是材料内部分子运动的状态。一种结构确定的材料,当分子运动形式确定,其性能也就确定;当改变外部环境使分子运动状态变化,其物理性能也将随之改变。这种从一种分子运动模式到另一种模式的改变,按照热力学的观点称作转变;按照动力学的观点称作松弛。例如天然橡胶在常温下是良好的弹性体,而在低温时(<-100℃)失去弹性变成玻璃态(转变)。在短时间内拉伸,形变可以恢复;而在长时间外力作用下,就会产生永久的残余形变(松弛)。聚甲基丙烯酸甲酯(PMMA )在常温下是模量高、硬而脆的固体,当温度高于玻璃化温度(~100℃)后,大分子链运动能力增强而变得如橡胶般柔软;温度进一步升高,分子链重心能发生位移,则变成具有良好可塑性的流体。

本着“结构?分子运动?物理性能”这样一条思维线路,本章有选择地介绍高分子材料的热性能、力学性能、高弹性和粘弹性、溶液性质、流变性质、电学性能等。同时通过介绍结构与性能的关系,帮助我们根据使用环境和要求,有目的地选择、使用、改进和设计高分子材料,设计和改进加工工艺和设备,扩大高分子材料使用范围。

第一节 高分子材料的分子运动、力学状态转变及热性能 一、高分子运动的特点

与低分子材料相比,高分子材料的分子热运动主要有以下特点: (一)运动单元和模式的多重性

高分子的结构是多层次、多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次、多类型的,相应的转变和松弛也具有多重性。从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。

在各种运动单元和模式中,链段的运动最为重要,高分子材料的许多特性均与链段的运动有直接关系。链段运动状态是判断材料处于玻璃态或高弹态的关键结构因素;链段运动既可以引起大分子构象变化,也可以引起分子整链重心位移,使材料发生塑性形变和流动。

(二)分子运动的时间依赖性

在外场作用下,高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。例如将一根橡胶条一端固定,另一端施以拉力使其发生一定量变形。保持该形变量不变,但可以测出橡胶条内的应力随拉伸时间仍在变化。相当长时间后,内应力才趋于稳定,橡胶条达到新的平衡。

设材料在初始平衡态的某物理量(例如形变量、体积、模量、介电系数等)的值为x 0,在外场作用下,到t 时刻该物理量变为x (t ),许多情况下x (t )与x 0满足如下关系:

()τ/0t e x t x -=

(4-1)

公式(4-1)实质上描述了一种松弛过程,式中τ称松弛时间。当t =τ时,()e x x /0=τ,可见松弛时间相当于x 0变化到x 0/e 时所需要的时间。

低分子物质对外场的响应往往是瞬时完成的,因此松弛时间很短,而高分子材料的松弛时间可能很长。高分子的这种松弛特性来源于其结构特性,由于分子链的分子量巨大,几何构型具有明显不对称性,分子间相互作用很强,本体粘度很大,因此其松弛过程进行得较慢。

不同运动单元的松弛时间不同。运动单元越大,运动中所受阻力越大,松弛时间越长。比如键长、键

角的变化与小分子运动相仿,其松弛时间与小分子相当,约10-8-10-10

s ;链段运动的松弛时间较长,可达到分钟的数量级;分子整链的松弛时间更长,可长达几分、几小时,甚至几天、几个月。由于高分子材料结构具有多重性,因此其总的运动模式具有一个广阔的松弛时间谱。

了解材料的松弛时间谱十分重要,因为材料的不同性质是在不同的松弛过程(它们具有不同的松弛时间)中表现出来的。在实际测试或使用材料时,只有那些松弛时间与外场作用时间数量级相当的分子运动模式(或性质)最早和最明显地被测试或表现出来。例如要研究链段的运动,实验进行的速度应当掌握在分钟数量级,太快或太慢的实验都不能测到链段的运动。如果要研究分子整链的运动(如材料的流动),

实验时间必须长得多。换句话说,高分子材料的松弛特性使得其物理和力学性能与观察和测量的速度(或时间)相关。

(三)分子运动的温度依赖性

温度是分子运动激烈程度的描述,高分子材料的分子运动也强烈地依赖于温度的高低。一般规律是温度升高,各运动单元热运动能力增强,同时由于热膨胀,分子间距增加,材料内部自由体积增加,有利于分子运动,使松弛时间缩短。松弛时间与温度的关系可用Eyring 公式表示:

RT E o e /?=ττ (4-2)

式中τ0是常数,△E 是运动活化能,R 是气体常数,T 是绝对温度。由(4-2)式可见,温度升高,τ变小,松弛过程加快。

由于高分子材料的分子运动既与温度有关,也与时间有关,因此,观察同一个松弛现象,升高温度和延长外场作用时间得到的效果是等同的,在后面章节中将详细介绍这个十分重要的“时—温等效原理”。这一性质也决定了我们在研究测量高分子材料物理性能时,或者规定好测量温度,或者规定好测量时间或速度,否则不易得到正确可靠的结果。

二、高分子材料的力学状态及转变

不同类型高分子材料的力学状态不同,下面按非晶态(无定型)聚合物、结晶聚合物、体型聚合物分别介绍。

(一) 非晶态线型聚合物的力学状态及转变

对尺寸确定的非晶态线型聚合物试样施加一定的外力,并以一定的速度升温,测定试样发生的形变随温度的变化,得到材料的温度-形变曲线,又称热机曲线,如图4-1所示。整条曲线按温度高低可分为五个区,特点如下:

A 区:该区温度低,分子热运动能力小,链段运动处于冻结状态,只有侧基、链节、短支链等小运动

单元的局部振动发生,因此材料弹性模量高(~1010N/m 2

),形变小(~0.1%-1%),外力撤去后,形变立即消失、恢复原状。材料无论在内部结构还是力学性质方面都类似于低分子玻璃,这种状态称玻璃态。

B 区:该区称玻璃化转变区,是一个对温度变化十分敏感的区域。在此区间内,随温度升高,链段活动能力增加,链段可以通过绕主链上的单键内旋转而改变分子链构象,使形变迅速增加,模量下降3~4个数量级。该区域对应的转变温度称玻璃化转变温度,记为g T 。

C 区:温度进一步升高,链段具有充分的运动能力。在外力作用下,一方面通过链段运动使分子链呈现局部伸展的构象,材料可以发生大形变(~100%-1000%);另一方面此时的热能还不足以使分子整链运动,分子链相互缠结形成网络,链段又有回复卷曲的趋势。这两种作用相互平衡,使温度-形变曲线出现

一个平台区。处于该区间的高分子材料,模量低,仅为106N 〃m -2

左右,形变大,外力去除后,形变可以恢复。这种力学状态称高弹态。

D 区:这也是一个对温度十分敏感的转变区,称粘流转变区。由于温度升高,链段的热运动进一步加剧。链段沿外力方向的协同运动,不仅使分子链形态发生改变,而且导致分子链解缠结,分子重心发生相

对位移,宏观上表现为出现塑性形变和粘性流动。形变迅速增加,弹性模量下降到104 N 〃m -2

以下。该区间对应的转变温度称粘流温度,记为f T 。

E 区:温度高于f T 后,大分子链重心发生相对位移的运动占绝对优势,形变继续发展,高分子材料呈熔体(液体)状,这种状态称粘流态。高分子制品的加工成型多在该区域内进行。

