高中物理基本模型之:类平抛运动模型

高中物理基本模型之:类平抛运动模型
高中物理基本模型之:类平抛运动模型

高中物理《类平抛运动模型》专题训练与解析

例1.如图所示的光滑斜面长为l ,宽为b ,倾角为θ,一物块(可看成质点)沿斜面左上方顶点P 以初速度v 0水平射入,恰好从底端Q 点离开斜面,则(

)A .物块由P 点运动到Q 点所用的时间t=2

2l g sin θ

B .物块由P 点运动到Q 点所用的时间t=

2l g C .初速度v 0=b

g sin θ2l D .初速度v 0=b

g 2l

【答案】C

【解析】由题意知:物块在斜面内做类平抛运动

根据牛顿第二定律,得

θθsin sin g a ma mg =?=在沿斜面方向上,有

l=12

at 2解得t=2l

g sin θ①

所以初速度为v 0=b t

=b g sin θ2l ②例2.质量为m 的飞机以水平初速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).现测得当飞机在水平方向的位移时,它的上升高度为h ,如图所示,求:

飞机受到的升力大小;

上升至h 高度时飞机的速度.

【答案】(1)mg (1+2h gl 2v 20)(2)v 0l l 2+4h 2,方向与v 0成θ角,θ=arctan 2h l

【解析】(1)飞机水平方向的速度不变,则

水平方向位移l=v 0t

竖直方向上飞机的加速度恒定,则

竖直方向位移h=12

at 2

联立解得a=2h l 2

v 20根据牛顿第二定律,得飞机受到的升力为F=mg +ma=mg (1+

2h gl 2v 20)(2)上升到h 高度时飞机的竖直分速度为

v y =2ah=2·2hv 20l 2·h =2hv 0

l

所以上升至h 高度时飞机的速度为v=v 20+v 2y =

v 0l l 2+4h 2如图所示,tan θ=v y v 0=2h l ,方向与v 0成θ角,θ=arctan 2h l

例3.如图所示,是一个说明示波管工作原理的示意图,电子经电压U 1加速后垂直进入偏转电场,离开电L .为了提高示波管的灵敏度(每单位电压引起的偏转量

h U 2

),可采用的方法是()

A .增大两板间的电势差U 2

B .尽可能使板长L 短些

C .尽可能使板间距离d 小一些

D .使加速电压U 1升高一些

【答案】C

【解析】在加速电场中,有

m eU v mv eU 102012021=?-=在偏转电场中,由类平抛运动知识,得

????????

? ????===202202121v L md eU at h t v L 1

2212212244221dU L U h dU L U eU m md L eU h =?=??=?因此可采取的措施有:①加大板长L ;②减小板间距d 或加速电压U 1.

例4.如图所示,场强大小为E 、方向竖直向下的匀强电场中有一矩形区域abcd ,水平边ab 长为s ,竖直边ad 长为h .质量均为m 、带电荷量分别为+q 和-q 的两粒子,由a 、c 两点先后沿ab 和cd 方向以速率v 0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v 0等于(

)

A .s

22qE mh B .s 2qE mh C .s 4

2qE

mh D .s 4qE mh 【答案】B

【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd 的中心,则

在水平方向有12

s=v 0t 在竖直方向有12h=12·qE m

·t 2解得v 0=s

2qE mh

例5.如图所示,有一带正电小球,从地面上A 点正上方的某点O 以某一初速度平抛,落地点为B 点(不计空气阻力).现在竖直平面所在的空间加一个竖直向上的匀强电场后,仍从O 点以相同的初速度平抛该带电小球,小球落地点为C 点,测得AC=2AB .已知小球的重力为mg ,小球所带电荷量为q ,求电场强度E 的大小.

【答案】3mg

4q

【解析】(1)无电场时,水平方向:x=v 0t 1

竖直方向:h=12

gt 21解得x=v 02h g

(2)加电场平抛时,水平方向:2x=v 0t 2

方向竖直:h=12

at 22根据牛顿第二定律,得

m

F

mg a ma F mg -=?=-联立解得2x=v 02hm mg -Eq

,E=3mg 4q

例6.如图所示,在水平方向的匀强电场中有一表面光滑、与水平面成45°角的绝缘直杆AC ,其下端C 距地面高度h=0.8m .有一质量为500g 的带电小环套在直杆上,正以某一速度沿杆匀速下滑,小环离杆后正

好通过C 端的正下方P 点处.(g 取10m/s 2)求:

(1)小环离开直杆后运动的加速度大小和方向;

(2)小环在直杆上匀速运动速度的大小v 0;