由上可见,在不同外部条件下,非晶态线型聚合物可以存在三种不同的力学状态—玻璃态、高弹态、粘流态,三态之间有两种状态转变过程—玻璃化转变、粘流转变。

与转变过程对应的两个转变温度——玻璃化转变温度g T 、粘流温度f T 是两个十分重要的物理量。从分子运动的观点看,玻璃化转变温度g T 对应着链段的运动状态,温度小于g T 时链段运动被冻结,大于g

T

时链段开始运动。粘流温度f T 对应着分子整链的运动状态,温度小于f T 时分子链重心不发生相对位移,大于f T 时分子链解缠结,出现整链滑移。

不同高分子材料具有不同的转变温度,在常温下处于不同的力学状态。如橡胶的g T 较低,一般是零下几十度,如天然橡胶g T = -73℃,顺丁橡胶g T = -108℃。常温下橡胶处于高弹态,表现出高弹性,g T 规定为其最低使用温度,即耐寒温度。塑料的g T 较高,如聚氯乙烯g T =87℃,聚苯乙烯g T =100℃,常温下处于硬而脆的玻璃态,g T 为其最高使用温度,也即耐热温度。

另须指出,从热力学相态角度看,玻璃态、高弹态和粘流态均属液相,非晶态线型聚合物处于这三态时,分子排列均是无序的。三态之间的差别主要是变形能力不同,即模量不同。从分子热运动角度来看,三态的差别只不过是分子运动能力不同而已,因此从玻璃态到高弹态到粘流态的转变均不是热力学相变。

(二) 结晶聚合物的力学状态及转变

结晶聚合物的力学状态与结晶度和聚合物分子量大小有关。

低结晶度聚合物中结晶区小,非晶区大,非晶部分有玻璃化转变温度g T 决定其力学状态,结晶部分则有熔点m T 决定其力学状态。当温度高于g T 而低于m T 时(g T < T f T ),材料才进入粘流态。

高结晶度聚合物中(结晶度>40%)结晶相形成连续相,低温时处于类玻璃态,材料可作为塑料、纤维使用。温度升高,玻璃化转变不明显,而晶区熔融为主要的状态转变。晶区熔融后或者直接进入粘流态(若材料分子量低,f T m T )

,。 (三) 体型聚合物的力学状态

体型聚合物由于分子链间存在交联化学键,限制了整链运动,因此其特点是不溶、不熔。尽管如此,在合适条件下,链段仍能运动,根据链段运动与否可判断其处于玻璃态或是高弹态。

当交联度较小时,网链较长,网链构象的变化仍可按高斯链处理。此时材料仍有玻璃化转变温度g T 。根据环境温度高或低于g T ,可判断材料处于高弹态或玻璃态。当交联度大时,链段运动困难,玻璃化转变难以发生,材料始终处于玻璃态。通常热固性树脂,如酚醛树脂、环氧树脂等,其交联度(固化程度)高,它们是一类强度高、硬而脆的塑料。硫化橡胶作弹性体用,要求其处于高弹态,交联度必需恰当控制。

三、高分子材料的玻璃化转变 (一)玻璃化转变现象

玻璃化转变是高分子材料力学状态变化中的普遍现象,玻璃化转变温度g T 是高分子材料最重要的特征温度。玻璃化转变的实质是链段运动被“冻结”或“解冻”的状态变化。在玻璃化转变前后,材料的比容、热力学性质、力学及电学性质都发生明显变化。测量这些性质随温度的变化可确定玻璃化转变温度的大小

按照热力学相变定义,当材料力学状态出现转变时,若体系Gibbs 自由能G 连续变化,而G 的一阶导数,如焓H 、熵S 或体积V 出现不连续突变,此类转变称热力学一级相转变。若Gibbs 自由能G 的一阶导数在转变点连续,而二阶导数,如比热容C p 、体积膨胀系数α和等温压缩系数k 出现不连续突变,此类转变称热力学二级相转变。

由于高分子材料在玻璃化转变时,具有热力学二级转变的特征,早期曾被认为是二级相转变。实际上高分子材料的玻璃化转变并非真正的热力学二级转变,一个真正的二级转变应是热力学平衡过程,与加热的速度和测量方法无关,而聚合物的玻璃化温度的确定却强烈地依赖加热的速度和测量方法。图4-3中,聚醋酸乙烯酯的比容-温度曲线上转折点的位臵与冷却(或升温)速度有关。冷却快时测得的g T 高,冷却慢时测得g T 低,这表明高分子材料的玻璃化转变不是真正的二级相转变,而是高分子链段运动的一种松弛过程。

(二)玻璃化转变的机理 关于说明玻璃化转变的机理,曾从不同角度提出了几种理论,其中影响最大的是自由体积理论,由Fox 和Flory 于1950年提出。

Fox 和Flory 认为,液体、固体的宏观体积从微观看可分成两部分:一是分子本身占有体积,是体积的主要部分,二是分子堆砌形成的空隙或未占有的“自由体积”,如具有分子尺寸的空穴和堆砌缺陷等。这种未被占据的自由体积,是分子赖以移动和构象重排的场所,其大小或占据百分率决定着分子(对高分子材料而言是链段)运动的状态。

在玻璃化温度以上,自由体积较大,为链段运动提供了空间保证,材料处于高弹态。温度变化时,材料体积的变化由分子占有体积和自由体积的共同变化组成。温度降低,自由体积减小。降至玻璃化转变温度时,自由体积降到最低值。此时的自由体积已不足以提供链段运动的空间,使链段运动被冻结,材料处于玻璃态。在玻璃态中,材料体积随温度的变化将只取决于分子占有体积的变化,自由体积处于冻结状态,保持不变。这种观点是玻璃化转变的等自由体积理论的基础。

考察非晶态线型聚合物的体积膨胀曲线(图4-4)。设V 0是玻璃态聚合物在绝对零度(0K )时的分子占有体积,V f 是玻璃态自由体积,V g 是玻璃化温度g T 时材料总体积,按照体积的热膨胀规律,应有:

g g f g T dT

dV

V V V )(

0++= (4-3) 式中g dT dV )(为玻璃态聚合物的膨胀率,即分子占有体积的膨胀率(注意在玻璃态范围内,V f 是不变的)。

当T >g T 材料变为高弹态(或液态)时,聚合物的总体积V l 等于:

)()(g l g l T T dT

dV V V -+= (4-4)

式中l dT dV )(为高弹态聚合物的膨胀率(包括分子占有体积和自由体积两部分的膨胀)。可见,自由体积

的膨胀率应为高弹态膨胀率和玻璃态膨胀率之差g l dT

dV dT

dV )()(-,且仅在高弹态才有自由体积的膨胀。

在g T 附近,定义玻璃态和高弹态聚合物的膨胀系数分别为: g g g dT

dV V )(

1-=α (4-5) l g l dT dV V )(1-=α (4-6)

自由体积在g T 附近的膨胀系数则应为两者之差:

g l f αααα-=?= (4-7)

若以f 表示自由体积与实际体积之比,称为自由体积分数,则发生玻璃化转变时的自由体积分数为:

g f g V V f /= (4-8)

在温度高于g T 不多时,高弹态聚合物的自由体积分数近似为:

)(g f g T T f f -+=α (4-9)