(3)小环运动到P 点的动能.【答案】(1)14.1m/s 2与杆垂直斜向右下方(2)2m/s (3)5J

【解析】(1)小环在直杆上的受力情况如图所示:

由平衡条件得:mg sin 45°=Eq cos 45°

解得mg=Eq 离开直杆后有2mg=ma

解得a ≈14.1m/s 2,方向与杆垂直斜向右下方

(2)设小环在直杆上运动的速度为v 0,离杆后经t 时间到P 点,则

竖直方向:h=v 0sin 45°·t +12

gt 2水平方向:v 0cos 45°·t -12

gt 2=0解得v 0=2m/s

(3)由动能定理,得

E k P -12

mv 20=mgh 解得E k P =5J

例7.如图所示,在边长为L 的等边三角形内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,在AC 边界的左侧有与AC 边平行的匀强电场,D 是底边AB 的中点.质量为m ,电荷量为q 的带正电的粒子(不计重AB 边上的D 点竖直向上射入磁场,恰好垂直打在AC 边上.

求粒子的速度大小;

粒子离开磁场后,经一段时间到达BA 延长线上N 点(图中没有标出,求匀强电场的电场强度.

【答案】(1)qBL 2m (2)2qB 2L 3m (1)由几何关系知,粒子做圆周运动的半径为12

L 由圆周运动知识,得

qvB=m v 2R ,解得v=qBL 2m

(2)粒子的运动轨迹如图所示:

粒子在垂直电场线方向做匀速直线运动,位移为:x=NQ=L sin 60°

沿电场线方向做匀加速直线运动,位移为:y=QE=12

L +L cos 60°=L 根据x=vt ,y=12at 2,a=qE m

联立解得E=2qB 2L

3m

例8.在xOy 平面内,有沿y 轴负方向的匀强电场,场强大小为E (图中未画出),由A 点斜射出质量为m 、带电荷量为+q 的粒子,B 和C 是粒子运动轨迹上的两点,如图所示,其中l 0为常数.粒子所受重力忽略不

计.求:

(1)粒子从A 到C 过程中电场力对它做的功;

(2)粒子从A 到C 过程所经历的时间;

(3)粒子经过C 点时的速率.

【答案】(1)3qEl 0(2)32ml 0

qE (3)17qEl 0

2m

【解析】(1)电场力做功为W AC =qE (y A -y C )=3qEl 0

(2)根据抛体运动的特点,如图所示,令r AD =t DB =T ,则t BC =T

由qE=ma ,解得a=qE

m

又∵y 0=12aT 2,y 0+3l 0=12

a (2T )2解得T=2ml 0

qE

∴粒子由A →C 过程所经历的时间t=3

2ml 0

qE (3)粒子在DC 段做类平抛运动,有2l 0=v Cx (2T ),v Cy =a (2T )

v C =v 2Cx +v 2Cy =17qEl 0

2m

例9.如图所示为研究电子枪中电子在电场中运动的简化模型示意图.已知电子的质量是m,电荷量为e,在xOy平面的ABCD区域内,存在两个场强大小均为E的匀强电场Ⅰ和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力).

高中物理二十四种模型

高中物理二十四种模型 ⒈"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. ⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. ⒊"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. ⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. ⒌"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. ⒍"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. ⒎"斜面"模型:运动规律.三大定律.数理问题. ⒏"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). ⒐"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). ⒑"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. ⒒"人船"模型:动量守恒定律.能量守恒定律.数理问题. ⒓"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. ⒔"爆炸"模型:动量守恒定律.能量守恒定律. ⒕"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. ⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. ⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. ⒘"磁流发电机"模型:平衡与偏转.力和能问题.

⒙"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. ⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. ⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 24.远距离输电升压降压的变压器模型.

高中物理之平抛运动和斜面组合模型及其应用

平抛运动和斜面组合模型及其应用 平抛运动可以分解为水平方向的匀 速直线运动和竖直方向的自由落体运 动,其运动轨迹和规律如图1所示,会 应用速度和位移两个矢量三角形反映 的规律灵活的处理问题。设速度方向与初速度方向的夹角为速度偏向角φ,位移方向与初速度方向的夹角为位移偏向角θ,若过P点做与初速度平行的直线,则该直线与位移方向的夹角可以看作是构造的虚斜面的倾角,这样平抛运动模型和斜面模型就组合在一起了。在中学物理中有大量的模型,平抛运动和斜面模型是重要的模型,这两个模型组合起来进行考查,是近几年高考的一大亮点。为此,笔者就该组合模型的特点和应用,归纳如下。 一.斜面上的平抛运动问题 例1.(2006·上海)如图2所示,一足够长的固定斜面与水平面的夹角为370,物体A以初速度v 1从斜面顶端水 平抛出,物体B在斜面上距顶端L=15m处同时以 速度v2沿斜面向下匀速运动,经历时间t物体A 和物体B在斜面上相遇,则下列各组速度和时间