当聚合物从较高温度冷却时,温度降到g T 附近,聚合物的膨胀系数发生变化,由l α变为g α,根据此变化可确定玻璃化转变是否发生。同理在g T 附近,自由体积分数也发生变化,由f 变为g f 。有趣的是,实验发现许多高分子材料在玻璃化温度附近的自由体积分数相差不大,均接近于0.025(表4-1),这从一个方面支持了玻璃化转变的等自由体积理论

表4-1 几种无定形高聚物在T g 时的自由体积分数

根据自由体积理论,高分子材料的玻璃化转变可以理解成一种体积松弛过程。当聚合物从较高温度(高于g T )冷却时,材料内链段占有体积不断缩小,自由体积也通过链段的运动,逐步转移到材料表面而释出,自由体积缩小。这种缩小与链段运动的松弛速度有关。若冷却速度较慢,链段运动有充分时间松弛,占有体积缩小得多,自由体积释放得也多,则由体积-温度曲线测得的g T 较低。若冷却速度快,由于体系粘度大,链段运动慢,链段占有体积缩小得慢,自由体积也不能及时释出,测得的g T 就高。冷却速度越快,所测得g T 也越高,表明高分子材料的玻璃化转变是一种体积松弛过程。同样在升温过程中测玻璃化转变温度,升温速度越快,测得的g T 也越高。

(三)影响玻璃化温度的因素

玻璃化转变温度g T 定义为高分子链段开始冻结(或运动)的温度,因此凡是使分子链柔性增加(从而链段体积小),使分子间作用力降低(由此链段活动能力增大)的结构因素均会导致g T 下降;反之,凡导致链段活动能力下降的因素均使g T 升高。掌握影响玻璃化温度的因素及其规律十分重要,因为这提供了改变材料玻璃化温度从而改善材料耐热性和耐寒性的方法。

1、主链结构的影响 主链结构为—C —C —、—C —N —、—Si —O —、—C —O —等单键的非晶态聚合物,内旋转势垒小,分子链柔性大,其g T 较低;尤其主链含有醚键及孤立双键的高分子,其单键内旋转更加容

易,柔性比纯—C —C —链高分子大,g T 更低。例如聚二甲基硅氧烷的g T = -123℃,是耐低温性能好的合成橡胶。

主链中含有苯环、萘环等杂环时,分子链柔顺性下降,刚性增大,因而g T 升高。例如聚碳酸酯的

g T =150℃,聚苯醚的g T =220℃,见表4-2。提高玻璃化温度是设计合成耐热高分子的主要指导思想。

2、侧基、侧链的影响 侧基对g T 的影响包括侧基极性、侧基体积及侧基对称性的影响等。以乙烯基

CH 2CH

n

X

聚合物为例,当侧基X 为极性基团时,由于内旋转活化能及分子间作用力增加,使g T 升高。

如聚丙烯(X 为CH 3)的g T =-10℃;聚氯乙烯(X 为Cl )极性较大,玻璃化温度也较高,g T =87℃;聚乙烯醇(X 为OH ,g T =85℃)、聚丙烯腈(X 为CN ,g T =104℃)侧基的极性大,玻璃化温度也高。

若X 为非极性侧基,其对g T 的影响主要看空间阻碍效应。侧基体积越大,对单键内旋转阻碍越大,分子链柔性下降,g T 升高。例如聚苯乙烯的侧基为一个大苯环,g T 上升到100℃;聚乙烯基咔唑的侧基更大(见表4-2),其g T 为208℃。

当侧基在分子链上对称分布时,无论侧基是极性还是非极性的,其g T 均低于不对称取代的高分子。这是因为对称取代基的偶极矩相互抵消,使分子链柔性提高的结果。聚异丁烯与聚丙烯相比,聚异丁烯的两个甲基取代基对称分布,其玻璃化温度(g T =-70℃)低于聚丙烯(g T =-10℃);聚偏二氯乙烯与聚氯乙烯相比,前者分子链上的氯原子对称分布,偶极矩抵消,玻璃化温度低(g T =-19℃)。

表4-2 部分高分子材料的玻璃化转变温度

材料的g T 反而更低。以聚丙烯酸酯类

CH 2 CH n

COOR 为例,取代基R 分别为甲基(CH 3)、乙基(C 2H 5)、丁基

(C 4H 9)时,材料的玻璃化温度依此降低,分别为g T =3℃、-24℃、-56℃。

3、分子量的影响 一般规律是分子量较低时,聚合物的g T 随分子量增加而升高;当分子量超过某一临界值后,g T 与分子量无关,经验公式为:

()n

g g M K

T T -

∞= (4-10) 式中()∞g T 为分子量无限大时聚合物的玻璃化温度,n M 为数均分子量,K 为常数。

4、分子间作用力的影响 分子间作用力越强,材料的内聚能越高,链段运动所需的热能越大,使材料玻璃化温度增高。比如当分子链间形成强氢键时,由于分子间作用增强,g T 升高。尼龙类材料与聚己二酸乙二酯分子链的柔顺性相当,后者的玻璃化温度仅为-70℃,而尼龙类材料由于分子链间有强氢键存在,其g T 升高,尼龙-6,尼龙-66的玻璃化温度均为50℃左右。

5、共聚、共混的影响 共聚和共混是改变聚合物玻璃化温度的重要方法。无规共聚物的玻璃化温度一般介于两种均聚物的玻璃化温度之间,并随其中某一组分含量的增加呈线性或非线性变化。曾提出许多计算无规共聚物g T 的方程,较常用的Fox 方程为:

B g B A g A g T w T w T ,,///1+= (4-11)

式中g T 为共聚物的玻璃化温度;T g ,A 、T g ,B 分别为均聚物组分A 、B 的玻璃化温度;w A 、w B 为组分A 及B 在共聚物中的重量分数。

对嵌段或接枝共聚物,若两组分A 和B 的相溶性差且形成的微相区较大,则共聚物会出现两个g T ,各相当于A 、B 两个均聚物的g T ;若A 和B 相溶性好,可能只出现一个g T 。

两种聚合物共混时,一般出现两个g T 。随着两相相溶性的改善,两个g T 有靠近的趋势。

对于由A 和B 两个各自交联的网络互相穿插在一起而形成的互穿聚合物网络(IPN ),也会出现两个分别代表A 、B 特征的g T 。

6、增塑剂的影响 增塑剂是一种具有低挥发性的小分子液体,加入聚合物中能有效降低材料的玻璃化温度。增塑剂分子与高分子间具有较强的亲和力,它的加入使分子链间的作用力减弱,玻璃化温度g T 和流动温度f T 均降低,材料的使用性能及加工性能改变。例如纯聚氯乙烯室温下为硬塑料,可制成板材、管材等硬制品,若加入20%~40%的邻苯二甲酸二辛酯,玻璃化温度可降至-30℃,室温下呈高弹态,可用作橡胶代用品。

关于增塑剂使聚合物g T 降低的估算可仿照无规共聚物进行。除(4-11)式外,另一个常用公式为:

d g d p g p g T T T ,,φφ+= (4-12)

式中T g ,p 、T g ,d 分别为聚合物与增塑剂的玻璃化温度;φp 、φd 为聚合物与增塑剂的体积分数,φp +φd =1。实际材料中,增塑剂的用量一般为10%~40%,用量过大会降低产品的力学性能。

除上述影响聚合物玻璃化温度的主要因素之外,还有其他结构因素如交联、结晶、立构规整度以及外

界条件如外力作用时间、外力类型、升温速率等也对聚合物玻璃化温度有影响,可参看有关书籍。需要指出的是,不同文献给出的一些聚合物的g T ,有时略有差异,有时多于一个以上,这与不同作者采用不同的测定方法有关。