中满足条件的是(sin37O =,cos370=,g =10 m/s 2) A .v 1=16 m/s ,v 2=15 m/s ,t =3s B .v 1=16 m/s ,v 2=16 m/s ,t =2s C .v 1=20 m/s ,v 2=20 m/s ,t =3s D .v 1=20m/s ,v 2=16 m/s ,t =2s 解析:设物体A 平抛落到斜面上的时间为t , 由平抛运动规律得 t v x 0=,22 1gt y = 由位移矢量三角形关系得 x y =θtan 由以上三式解得g v t θ tan 20= 在时间t 内的水平位移g v x θtan 220=;竖直位移g v y θ 220tan 2= 将题干数据代入得到3v 1=20t ,对照选项,只有C 正确。 将v 1=20 m/s ,t =3s 代入平抛公式,求出x ,y A s ==75m , B s =v 2t =60m , 15A B s s L m -==,满足题目所给已知条件。 结论1:物体自倾角为θ的固定斜面抛出,若落在斜面上,飞行

高中物理平抛运动试题整理

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动V x= X= t= 竖直方向运动V y= y= t= V合= S合= 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V0水平抛出,经时间t,其竖直方向速度大小与V0大小相等,那么t 为() A V0/g B 2V0/g C V0/2g D 2V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V0水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是( ) A 1∶1 B 2 ∶1 C 3∶1D4∶1 5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动 D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

高中物理平抛运动

P 蜡块的位置 v v x v y 涉及的公式: 2 2y x v v v += x y v v =θtan θ v v 水 v 船 θ 船 v d t = m in ,θsin d x = 水 船v v =θtan d 第五章 平抛运动 §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动与分运动的关系:等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。 三、有关“曲线运动”的两大题型 (一)小船过河问题 模型一:过河时间t 最短: 模型二:直接位移x 最短: 模型三:间接位移x 最短: d v v 水 v 船 θ 当v 水v 船时,L v v d x 船水==θcos min , θsin 船v d t =,水船v v =θcos θ θsin ) cos -(min 船 水 v L v v s = θ v 船 d

高中物理基础知识 总结 几种典型的运动模型

高考物理知识点总结18 几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动 两个基本公式(规律):V t =V 0+atS=v o t+ 12 at 2 及几个重要推论: (1)推论:V t 2-V 02=2as (匀加速直线运动:a 为正值匀减速直线运动:a 为正值) (2)AB 段中间时刻的即时速度:V t/2= V V t 02+=s t (若为匀变速运动)等于这段的平均速度 (3)AB 段位移中点的即时速度:V s/2= v v o t 2 2 2 + V t/2=V =V V t 02+=s t =T S S N N 21++=V N ?V s/2= v v o t 222+ 匀速:V t/2=V s/2;匀加速或匀减速直线运动:V t/2

高中物理平抛运动试题

高中物理平抛运动试题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动 V x = X= t= 竖直方向运动 V y = y= t= V 合= S 合 = 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V 0水平抛出,经时间t,其竖直方向速度大小与V 大小相等,那么t 为() A V 0/g B 2V /g C V /2g D 2 V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V 水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是 ( ) A 1∶1 B 2 ∶1 C 3∶1 D4∶1

5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s 又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

类平抛运动高考题(含答案)

1.3 研究斜抛运动 同步练习(沪科版必修2) 1.做斜抛运动的物体( ) A .水平分速度不变 B .加速度不变 C .在相同的高度处有相同的速度 D .经过最高点时,瞬时速度为零 解析:选AB.斜抛运动可以看成水平方向的匀速直线运动和竖直方向的竖直上抛运动,A 正确.在运动过程中只受到重力作用,合外力恒定则加速度不变,B 正确.水平方向速度不变,竖直方向在上升和下降的过程中,同一个位置速度大小相等,但是方向不相同,所以在相同高度速度大小相等,但是方向不一样,C 错.在最高点竖直方向的速度减到零,但有水平方向的速度,D 错. 2.某同学在篮球场地上做斜上抛运动实验,设抛出球的初速度为20 m/s ,抛射角分别为30°、45°、60°、75°,不计空气阻力,则关于球的射程,以下说法中正确的是( ) A .以30°角度抛射时,射程最大 B .以45°角度抛射时,射程最大 C .以60°角度抛射时,射程最大 D .以75°角度抛射时,射程最大 解析:选B.根据射程公式X =v 20 sin2θg 可知,当抛射角为45°时,射程最大. 3. 以相同的初速率、不同的抛射角抛出三个小球A 、B 、C ,三球在空中的运动轨迹如图1-3-3所示,下列说法中正确的是( ) 图1-3-3 A .A 、 B 、 C 三球在运动过程中,加速度都相同 B .B 球的射程最远,所以最迟落地 C .A 球的射高最大,所以最迟落地 D .A 、C 两球的射程相等,两球的抛射角互为余角,即θA +θC =π 2 解析:选ACD.A 、B 、C 三球在运动过程中,只受到重力作用,具有相同的加速度g ,故选项A 正确;斜抛运动可以分成上升和下落两个过程,下落过程就是平抛运动,根据平抛运动在空中运动的时间只决定于抛出点的高度可知,A 球从抛物线顶点落至地面所需的时间最长,再由对称性可知,斜抛物体上升和下落时间是相等的,所以A 球最迟落地,选项C 正确,B 错误;已知A 、C 两球的射程相等,根据射程公式X =v 20sin2θ g 可知,sin2θA =sin2θC , 在θA ≠θC 的情况下,必有θA +θC =π 2 ,选项D 正确. 4.一位田径运动员在跳远比赛中以10 m/s 的速度沿与水平面成30°的角度起跳,在落到沙坑之前,他在空中滞留的时间约为(g 取10 m/s 2)( ) A .0.42 s B .0.83 s C .1 s D .1.5 s 解析:选C.起跳时竖直向上的分速度

平抛运动解题方法

平抛运动解题方法 平抛运动是曲线运动中具有代表性的运动,对平抛运动的研究有利于我们探究曲线运动的特点和解决办法。我们还可以把平抛运动作为一种运动模型,与其相类似的其他恒力作用下(如带电粒子在电场力作用下的偏转)的“类平抛运动”,在解题方法上具有相通之处。 一、平抛运动的特点: 1、 在重力作用下的匀变速曲线运动; 2、 运动轨迹为抛物线; 3、 平抛运动可分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。 二、平抛运动的解题方法: 平抛运动的解题方法由平抛运动的特点决定的。 1、 由牛顿第二定律及运动学公式可以得t v m mg F ??==合,可以看出平抛运动的速度变化方向为竖直向下,速度的变化率为g 。 例:做平抛运动的物体,每秒速度增量总是( ) A 、 大小相等,方向相同; B 、 大小不等,方向不同; C 、 大小相等,方向不同; D 、 大小不等,方向相同。 [答案]A 2、 做平抛运动的物体,在相邻相等的时间t :水平方向位移相等,竖直方向位移差等于定 值2 gt 。 例:在“研究平抛物体运动”的实验中,某同学记录了运动轨迹上三点A 、B 、C ,如图1所示,以A 为坐标原点,建立坐标系,各点坐标值已在图中标出,求: A C 10 20 40

图1 (1) 小球平抛初速度大小; (2) 小球平抛运动的初始位置坐标。 [解析]小球所做的平抛运动是两个运动的合运动:水平方向的匀速直线运动,竖直方向的自由落体运动,即初速度为零加速度为g 的匀加速直线运动。 如图1可知,在水平方向上,BC AB x x =,所以运动在AB 和BC 的时间间隔相等,设为 t , 在竖直方向上,2gt y y y AB BC =-=?,所以,s g y y t AB BC 1.010 15 .025.0=-=-=。 所以,小球平抛初速度大小s m s m t x v AB /1/1 .01 .0=== 。 又设小球在B 点时竖直方向的分速度为By v ,则t y v AC By 2=:(匀变速直线运动中某段时间的平均速度等于其中间时刻的瞬时速度),即s m s m v By /2/1 .024 .0=?= 。 又因为B By gt v =(B t 为小球从开始运动到B 所用时间),所以s s g v t By B 2.010 2 == = ,这说明小球到达A 点之前已下落的时间s t t t B A 1.0=-=;下落的高度为h ?,则 m m gt h A 05.01.0102 1 2122=??== ?。m m vt x A 1.01.01=?==?。说明抛出点在A 点的上方cm 5,左侧cm 10处,所以抛出点的坐标为:(10-,5-)。 [答案](1)s m v /1=;(2)(10-,5-)。 3、 做平抛运动的物体,其运动轨迹为抛物线,如图2所示。 y/cm 图2