四、玻璃态和结晶态聚合物的次级转变(次级松弛)

从分子运动的观点看,玻璃化转变及结晶熔融都是由链段运动状态改变引起的,通常称高分子材料的主转变,或α转变。玻璃化转变温度及结晶熔融温度在松弛谱图上的位臵分别用a α、c α表示。转变温度低于g T (或m T )的转变称作次级转变,或次级松弛。次级转变是由小于链段的小尺寸结构单元(如链节、侧基、键长键角等)运动状态改变引起的松弛过程。这些松弛过程的松弛时间较短,活化能较低,因而发生的温度较低。通常按照转变出现的温度由高到低命名各次级转变为β、γ、δ……转变,这种命名并非严格的指明何种次级转变一定对应着何种结构单元的分子运动,有时在这种聚合物的β松弛与另一种聚合物的β松弛有完全不同的分子机理。

研究高分子材料的次级转变有重要的实际意义和理论意义。由于次级转变反映了材料在低温区的分子运动状态,故藉此可研究材料的低温物理性能,如低温韧性及耐寒性等。对塑料而言,只有具备良好的低温韧性,才有更高的使用价值。现代科学技术的发展要求高分子材料在低温甚至超低温领域也能适用,而研制和开发耐低温材料需要研究高分子次级转变。另外,研究次级转变无疑也有助于了解高分子细微结构及运动状态与材料性能的关系。

次级松弛现象通常用动态粘弹谱或动态介电谱实验来研究。用动态粘弹谱仪是测量在一定频率下材料的损耗模量E ''~温度谱或损耗正切tg δ~温度谱;用介电损耗实验是测量材料的介电损耗tg δ~温度谱。图4-5给出典型的聚合物力学损耗~温度谱图,图中除给出玻璃化转变峰和熔融峰a α、c α外,还给出低温区的次级转变β、γ、δ峰。

不同材料发生次级转变的分子运动模式不同。对于非晶高分子,主要有小于链段的小范围主链运动和侧基、侧链的运动。小范围主链运动包括碳-碳链上键长的伸缩振动,键角的变形振动,链节围绕单键的

扭曲振动,以及杂链高分子中杂原子部分的运动,如聚碳酸酯的酯基运动、聚酰胺中O C N H

的运动等。这些运动产生β转变。侧基、侧链的运动包括侧基的转动,侧基中基团的运动,以及较长侧链中的曲柄运动等,其运动状况与侧基、侧链的体积及在分子链的位臵有关。如聚苯乙烯中苯环的内旋转、聚甲基丙烯酸甲酯中酯甲基的旋转都产生β转变;在—COOR 中的R 基转动时,若R 为—C 3H 7或—C 4H 9,将引起γ转变,若R 为—CH 3,引起δ转变。

结晶高分子的情况更复杂些。一方面结晶高分子的非晶区部分也有上述各种小范围分子运动模式,其运动还受到晶区的牵制;另一方面晶区部分尚有多种分子运动,例如晶型的转变、晶区的链段运动、晶区内部侧基和链端的运动、晶区缺陷的局部运动等。图4-6给出聚乙烯的动态力学损耗-温度谱。可以看到,低密度聚乙烯谱图中有α、β、γ松弛峰,而高密度聚乙烯没有β峰,其α峰则分裂成α、α’两个峰。实验已证实,聚乙烯的α峰相应于晶区的分子运动,如晶区的预熔(晶区中分子链扭转和平移)、结晶片层的滑移及片晶表面分子链的运动,α转变为主转变;β峰由非晶区内分子链支化点的运动引起,高密度聚乙烯没有长支链,所以支化点运动的影响不明显;γ松弛峰相应于更小结构单元的运动,如非晶区内局部链节的曲轴运动、晶区缺陷处链的扭曲运动等。高密度聚乙烯结晶度高,晶区分子运动的影响更显著,α’峰则可能由于晶片边界的滑动引起的。

五、高分子材料的耐热和耐寒性能

有机高分子材料在长期高温环境中,会发生两种变化。一是物理变化,如软化、熔融等,破坏尺寸稳定性;另一种是化学变化,如发生分解、氧化、环化、交联、降解等反应,破坏成分稳定性。在低温或超低温环境中,高分子材料则可能出现硬化、脆化等现象。材料发生这些变化将导致性能下降,寿命缩短,乃至失去使用价值。评价高分子材料的耐热性和耐寒性,即要求在使用的温度环境中,材料在相对长时间

内不发生上述变化。

对于结晶度高的材料,其使用温度主要由熔点m T 决定;对于无定型高分子材料,使用温度主要由玻璃化温度g T 决定。对于塑料来讲,g T 是其耐热性的标志,对于橡胶而言,g T 则是耐寒性的标志。此外,表征材料热性能的参数还有:分解温度d T (通常d T >m T 或f T )和脆化温度b T (b T

提高材料耐热性的关键是提高材料的g T 、m T 和d T ,主要方法为:1)提高分子链的刚性,在主链中减少单键,引入共轭双键或环状结构。大部分耐热高分子主链上有此类结构,如聚砜,g T =190℃,结构式为:

CH 3 O

—O — —C — —O — —S — — CH 3 O

2)提高分子链的规整性,提高结晶度;或引入极性基团,使分子间产生氢键,增强分子间作用力,提高g T 。如普通的无规聚苯乙烯(a-PS )的g T =100℃,而全同立构聚苯乙烯(i-PS )可以结晶,其熔点

m T =240℃。3)采用交联方法,限制分子链运动,既提高耐热性,又提高物理、力学性能。如辐射交联的

聚乙烯,耐热温度达250℃,远高于聚乙烯的熔点;又如具有交联结构的热固性树脂,其耐热性一般都较好。4)采用复合方法,如尼龙-66的热变形温度约80℃,将其与30%的玻璃纤维复合后,不仅强度提高,热变形温度也升高到250℃。5)关于橡胶材料的耐热性。为了保证橡胶高弹性不受损,不能采用提高分子链刚性、或结晶、交联等方法,原则上只能从提高分子化学键键能着手(选用耐热橡胶品种),使之不易发生热降解或热交联。

改善橡胶材料的耐寒性。原则上应考虑增大分子链柔顺性,减少分子间作用力,削弱分子链中规整部分的化学结构和组成,降低g T ,降低结晶能力。主要方法有1)增塑法。采用凝固点低、粘度大、沸点高、蒸汽压低的增塑剂,降低g T 。2)改性法。改变橡胶分子链结构(如顺式、反式结构比例),降低结晶速度。硅橡胶(聚二甲基硅氧烷)是一种既耐热又耐寒的优良橡胶。使用温度从-70℃到250℃,原因在于一则Si —O 键的键能大(大于C —C 键),不易热分解,二则其内旋转位垒低,分子链柔顺性好。

高分子物理和化学-名词解释

高分子物理和化学名词解释(各种转)作者:刘方超CooDee 1. 应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。 2. 氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。 3. 等规聚合物:指全同立构和间同的高聚物。 4. 等规度:高聚物中含有全同立构和间同立构总的百分数。 5. 聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。 1999年 1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。 2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。 3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。 4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。 5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。 6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。 2000年 1. 链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。 2. 构型:构型是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。 3. 构象:由于单键内旋转而产生的分子在空间的不同形态。 4. 熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。 5. 熔点:高聚物结晶部分完全熔化的温度。 6. 剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。 7. 高聚物的屈服:聚合物在外力作用下产生的塑性变形。 2001年 1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。