高一物理平抛运动经典练习 题

高一物理平抛运动经典练习题 1、如图所示,在第一象限内有垂直纸面向里的 匀强磁场,一对正、负电子分别以相同速度沿与x轴 成30°角从原点射入磁场,则正、负电子在磁场中运 动时间之比为。 2、如图所示为实验用磁流体发电机原理图,两板间距d=20cm,磁场的磁感应强度B=5T,若接入额定功率P=100W的灯,正好正常发光,且

灯泡正常发光时电阻R=100,不计发电机内阻,求: (1)等离子体的流速是多大? (2)若等离子体均为一价离子,每秒钟有多少个 什么性质的离子打在下极板上? 3、如图所示为质谱仪的示意图。速度选择器部分的匀强电场场强 E=1.2×105V/m,匀强磁场的磁感强度为B1=0.6T。偏转分离器的磁感强度为B2=0.8T。求:

(1)能通过速度选择器的粒子速度多大? (2)质子和氘核进入偏转分离器后打在照相底片上的条纹之间的距离d 为多少? 4、用一根长L=0.8m的轻绳,吊一质量为m=1.0g的带电小球,放在磁感应强度B=0.1T,方向如图所示的匀强磁场中,把小球拉到悬点的右端,轻绳刚好水平拉直,将小球由静止释放,小球便在垂直于磁场的竖直平面内摆动,当小球第一次摆到低点时,悬线的拉力恰好为零(重力加速度g取10m/s2).试问:

(1)小球带何种电荷?电量为多少? (2)当小球第二次经过最低点时,悬线对小球拉力多大? 58、M、N两极板相距为d,板长均为5d,两板未带电,板间有垂直纸面的匀强磁场,如图所示,一大群电子沿平行于板的方向从各处位置以速度v射入板间,为了使电子都不从板间穿出,求磁感应强度B的范围。

6、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xOy平面并指向纸面外,磁感应强度为B。一带正电的粒子以速度v0从O点射入磁场,入射方向在xOy平面内,与x轴正向的夹角为。若粒子射出磁场的位置与O点的距离为l,求该粒子的电荷量和质量之比。 x y O θ ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· B 7.如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率 为v0,方向沿x轴正方向;然后经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点.不计重力,求:

类平抛运动

类平抛运动 类平抛运动与平抛运动的运动规律相同,所以处理方法也是分解成两个相互垂直方向上的分运动,不同之处是匀变速直线运动的加速度应根椐题设具体情况确定. 一、竖直平面内的类平抛运动 例1、质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力)。今测得当飞机在水平方向的位移为l时,它的上升高度为h,求:飞机受到的升力大小. 解析:飞机起飞的过程中,水平方向做匀速直线运动,竖直向上做初速度为零的匀加速直线运动,属于类平抛运动,轨迹如图1所示,可以用平抛运动的研究方法来求解. 飞机在水平方向上做匀速直线运动,则运动l所用时间为。 飞机水平运动l与竖直上升h用时相同,而飞机竖直向上做初速度为零的匀加速直线运动。 据可得 由牛顿第二定律得飞机受到的升力大小为 二、倾斜平面内的类平抛运动 例2、如图2所示,光滑斜面长为a,宽为b,倾角为θ.一物体从斜面上方P点水平面射入,而从斜面下方顶点Q离开斜面,求入射初速度. 解析:物体在斜面上只受重力和支持力,合外力为mgsinθ.由牛顿第二定律可得物体运 动的加速度为gsinθ.方向沿斜面向下,由于初速度方向与加速度方向垂直,故物体

在斜面上做类平抛运动,在水平面方向上以初速度做匀速运动,沿斜面向下做初速度为零的匀加速运动. 在水平方位移为 沿斜面下位移为 则 三、水平面内的类平抛运动 例3、在光滑水平面上,一个质量为2kg的物体从静止开始运动,在前5s受到一个正东方向大小为4N的水平恒力作用,从第5s末开始改受正北方向大小为2N的水平面恒力作用了10s,求物体在15s末的速度及位置? 解析:设起始点为坐标原点O,向东为x轴正方向,向北为y轴正方向建立直角坐标系xOy,物体在前5s内由坐标原点起向东沿x轴正方向做初速度为零的匀加速直线运动,其 加速度为,方向沿x轴正向,5s内物体沿x轴方向的位移为 ,到达P点,5s末速度为。 从第5s末开始,物体做类平抛运动,参与两个分运动,一是沿x轴正方向做速度为10m /s的匀速运动,经10s其位移。 二是沿y轴正方向做初速度为零的匀加速运动,其加速度为,经10s其位移为 沿y轴正方向的速度为 令15s末物体到达Q点,则 方向东偏北, 15s末的速度为

高考物理模型之圆周运动模型

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22=μ。 2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心

r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 11121+=ω 对B 有F F m r T fm -=2212 2ω 联立解得:ω112 112252707=+-==F F m r m r rad s rad s fm fm /./ 3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径 R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A. R B 4 B. R B 3 C. R B 2 D. R B 答案: C

高中物理平抛运动经典大题

1如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 2 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角 为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 3 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q点物体速度。 4 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 5 某一平抛的部分轨迹如图4所示,已知,,,求。

6从高为H的A点平抛一物体,其水平射程为,在A点正上方高为2H的B点,向同一方向平抛另一物体,其水平射程为。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。(提示:从平抛运动的轨迹入手求解问题) 图5 7 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少?(提示:灵活分解求解平抛运动的最值问题) 图6 8 从空中同一点沿水平方向同时抛出两个小球,它们的初速度大小分别为和,初速度方向相反,求经过多长时间两小球速度之间的夹角为?(提示:利用平抛运动的推论求解分速度和合速度构成一个直角矢量三角形) 图7 9宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间,小球落到星球表面,测得抛出点与落地点之间的距离为,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。(提示:利用推论,分位移和合位移构成直角矢量三角形)10如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。(提示:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。)

高中物理变加速模型

高中物理变加速模型 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

1、雨滴下落模型此模型在高中阶段为浅析层次,大学对其研究就非常有深度了。简单来说雨滴下落受力相当复杂多变,在雨滴速度增加过程中除重力外的浮力、粘滞阻力、压差阻力等均发生变化,而这些变化使其速度最终恒定。不然,地面将面目全非了。但是,由于要分析上面那些阻力会用到高等数学的专业知识,高中阶段解决不了。所以,我们就简化了此问题。相差不多的说法可以这样:“雨滴下落随速度的增大其受到的合阻力将正比于速度的越高次方”。在高中物理必修一教材中曾有这一内容的简单介绍。 例1:雨滴下落时所受阻力与雨滴速度有关,雨滴速度越大,所受阻力越大;则雨滴的最终下落速度将如何其运动为何种运动 此外,雨滴下落速度还与雨滴半径的α次方成正比(1α2),假设一个大雨滴和一个小雨滴从同一云层同时下落,它们都下落,雨滴先到地面;接近地面时谁的速度较小? 2、油中球的运动 例2:钢球在很深的油槽中由静止开始下落,若油对球的阻力正比于其速率,则球的运动是() A.先加速后减速最后静止B.一直减速 C.先加速后减速直至匀速D.加速度逐渐减小到零 此模型类似于雨滴下落模型但是较为简单 运动亦为“加速度变小的变加速后的匀速”。 3、蹦极、蹦床问题

“蹦极”是一种非常刺激的极限运动。蹦床则令人开心快乐;然而,其物理原理却如出一辙。 例3:“蹦极”是一种极限运动,人自身所受的重力使其自由下落,被拉伸的橡皮绳又会产生向上的力,把人拉上去,然后人再下落.正是在这上上下下的振荡中,蹦极者体会到惊心动魄的刺激,如图3-1-22所示.设一次蹦极中所用的橡皮绳原长为15m,质量为50kg的蹦极者运动到最低点时橡皮绳长为,当蹦极者停止振荡时橡皮绳长为,则蹦极者运动到最低点时受到橡皮绳的拉力为多大( g取10m/s2) 先来分析其中人的运动变化吧!里面也有一段变加速。后来还有一段变减速。整个过程无论是运动、受力、能量均可以有考察的角度! 例4蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量60kg的运动员,从离水平网面3.2m高处自由落下,着网后沿竖直方向蹦回到离水平网面50m高处。已知运动员与网接触的时间1.2s。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。 4、机车启动问题 机车起动分两类:(1)以恒定功率起动;(2)以恒定牵引力起动.其解题关键在于逐步分析v、a、F、p间关系,并把握由起动到匀速的临界条件F=f,即汽车达到最大速度的条件. 该类问题的思维流程为: (1)以恒定功率起动的运动过程是:变加速(a↓)(a=0)匀速,在此过程中,F牵、v、a的变化情况: 所以汽车达到最大速度时a=0,F=f,P=Fv m=fv m.