高分子物理名词解释22953

近程结构:高分子中与结构单元相关的化学结构,包括结构单元的构造与构型 远程结构:指与整个高分子链相关的结构 构型:分子链中由化学键所固定的原子在空间的几何排布方式 构象:分子链中单键内旋转所形成的原子或基团在空间的几何排列图像 碳链高分子:高分子主链全部由碳原子组成,且碳原子之间以共价键连接而成的高分子 杂链高分子:主链上除碳原子外,还有氧氮硫等其他原子存在,原子键以共价键相连接的高分子元素有机高分子:主链不含碳原子,由Si,B,P,Al,Ti,As,O等无机元素组成,侧基为有机取代基团 链接异构:结构单元在分子链中因键接顺序或连接方式不同而形成的异构体 序列异构:不同序列排布方式形成的键接异构体 旋光异构:d型和l型旋光异构单元在分子链中排列方式不同而构成的异构体 几何异构:根据内双键连接的两个碳原子上键接基团在键两侧的排列方式分出顺式和反式两种立体异构体,称为顺反异构体,也称为几何异构体 全同立构:分子链中所有不对称碳原子均以相同的构型键接 间同立构:分子链中的不对称碳原子分别以d型和l型交替键接 无规立构:分子链中的不对称碳原子以d和l构型任意键接 线性高分子:具有一维拓扑结构的线性长链,长径比大,每个分子链带有两个端基 支化高分子:分子主链上带有与其化学组成相同而长短不一的支链的高分子,端基数目大于2 交联网络:经交联后,分子链形成的具有一定强度的网状结构 内旋转:与σ键相连的两个原子可以做相对旋转而不影响σ键电子云的分布,称为σ键的内旋转 内旋转势垒:内旋转时需要消耗一定能量以克服所受的阻力,所需能量即为内旋转势垒 内旋转势能差:内旋转异构体之间的势能差称为内旋转势能差 静态分子链柔顺性:又称为平衡态柔顺性,指高分子链在热力学平衡条件下的柔顺性 动态分子链柔顺性:指分子链在一定外界条件下,微构象从一种平衡态构象转变到另一种平衡态构

高分子物理及化学综合实验讲义.

高分子科学实验讲义 (内部教材) 高分子教研室

目录 实验一常见塑料和纤维的简易鉴别 (1) 实验二甲基丙烯酸甲酯的本体聚合 (4) 实验三丙烯酰胺的溶液聚合 (6) 实验四苯乙烯的悬浮聚合 (9) 实验五熔融缩聚反应制备尼龙-66 (12) 实验六聚氨酯泡沫塑料的制备 (16) 实验七热固性脲醛树脂的制备 (19) 实验八膨胀计法测定高聚物的玻璃化转变温度 (22) 实验九用偏光显微镜研究聚合物结晶形态 (25) 实验十粘度法测定聚合物的分子量 (28) 实验十一差示扫描量热法(DSC)测定聚合物热性能 (33) 实验十二、热失重法(TGA)测定聚合物的热稳定性 (41) 实验十三DMA测定高聚物的动态力学性能 (44) 实验十四用扫描电子显微镜观察聚合物形态 (48) 实验十五高聚物熔融指数的测定 (51) 实验十六高聚物熔体流变特性的测定 (54)

综合性、设计性实验 (61) 实验十七改性苯丙乳液的合成与性能分析 (63) 实验十八丙烯酸脂类压敏胶的制备与性能测试 (68)

实验一常见塑料和纤维的简易鉴别 一、实验目的 1.了解聚合物燃烧试验和气味试验的特殊现象,借以初步辨认各种聚合物。 2.利用聚合物溶解的规律及溶剂选择的原则,了解并掌握溶解法对常见聚合物的定性分析。 二、基本原理 聚合物的鉴别,特别对未知聚合物试样的鉴别颇为复杂,即使经纯化处理的聚合物也很难用单一的方法进行鉴别。常见聚合物通常可用红外、质谱、X 光衍射、气相色谱等仪器进行不同程度的定性和定量分析。而基于聚合物的特性简单地通过外观、在水中的浮沉、燃烧、溶解性和元素分析的方法进行实验室的鉴别则方便易行。 1.根据试样的表观鉴别 HDPE、PP、PA 66、PA 6、PA1010质硬,表面光滑。LDPE、PVF、PA11质较软,表面光滑,有蜡状感觉。硬PVC、PMMA表面光滑,无蜡状感觉。PS质硬,敲打会发出清脆的“打铃声”。 2.根据试样的透明程度鉴别 透明的聚合物:聚丙烯酸酯类,聚甲基丙烯酸酯类,再生纤维素,纤维素酯类和醚类,聚甲基戊烯类,PC、PS,PVC及其共聚物。半透明的聚合物:尼龙类,PE,PP,缩醛树脂类。透明性往往与样品的厚薄,结晶性,共聚物某些成分的含量等有关。如:EV A中VC的含量大于15%可以从半透明变为透明。半透明的聚合物在薄时变为透明。加入填料共混后,透明聚合物变为不透明。结晶可使透明聚合物变为半透明。 3.根据聚合物燃烧试验的火焰及气味鉴别

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

高分子物理与化学习题答案(精品文档)

高分子物理与化学习题解答――参考答案 第一章 绪论 1. P16: 名词解释: 单体:能够形成聚合物中结构单元的小分子化合物 结构单元:构成高分子链并决定高分子性质的最小原子组合 重复单元:聚合物中组成和结构相同的最小单位,又称为链节。 聚合物:由结构单元通过共价键重复连接而成的大分子 聚合度:即高分子链中重复结构单元的重复次数,是衡量聚合物分子大小的指标。 3. P16写出下列单体的聚合反应式,以及单体/聚合物的名称 1). 2) 3) 4) 5) 6. P17: 写出下列混合物的数均分子量、重均分子量和分子量分布指数 (1)组分1:质量分数=0.5,分子量=1 x 104 (2)组分2:质量分数=0.4,分子量=1 x 105 (3)组分3:质量分数=0.1,分子量=1 x 106 解: 4 6 41085.11011054.0105.01 /1?=++== ==∑∑∑∑∑∑Mi Wi Wi Mi Wi Wi Ni NiMi M n 56541045.1101.0104.0105.0?=?+?+?==∑WiMi Mw 1045.15 ?Mw nCH 2CHF 2CHF n 氟乙烯聚氟乙烯 nCH 2C(CH 3)CH 2C(CH 3)2n 聚异丁烯 异丁烯nHO (CH 2)5H O(CH 2)5CO OH n 6-羟基己酸聚己内酯 n n CH 2CH 2CH 2O CH 2CH 2CH 2O 1,3-环丙烷 聚氧化丙撑 n n n H 2N(CH 2)6NH 2HOOC(CH 2)4COOH +2)6NHCO(CH 2)4CO 己二胺己二酸尼龙66

第三章自由基聚合习题解答 1.P73-74. 判断下列单体能否进行自由基聚合、阳离子聚合、阴离子聚合?并说明理由

苯的理化性质

苯的性质: 苯的分子式C6H6,分子量78,沸点为80.1℃,熔点为+5.5℃,闪点-10.11℃(闭杯) 自燃点562.22℃爆炸极限1.2 - 8.0 % 在常温下是一种无色、有芳香气味的透明液体,易挥发。苯比水密度低,相对密度0.8787g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯。苯能与水生成恒沸物,沸点为69.25℃,含苯91.2%。因此,在有水生成的反应中常加苯蒸馏,以将水带出。苯的危害性及处理方法: 苯对中枢神经系统产生麻痹作用,引起急性中毒,有致癌可能性。重者会出现头痛、恶心、呕吐、神志模糊、知觉丧失、昏迷、抽搐等,严重者会因为中枢系统麻痹而死亡。少量苯也能使人产生睡意、头昏、心率加快、头痛、颤抖、意识混乱、神志不清等现象。吸入20000ppm的苯蒸气5-10分钟便会有致命危险。摄取:可引起急性中毒,麻痹中枢神经,需要充分漱口,喝水,尽快洗胃。 吸入:可导致呼吸困难。严重者可能导致呼吸及心跳停止。 皮肤:变干燥,脱屑,皴裂,有的可能发生过敏性湿疹。 眼睛:有刺激性,需用大量清水冲洗。 进入苯的环境中要带防毒面具或空气呼吸器以作防护处理。 灭火方法 燃烧性:易燃 灭火剂:泡沫、干粉、二氧化碳、砂土。用水灭火无效。 乙苯的性质: 分子式:C8H10 分子量:106.16 ,无色液体,有芳香气味。熔点(℃):-94.9 沸点(℃):136.2 ,相对密度(水=1):0.87 ,相对蒸气密度(空气= 1): 3.66 ,饱和蒸气压(kPa): 1.33(25.9℃) ,临界温度(℃):343.1 ,临界压力(MPa):3.70 ,闪点(℃):15 ,引燃温度(℃):432 ,爆炸上限%(V/V):6.7 ,爆炸下限%(V/V):1.0 。 主要用途:用于有机合成和用作溶剂,造苯乙烯的原料等。 健康危害:本品对皮肤、粘膜有较强刺激性,高浓度有麻醉作用。急性中毒:轻度中毒有头晕、头痛、恶心、呕吐、步态蹒跚、轻度意识障碍及眼和上呼吸道刺激症状。重者发生昏迷、抽搐、血压下降及呼吸循环衰竭。可有肝损害。直接吸入本品液体可致化学性肺炎和肺水肿。慢性影响:眼及上呼吸道刺激症状、神经衰弱综合征。平时接触可用水清洗,多喝纯牛奶。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。与氧化剂接触猛烈反应。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

考研《高分子物理与化学》考研真题考点归纳

考研《高分子物理与化学》考研考点归纳 高分子物理与化学考点归纳与典型题(含考研真题)详解第1章氧化还原反应与应用电化学 第1章概论 1.1考点归纳 一、高分子物理发展简史 1.发展历程 (1)1920年,H.Staudinger发表文献《论聚合》,论证聚合过程是大量小分子自己结合的过程; (2)P.Debye和B.H.Zimm等发展光散射法研究高分子溶液的性质; (3)J.D.Watson和F.H.C.Crick用X射线衍射法研究高分子的晶态结构,于l953年确定了脱氧核糖核酸的双螺旋结构; (4)50年代,高分子物理学基本形成。 2.高分子物理的研究内容 (1)高分子的结构; (2)高分子材料的性能; (3)分子运动的统计学。 二、高分子的分子量和分子量分布 1.聚合物分子量的特征

(1)比低分子化合物大几个数量级; (2)具有多分散性——即分子量的不均一性。 2.平均分子量的定义 (1)以数量为统计权重的数均分子量,定义为 (2)以质量为统计权重的重均分子量,定义为 (3)用稀溶液黏度法测得的平均分子量为黏均分子量,定义为 式中,a是特性黏数分子量关系式中的指数,在0.5~1之间。(4)以z值为统计权重的z均分子量,定义为

注:单分散试样:;多分散试样:。 3.分子量分布的表示方法 (1)分子量分布的定义 分子量分布是指聚合物试样中各个组分的含量和分子量的关系。 (2)表征多分散性的参数 ①分布宽度指数 a.定义:分布宽度指数是试样中各分子量与平均分子量之间的差值的平方平均值,又叫方差。分布愈宽, 愈大。

b.单分散试样,,;多分散试样,,。 ②多分散性指数 a.定义:表征聚合物分子量不均一性的参数,以重均和数均分子量之比或Z均和重均分子量之比表征(或d=MZ/MW)。 b.单分散试样,d=1;多分散试样,d >1,d的数值越大,分子量分布越宽。 三、分子量和分子量分布的测定方法 1.测定方法 (1)数均分子量:端基分析法(M<104)、蒸气压渗透法(M<30000)、冰点降低法(M<30000)、沸点升高法(M<30000)、渗透压法(20000<M); (2)重均分子量:光散射法(104<M<107)、体积排除色谱法(103<M<107);

高分子物理和化学

高分子化学 高分子化学高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。(https://www.360docs.net/doc/d917946407.html,|NO.6315)合成高分子的历史不过八十年,所以高分子化学真正成为一门科学还不足六十年,但它的发展非常迅速。目前它的内容已超出化学范围,因此,现在常用高分子科学这一名词来更合逻辑地称呼这门学科。狭义的高分子化学,则是指高分子合成和高分子化学反应。后来,经过研究知道,人工合成的高分子和那些天然存在的高分子,在结构、性能等方面都具有共同性,因此,就都叫做高分子化合物。 高分子的分子内含有非常多的原子,以化学键相连接,因而分子量都很大。但这还不是充足的条件,高分子的分子结构,还必须是以接合式样相同的原子集团作为基本链节(或称为重复单元)。许多基本链节重复地以化学键连接成为线型结构的巨大分子,称为线型高分子。有时线型结构还可通过分枝、交联、镶嵌、环化,形成多种类型的高分子。其中以若干线型高分子,用若干链段连接在一起,成为巨大的交联分子的称为体型高分子。(https://www.360docs.net/doc/d917946407.html,|NO.6315) 从高分子的合成方法可以知道,合成高分子的化学反应,可以随机地开始和停止。因此,合成高分子是长短、大小不同的高分子的混合物。与分子形状、大小完全一样的一般小分子化合物不同,高分子的分子量只是平均值,称为平均分子量。 决定高分子性能的,不仅是平均分子量,还有分子量分布,即各种分子量的分子的分布情况。从其分布中可以看出,在这些长长短短的高分子的混合物中,是较长的多还是较短的多,或者中等长短的多。 高分子具有重复链节结构这一概念,是施陶丁格在20世纪20年代初提出的,但没有得到当时化学界一些人的赞同。直到30年代初,通过了多次实践,这一概念才被广泛承认。正确概念一经成立,就使高分子有飞跃的发展。当时链式反应理论已经成熟,有机自由基化学也取得很大的成就。三者的结合,使高分子合成有了比较方便可行的方法实践证明,许多烯类化合物,经过有机自由基的引发,就能进行链式反应,迅速地