高中物理模型-类平抛运动模型

模型组合讲解——类平抛运动模型 邱爱东 [模型概述] 带电粒子在电场中的偏转是中学物理的重点知识之一,在每年的高考中一般都与磁场综合,分值高,涉及面广,同时相关知识在技术上有典型的应用如示波器等,所以为高考的热点内容。 [模型讲解] 例. (2005年常州调研)示波器是一种多功能电学仪器,可以在荧光屏上显示出被检测的电压波形,它的工作原理可等效成下列情况:如图1(甲)所示,真空室中电极K发出电子(初速不计),经过电压为U1的加速电场后,由小孔S沿水平金属板A、B间的中心线射入板中。板长为L,两板间距离为d,在两板间加上如图1(乙)所示的正弦交变电压,周期为T,前半个周期内B板的电势高于A板的电势,电场全部集中在两板之间,且分布均匀。在每个电子通过极板的极短时间内,电场视作恒定的。在两极板右侧且与极板右端相距D处有一个与两板中心线(图中虚线)垂直的荧光屏,中心线正好与屏上坐标原点相交。当第一个电子到达坐标原点O时,使屏以速度v沿负x方向运动,每经过一定的时间后,在一个极短时间内它又跳回到初始位置,然后重新做同样的匀速运动。(已知电子的质量为m,带电量为e,不计电子重力)求: (1)电子进入AB板时的初速度; (2)要使所有的电子都能打在荧光屏上(荧光屏足够大),图1(乙)中电压的最大值U0需满足什么条件? (3)要使荧光屏上始终显示一个完整的波形,荧光屏必须每隔多长时间回到初始位置? x 坐标系中画出这个波形。 计算这个波形的峰值和长度,在如图1(丙)所示的y 图1(丙)

解析:(1)电子在加速电场中运动,据动能定理,有 m eU v mv eU1 1 2 1 1 2 2 1 = =,。 (2)因为每个电子在板A、B间运动时,电场均匀、恒定,故电子在板A、B间做类平抛运动,在两板之外做匀速直线运动打在屏上,在板A、B间沿水平方向的分运动为匀速运动,则有:t v L 1 = 竖直方向,有2 2 1 'at y=,且 md eU a=,联立解得: 2 1 2 dv 2 ' m eUL y= 只要偏转电压最大时的电子能飞出极板打在屏上,则所有电子都能打在屏上,所以: 2 1 2 2 1 2 2 2 2 ' L U d U d mdv L eU y m < < =, (3)要保持一个完整波形,需要隔一个周期T时间回到初始位置,设某个电子运动轨 迹如图2所示,有 ' ' tan 2 1 1 L y mdv eUL v v = = =⊥ θ又知 2 1 2 2 ' mdv eUL y=,联立得 2 ' L L= 图2 由相似三角形的性质,得: ' 2/ 2 y y L D L = + ,则 1 4 ) 2 ( dU LU D L y + = 峰值为v dU 4 LU ) D 2 L( y 1 m + = 波形长度为vT x= 1 ,波形如图3所示。 图3

高中物理平抛运动实验.docx

平抛运动实验【实验目的】 (1)用实验的方法描出平抛运动的轨迹. (2)根据平抛运动的轨迹求初速度. 【实验原理】 (1)用描迹法画出小球平抛运动的轨迹. (2)建立坐标系,测出轨迹上某点的坐标x、 y,根据 = 0= 1 2得初速度 v 0= x g x v t、 y2gt2y . 【实验器材】 斜槽、小球、方木板、铁架台、白纸、图钉、铅垂线、三角板、铅笔及刻度尺 【实验步骤】 (1)安装器材与调平:将斜槽放在水平桌面上,其末端伸出桌面外,调节末端使其切线水平后固定. 检查斜槽末端是否水平的方法:将小球放在斜槽末端水平轨道的任意位置,小球都不滚动,则可认为 斜槽末端水平.精细的检查方法是用水平仪调整. (2)用图钉把坐标纸钉在木板上,让木板竖直固定,其左上方靠近槽口,用铅垂线检查坐标纸上的竖线是否 竖直,整个实验装置如图所示.用铅垂线把木板校准到竖直方向,使小球平抛的轨道平面与板面平行,保证在重复实验的过程中,木板与斜槽的相对位置保持不变. (3)建立直角坐标系xOy:以小球做平抛运动的起点O 为坐标原点,从坐标原点 O 画出竖直向下的y 轴 和水平向右的x 轴.确定坐标原点O 的方法是:把小球放在槽口末端处,用铅笔记下这时小球的球心在坐标纸上的水平投影点O,即为坐标原点 (不是槽口端点 ). (4)确定小球位置:让小球由斜槽的某一固定位置自由滚下,从O 点开始做平抛运动.先用眼睛粗略估计 小球在某一 x 值处 (如 x= 1 cm 或 2 cm 等 )的 y 值,然后用铅笔尖指着这个位置,让小球从原释放处开始滚下,看是否与铅笔尖相碰,如此重复数次,较准确地确定小球通过的这个位置,并在坐标纸上 记下这一点. (5)依次改变 x 值,用与 (4)同样的方法确定小球通过其他各点的位置. (6)描点画轨迹:取下坐标纸,将(4)(5) 中所描出的各点用平滑曲线连接起来,这就画出了小球做平抛运动 的轨迹曲线 (所画曲线可不通过个别偏差较大的点,但必须保持曲线平滑,不允许出现凹陷处).【注意事项】 (1)固定斜槽时,必须注意使通过斜槽末端点的切线保持水平,以使小球离开斜槽后做平抛运动. (2)木板必须处在竖直平面内,与小球运动轨迹所在的竖直平面平行,使小球的运动靠近图纸但不接触. (3) 在斜槽上设定位卡板,使小球每次都从定位卡板所确定的同一位置由静止开始滚下,以保证重复实验时,