苯的性质及应用

苯的性质及应用 分子式:C6H6 物理性质 苯的沸点为80.1℃,熔点为5.51℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,易溶于有机溶剂,苯也是一种良好的有机溶剂。 化学性质 苯参加的化学反应大致有3种:一种是其他基团和苯环上的氢原子之间发生的取代反应;一种是发生在碳原子之间的共价键上的加成反应;一种是苯环的断裂。 一、取代反应 1、卤代反应 苯的卤代反应的通式可以写成:PhH+X2——→PhX+HX 反应过程中,卤素分子在苯和催化剂的共同作用下异裂,X+进攻苯环,X-与催化剂结合。 以溴为例,将液溴与苯混合,溴溶于苯中,形成红褐色液体,不发生反应,当加入铁屑后,在生成的三溴化铁的催化作用下,溴与苯发生反应,混合物呈微沸状,反应放热有红棕色的溴蒸汽产生,冷凝后的气体遇空气出现白雾(HBr)。反应后的混合物倒入冷水中,有红褐色油状液团(溶有溴)沉于水底,用稀碱液(如NaOH溶液)洗涤后生成可溶性盐(NaBr 和NaBrO),溴苯比水重且分层,在用干燥剂除水,最后蒸馏得无色液体溴苯。 注意:实验过程中,跟瓶口垂直的玻璃管起导气和冷凝的作用、导管不能伸入水中,因为HBr 极易溶于水,发生倒吸。 2、硝化反应 向浓硝酸中加入浓硫酸,待温度为50到60摄氏度时,再加入苯,反应生成硝基苯。其中,浓硫酸既做催化剂。

PhH+HO-NO2-----H2SO4(浓)△---→PhNO2+H2O 硝化反应是一个强烈的放热反应,若加入苯太快,温度急剧上升,而得到副产物,而且温度过高,苯容易挥发。 3、磺化反应 用浓硫酸或者发烟硫酸在较高温度下可以将苯磺化成苯磺酸。 PhH+HO-SO3H------△→PhSO3H+H2O 苯环上引入一个磺酸基后反应能力下降,不易进一步磺化,需要更高的温度才能引入第二、第三个磺酸基。这说明硝基、磺酸基都是钝化基团,即妨碍再次亲电取代进行的基团。 二、加成反应 苯环虽然很稳定,但是在一定条件下也能够发生加成反应。通常经过催化加氢,镍作催化剂,苯可以生成环己烷。但反应极难。 C6H6+3H2------催化剂△----→C6H12 此外由苯生成六氯环己烷(“六六六”剧毒农药)的反应可以在紫外线照射的条件下,由苯和氯气加成而得。 三、氧化反应 1、燃烧 苯和其他的烃一样,都能燃烧。当氧气充足时,产物为二氧化碳和水。但在空气中燃烧时,火焰明亮并有浓黑烟。这是由于苯中碳的质量分数较大。 2C6H6+15O2——→12CO2+6H2O 2、臭氧化反应 苯在特定情况下也可被臭氧氧化,产物是乙二醛。这个反应可以看作是苯的离域电子定域后生成的环状多烯烃发生的臭氧化反应。 赞同

高分子物理及化学

北京印刷学院2013 年硕士研究生招生 《材料物理与化学》专业考试大纲 高分子物理及化学 第一部分《高分子化学》大纲 高分子化学是研究高分子化合物合成和反应的一门科学,是高分子科学与工程专业学生必修的一门专业基础课。它以无机化学、有机化学、物理化学和分析化学等四大化学为基础,同时也为后继的专业课程打下必要的理论基础。 第一章绪论 【掌握内容】 1. 基本概念:单体、高分子、聚合物、低聚物、结构单元、重复单元、单体单元、链 节、主链、侧链、端基、侧基、聚合度、相对分子质量等 2. 聚合反应;加成聚合与缩合聚合;连锁聚合与逐步聚合 3. 从不同角度对聚合物进行分类 4. 常用聚合物的命名、来源、结构特征 5. 聚合物相对分子质量及其分布 【熟悉内容】 1. 系统命名法

2. 典型聚合物的名称、符号及重复单元 1. 高分子化学发展历史 2. 聚合物相对分子质量及其分布对聚合物性能的影响 第二章自由基聚合(radical polymerization) 【掌握内容】 1. 自由基聚合的基本概念: 聚合熵,聚合焓,聚合上限温度,引发剂半衰期,残留分率,引发效率,诱导效应,笼蔽效应,自动加速现象,凝胶效应,沉淀效应,动力学链长,链转移现象,阻聚现象,缓聚现象 2. 单体聚合能力:热力学(△E, △S,T,P) ;动力学(空间效应-聚合能力,电子效应-聚合类型) 3. 自由基基元反应每步反应特征,自由基聚合反应特征 4. 常用引发剂的种类和符号,引发剂分解反应式,表征方法(四个参数),引发剂效率,诱导效应,笼蔽 效应,引发剂选择原则 5. 聚合动力学:聚合初期:三个假设,四个条件,反应级数的变化,影响速率的四因素 (M,I,T,P) ;聚合中后期的反应速率的研究:自动加速现象,凝胶效应,沉淀效应;聚合反应类型 6. 相对分子质量:动力学链长,聚合度及影响其的四因素(M,I,T,P) 7. 链转移:类型,聚合度,动力学分析,阻聚与缓聚 1. 热、光、辐射聚合 2. 聚合动力学研究方法

苯的理化性质表

苯的理化性质表 标识中文名:苯;纯苯;安息油英文名:Benzene 分子式:C6H6 分子量:78.11 CAS号:71-43-2 RTECS号:CYl400000 UN编号:1114 危险货物编号:32050 IMDG规则页码:3185 理化性质外观与性状:无色透明液体,有强烈芳香味。冰点为6℃ 主要用途:用作溶剂及合成苯的衍生物、香料、染料、塑料、医药、炸药、橡胶等。熔点:5.5 沸点:80.1 相对密度(水=1):0.88 相对密度(空气=1): 2.77 饱和蒸汽压(kPa):13.33/26.1℃ 溶解性:不溶于水,溶于醇、醚、丙酮等多数有机溶剂。 临界温度(℃):289.5 临界压力(MPa): 4.92 燃烧热(kj/mol):3264.4 燃烧爆炸危险性避免接触的条件: 燃烧性:易燃 建规火险分级:甲 闪点(℃):-11 自燃温度(℃):560℃ 爆炸下限(V%):1.2 爆炸上限(V%):8.0 危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇吹源引 着回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。流速过快,容易产 生和积聚静电。 燃烧(分解)产物:一氧化碳、二氧化碳。 稳定性:稳定 聚合危害:不能出现 禁忌物:强氧化剂。 灭火方法:泡沫、二氧化碳、干粉、砂土。用水灭火无效。如果该物质或其被污染的流体进入水路,通知有潜在水体污染的下游用户,通知地方卫生、消防官员和污染 控制部门。在安全防爆距离以外,使用雾状水冷却暴露的容器。若冷却水流不 起作用(排放音量、音调升高,罐体变色或有任何变形的迹象),立即撤离到安 全区域。 包装与储运危险性类别:第3.2类中闪点易燃液体 危险货物包装标志:7 包装类别:Ⅱ 储运注意事项:储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过30℃。防止阳光直射。保持容器密封。应与氧化剂分开存放。储存间内的照明、通风等设施应采 用防爆型,开关设在仓外。配备相应品种和数量的消防器材。罐储时要有防火 防爆技术措施。禁止使用易产生火花的机械设备和工具。灌装时应注意流速(不 超过3m/s),且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及 容器损坏。夏季应早晚运输,防止日光曝晒。运输按规定路线行驶。 ERG指南:130 ERG指南分类:易燃液体(非极性/不溶于水/有毒) 毒性接触限值:中国MAC:40mg/m3[皮] 苏联MAC:5mg/m3[皮]

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

高分子物理名词解释

1.应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。 2.氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。 3.等规聚合物:指全同立构和间同的高聚物。 4.等规度:高聚物中含有全同立构和间同立构总的百分数。 5.聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。 1999年 1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。 2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。 3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。 4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。 5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。 6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。 2000年 1.链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。 2.构型:构型是对分子中的最近邻原子间的相对位臵的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。 3.构象:由于单键内旋转而产生的分子在空间的不同形态。 4.熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。 5.熔点:高聚物结晶部分完全熔化的温度。 6.剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。 7.高聚物的屈服:聚合物在外力作用下产生的塑性变形。 2001年 1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 2002年 1.高聚物的熔点:比容-温度曲线上熔融终点处对应的温度为高聚物

苯的物理性质

物理性质 中文名:苯外文名:安息油 别名:Benzol 分子式:C6H6 密度0.8786 g/mL 相对蒸气密度(空气=1):2.77 蒸汽压(26.1℃):13.33kPa 二、物理性质 中文名:苯外文名:安息油 别名:Benzol 分子式:C6H6 密度 0.8786 g/mL 相对蒸气密度(空气=1):2.77 蒸汽压(26.1℃):13.33kPa 临界压力:4.92MPa 熔点 278.65 K (5.51 ℃) 沸点 353.25 K (80.1 ℃) 在水中的溶解度0.18 g/ 100 ml 水 标准摩尔熵So298 173.26 J/mol·K 标准摩尔热容Cpo 135.69 J/mol·K (298.15 K) 闪点-10.11℃(闭杯) 冰点:5 ℃ 自燃温度 562.22℃ 结构平面正六边形 最小点火能:0.20mJ。 爆炸上限(体积分数):8% 爆炸下限(体积分数):1.2% 燃烧热:3264.4kJ/mol

溶解性:不溶于水,可与乙醇、乙醚、乙酸、汽油、丙酮、四氯化碳和二硫化碳等有机溶剂互溶。 无色透明液体。有芳香气味。具强折光性。易挥发。能与乙醇、乙醚、丙酮、四氯化碳、二硫化碳、冰乙酸和油类任意混溶,微溶于水。燃烧时的火焰光亮而带黑烟。易燃。低毒,半数致死量(大鼠,经口) 3800mG/kG。有致癌可能性。密度比水小。 临界压力:4.92MPa 熔点278.65 K (5.51 ℃) 沸点353.25 K (80.1 ℃) 在水中的溶解度0.18 g/ 100 ml 水 标准摩尔熵So298 173.26 J/mol·K 标准摩尔热容Cpo 135.69 J/mol·K (298.15 K) 闪点-10.11℃(闭杯) 冰点:5 ℃ 自燃温度562.22℃ 结构平面正六边形 最小点火能:0.20mJ。 爆炸上限(体积分数):8% 爆炸下限(体积分数):1.2% 燃烧热:3264.4kJ/mol 溶解性:不溶于水,可与乙醇、乙醚、乙酸、汽油、丙酮、四氯化碳和二硫化碳等有机溶剂互溶。 无色透明液体。有芳香气味。具强折光性。易挥发。能与乙醇、乙醚、丙酮、四氯化碳、二硫化碳、冰乙酸和油类任意混溶,微溶于水。燃烧时的火焰光亮而带黑烟。易燃。低毒,半数致死量(大鼠,经口) 3800mG/kG。有致癌可能性。密度比水小。

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

高分子化学和物理南开大学高分子化学与物理考研真题答案

高分子化学和物理南开大学高分子化学与物理考研真 题答案 一、南开大学832高分子化学与物理考研真题及答案

南开大学2011年硕士研究生入学考试高分子化学与物理

2 参考答案 高分子物理部分: 一、名词解释 1.高分子链的远程结构:远程结构是指整个高分子链的结构,是高分子链结构的第二个层次,包含高分子链的大小(质量)和形态(构象)两个方面。 2.高斯链:高斯链是指高分子链段分布符合高斯分布函数的高分子链,也称为等效自由结合链。柔性的非晶状线型高分子链,不论处于什么形态(如玻璃态、高弹态、熔融态或高分子溶液),相同分子量的高分子链段都取平均尺寸近乎相等的无规线团构象,称为“等效自由结合链”。因为等效自由结合链的链段分布符合高斯分布函数,又称为高斯链。 3.聚集态结构:聚集态结构是指高分子链间的几何排列,又称三次结构,也称为超高分子结构。聚集态结构包括晶态结构、非晶态结构、取向结构和织态结构等。 4.溶度参数:溶度参数表征聚合物-溶剂相互作用的参数。物质的内聚性质可由内聚能予以定量表征,单位体积的内聚能称为内聚物密度,其平方根称为溶度参数。溶度参数可以作为衡量两种材料是否共容的一个较好的指标。 5.玻璃化转变:玻璃化转变对于聚合物来说是非晶聚合物的玻璃态与高弹态之间的转变。其分子运动本质是链段运动发生“冻结”与“自由”的转变。6.熵弹性:熵弹性是指由于系统熵变而引起的弹性。熵是和物质分子排列有序度有关的一种状态函数,当物质系统分子排列有序度降低,混乱程度增加时,系统熵也增大。所以当橡胶受外力变形时,若没有内能变化,则其抵抗变形的收缩力(弹力)完全是由熵的变化而产生的,这种称之为熵弹性。

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

高分子物理与化学习题答案

1word 版本可编辑.欢迎下载支持. 高分子物理与化学习题解答――参考答案 第一章 绪论 1. P16: 名词解释: 单体:能够形成聚合物中结构单元的小分子化合物 结构单元:构成高分子链并决定高分子性质的最小原子组合 重复单元:聚合物中组成和结构相同的最小单位,又称为链节。 聚合物:由结构单元通过共价键重复连接而成的大分子 聚合度:即高分子链中重复结构单元的重复次数,是衡量聚合物分子大小的指标。 3. P16写出下列单体的聚合反应式,以及单体/聚合物的名称 1). 2) 3) 4) 5) 6. P17: 写出下列混合物的数均分子量、重均分子量和分子量分布指数 (1)组分1:质量分数=0.5,分子量=1 x 104 (2)组分2:质量分数=0.4,分子量=1 x 105 (3)组分3:质量分数=0.1,分子量=1 x 106 解: 4 6 41085.11011054.0105.01 /1?=++== ==∑∑∑∑∑∑Mi Wi Wi Mi Wi Wi Ni NiMi M n 56541045.1101.0104.0105.0?=?+?+?==∑WiMi Mw 84.71085.11045.145 =??==Mn Mw D nCH 2CHF 2CHF n 氟乙烯聚氟乙烯 nCH 2C(CH 3)CH 2C(CH 3)2n 聚异丁烯 异丁烯nHO (CH 2)5H O(CH 2)5CO OH n 6-羟基己酸聚己内酯 n n CH 2CH 2CH 2O CH 2CH 2CH 2O 1,3-环丙烷 聚氧化丙撑 n n n H 2N(CH 2)6NH 2HOOC(CH 2)4COOH +2)6NHCO(CH 2)4CO 己二胺己二酸尼龙66

相关文档
最新文档