平抛和类平抛运动

高考热点专题——平抛和类平抛运动 当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。其轨迹为抛物线,性质为匀变速曲线运动。平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动这两个分运动。广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。 平抛运动是日常生活中常见的运动,并且这部分知识还常与电学知识相联系,以解决带电粒子在电场中的运动问题,因此,多年来,平抛运动一直是高考的热点,今后,将仍然是高考的热点。用分解平抛运动的方法解决带电粒子在电场中的运动,以及将实际物体的运动抽象成平抛运动模型并做相应求解,将是高考的必然趋势。 一、正确理解平抛运动的性质 (一)从运动学的角度分析 平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动,以物体的出发点为原点,沿水平和竖直方向建立xOy坐标,如图所示: 则水平方向和竖直方向的分运动分别为 水平方向 竖直方向 平抛物体在时间t内的位移s可由③⑥两式推得 位移的方向与水平方向的夹角由下式决定

平抛物体经时间t时的瞬时速度v t可由②⑤两式推得 速度v t的方向与水平方向的夹角可由下式决定 (二)从动力学的角度分析 对于平抛运动的物体只受重力作用,尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g,因而平抛运动是一种匀变速曲线运动。 平抛运动中,由于仅有重力对物体做功,因而若把此物体和地球看作一个系统,则在运动过程中,系统每时每刻都遵循机械能守恒定律。应用机械能守恒定律分析、处理此类问题,往往比单用运动学公式方便、简单得多。 二、平抛运动的几个重要问题 (1)平抛物体运动的轨迹:抛物线 由③⑥两式,消去t,可得到平抛运动的轨迹方程为。 可见,平抛物体运动的轨迹是一条抛物线。 (2)一个有用的推论:平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:设物体被抛出后ts末时刻,物体的位置为P,其坐标为x t(ts内的水平位移)和y t (ts内的下落高度);ts末的速度v t的坐标分量为v x、v y,将v t速度反向延长交x轴于x',如图: 则

高中物理最新-高一物理平抛运动练习题 精品

3.3平抛运动 【学业达标训练】 1.从水平匀速飞行的直升飞机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 【解析】选 C.从飞机上看,物体做自由落体运动,从地面上看,因物体释放时已具有与飞机相同的水平速度,所以做平抛运动,即C 正确. 2.平抛物体的运动规律可概括为两条:第一条,水平方向做匀速直线运动;第二条,竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验,如图3-3-8所示,用小锤打击弹性金属片,A球水平飞出,同时B球被松开.两球同时落到地面,则这个实验() A.只能说明上述规律中的第一条 B.只能说明上述规律中的第二条 C.不能说明上述规律中的任何一条 D.能同时说明上述两条规律

【解析】选B.实验中A球做平抛运动,B球做自由落体运动,两球同时落地说明A球平抛运动的竖直分运动和B球相同,而不能说明A球的水平分运动是匀速直线运动,所以B项正确,A、C、D三项都不对. 3.甲、乙两物体做平抛运动的初速度之比为2∶1,若它们的水平射程相等,则它们抛出点离地面的高度之比为() A.1∶2 B.1∶ C.1∶4 D.4∶1 4.抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L,网高h,如图3-3-9乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g),将球水平发出,则可以求出() A.发球时的水平初速度 B.发球时的竖直高度 C.球落到球台上时的速度 D.从球被发出到被接住所用的时间

相关文档
最新文档