concept的IGBT驱动板原理解读要点

concept的IGBT驱动板原理解读要点
concept的IGBT驱动板原理解读要点

板子的解读

a、有电气接口,即插即用,适用于17mm双管IGBT模块

b、基于SCALE-2芯片组双通道驱动器

命名规则:

工作框图

MOD(模式选择)

MOD输入,可以选择工作模式

直接模式

如果MOD输入没有连接(悬空),或连接到VCC,选择直接模式,死区时间由控制器设定。该模式下,两个通道之间没有相互依赖关系。输入INA直接影响通道1,输入INB 直接影响通道2。在输入(INA或INB)的高电位,总是导致相应IGBT的导通。每个IGBT 接收各自的驱动信号。

半桥模式

如果MOD输入是低电位(连接到GND),就选择了半桥模式。死区时间由驱动器内部设定,该模式下死区时间Td为3us。输入INA和INB具有以下功能:当INB作为使能输入时,INA是驱动信号输入。

当输入INB是低电位,两个通道都闭锁。如果INB电位变高,两个通道都使能,而且跟随输入INA的信号。在INA由低变高时,通道2立即关断,1个死区时间后,通道1导通。

只有在控制电路产生死区时间的情况下,才能选择该模式,死区时间由电阻设定。

典型值和经验公式:

Rm(kΩ)=33*Td(us)+56.4 范围:0.5us

注意:半桥上的2个开关同步或重叠时候,会短路DC link。

INA,INB(通道驱动输入,例如PWM)

它们安全的识别整个逻辑电位3.3V-15V范围内的信号。它们具有内置的4.7k下拉电阻,及施密特触发特性(见给定IGBT的专用参数表/3/)。INA或INB的输入信号任意处于临界值时,可以触发1个输入跃变。

跳变电平设置:

SCALE-2输入信号的跳变电平比较低,可以在输入侧配置电阻分压网络,相当于提升了输入侧的跳变门槛,因此更难响应噪声。

SCALE-2驱动器的信号传输延迟极短,通常小于90ns。其中包括35ns的窄脉冲抑制时间。这样可以避免可能存在的EMI问题导致的门极误触发。不建议直接将RC网络应用于INA或INB,因为传输延迟的抖动会显著升高。建议使用施密特触发器以避免这种缺点。

注意,如果同时使用直接并联与窄脉冲抑制,建议在施密特触发器后将驱动器的输入INA/INB并联起来。建议在直接并联应用中不要为每个驱动核单独使用施密特触发器,因为施密特触发器的延迟时间的误差可能会较高,导致IGBT换流时动态均流不理想。

典型情况下,当INA/INB升高到大约2.6V的阈值电压时,所有SCALE-2驱动核将会开启相应的通道。而关断阈值电压大约为1.3V。因此,回差为1.3V。在有些噪声干扰很严重的应用中,升高输入阈值电压有助于避免错误的开关行为。为此,按照图13在尽可能靠近驱动核的位置放置分压电阻R2和R3。确保分压电阻R2和R3与驱动器之间的距离尽可能小对于避免在PCB上引起干扰至关重要。

在开通瞬间,假设R2=3.3k?,R3=1k?,INA=+15V。在没有R2和R3的情况下,INA 达到2.6V后驱动器立即导通。分压网络可将开通阈值电压升高至大约11.2V,关断阈值电压则提升至大约5.6V。在此例中,INA和INB信号的驱动器在IGBT导通状态下必须持续提供3.5mA(串联电路上为4.3K,15V时所消耗)的电流。

SO1,SO2(状态输出)

输出SOx是集电极开路三极管。没有检测到故障条件,输出是高阻。开路时,内部500uA 电流源提升SOx输出到大约4V的电压。在通道“x”检测到故障条件时,相应的状态输出SOx变低电位(连接到GND)。

2个SOx输出可以连接到一起,提供1个公共故障信号。但是,建议单独评估状态信号,以达到快速准确的故障诊断。

状态信号是怎样处理的

1、二次侧的故障(IGBT模块短路或电源欠压检测)立即传输到相应的SOx输出。检测到短路电流的驱动器将发送1个故障反馈给相应的SOx输出。在大约1.4us的额外延时后,相应的IGBT将被关断。在该延时期间,IGBT不能被关断。

在闭锁时间TB过去后,SOx输出自动复位(返回到高阻状态)。

2、一次侧电源欠压同时指示到2个SOx输出。当一次侧电源欠压消失时(参阅定时信息的相关参数表/3/),2个SOx输出自动复位(返回到高阻状态)。

如果并联情况下电源欠压,相应的驱动器将发送1个故障反馈给相应的SOx输出,并立即关断相应的IGBT(s)。然后建议立即给所有并联的驱动器发送关断信号。然后,经过1个短暂的延时后,相应的IGBTs将会被关断。

对于SO信号的处理,有以下原则:

1. SO信号必须有明确的点位,最好就近上拉;

2 SO信号经过长线传输时可以考虑配合信号经过长线传输时,可以考虑配合缓冲器,以提高电压信号抗扰能力,且接收端要配合阻抗合适的下拉电阻;

SOx故障输出端有20mA的驱动能力。与主控制器的距离越长,SOx线路对EMC越敏感,因为普通控制器输入的阻抗比较高。如果未检测到故障状况,SOx输出为高阻抗。因此,很容易有电压尖峰被感应出来。(上图)中将上拉电阻R4放置在SOx线路末端靠近控制器的一侧的方案是不推荐的。图中显示的两种解决方案(中图和下图)可以解决这个问题:

1、将缓冲器按照图(中图)放置在靠近驱动器SOx端子的位置。建议使用R4>1k?的上拉电阻上拉至VCC。如果发生故障,相应的SOx输出将被拉到GND。建议将该电阻放置得尽可能靠近驱动器。图中100?电阻可保护缓冲器免受电磁干扰。下拉电阻R5可保护控制器输入免受电压尖峰影响。

2、在图(下图)中,由10?电阻和肖特基二极管构成的保护网络可保护驱动器的SOx 输出。

TB(调整闭锁时间TB的输入)

该端子TB,允许通过连接1个外部电阻到GND,来减少工厂设定的闭锁时间。下文的等式计算管脚TB和GND之间的必须连接的电阻Rb的值,以设定要求的闭锁时间Tb(典

型值):

通过选择Rb=0Ω,闭锁时间也可以设置为最小值9us(典型值)。

如果不使用,输入TB可以悬空。

电源监控

驱动器的一次侧,2个二次侧驱动通道,配备有本地欠压监控电路。

如果出现一次侧电源欠压故障,2个IGBT被1个负的门极电压驱动,从而保持在断开状态(2个通道都闭锁),故障传送到2个输出SO1和SO2,直到故障消失。

如果一个二次侧电源欠压,相应的IGBT被1个负的门极电压驱动,从而保持在断开状态(通道闭锁),故障传送到相应的SOx输出,闭锁时间之后,SOx输出自动复位(返回为高阻状态)。

即使较低的电源电压,驱动器从IGBT的门极到发射极之间提供一个低阻。

注意:在1个半桥内,如果电源电压低,建议不要用1个IGBT驱动器操作IGBTs组。否则,高比率增加的Vce可能会造成这些IGBTs的部分开通

正副边电源变化规律:

SCALE-2副边的电源电压是由ASIC处理出来的。副边DC/DC电源的输出电压大约为25V,由ASIC内部分变成+15V及-10V,其中+15V是被稳压的,-10V是不稳的。VE管脚是芯片“造”出来的,内部是靠电流源来控制输出的电压源Viso是+15V来控制输出的电压源。Viso是+15V,VE是0V,COM是-10V。因此VE管脚上的静态负载的程度对VE的内部稳压影响很大。VE管脚上吞吐的电流只有几个mA。

欠压保护……

在驱动器的原方欠压的情况下,电源电压下降过程中,由于DCDC电源是开环的,所以副边的+25V也会跟着下降,而Viso与VE间有稳压电路,故被稳定在+15V,而VE与COM之间的-10V随着下降,如果,Viso与COM之间电压继续下降,降至VE对COM为-5.5V时,芯片会将-5.5V稳住,同时,Viso与VE之间的+15V开始下降,当这个电压下降到了12V的时候,芯片会报欠压保护,IGBT会被关短,且门级关断电压被维持在-5.5V。在驱动器掉电过程,IGBT的关断电压至少保持在-5.5V,因为大功率IGBT都有较强的米勒效应,必须要有负压才能保证关断的可靠,0压的关断是不可靠的!!!

短路保护和过流保护的意义及其区别

通常我们说的短路保护和过流保护是不一样的,是两个很不一样的概念,不应该混为一谈。

桥臂内短路(直通)

命名为“一类”短路

1、硬件失效或软件失效。

2、短路回路中的电感量很

小(100nH级)。

3、 VCE sat检测。

桥臂间短路(大电感短路)

命名为“二类”短路

1、相间短路或相对地短路

2、短路回路中的电感量稍

大(uH级的) 。

3、可以使用Vcesat ,也可以使用霍尔,根据电流变化率来定。

4、这类短路的回路中的电感量是不确定的。

短路分为一类及二类两种,但这两种短路都有一个共同点,那就是,IGBT会出现“退饱和现象”,当IGBT一旦退出饱和区,它的损耗会成百倍的往上升,那么允许持续这种状态的时会非常苛刻了,只有10us,我们需要靠驱动器发现这一行为并关掉门极。

IGBT过流的情况则是,回路电感较大,电流爬升很慢(相对于短路),IGBT不会发生退饱和现象,但是由于电流比正常工况要高很多,因此经过若干个开关周期后,IGBT的损耗也会比较高,结温也会迅速上升,从而导致失效。在这时,IGBT驱动器一般是不能及时发现这一现象的,因为IGBT的饱和压降的变化很微弱,驱动器通常识别不到这种变化。所以需要靠电流传感器来感知电流的数值,对系统进行保护。所以,我们认为,IGBT驱动器是为了解决短路保护,而过流保护则是由电流传感器来完成

短路的定义

IGBT发生短路时,描述短路电流的数学表达式如下,这是一个线性方程。它表示,在短路发生时,电流的绝对值与电压,回路中的电感量,及整个过程持续的时间有关系。

绝大部分的短路母线电压都是在额定点的影响短路电流的因素主要是

“短路回路中的电感量”。因此对短路行为进行分类定义时,短路回路中的电感量是主要的分类依据。如果短路回路中的电感量再继续增大,那么电流变化率就变得更低,此时就不是短路了,变成“过流”了。这时驱动器是察觉不到这种异常状态的,因此在系统中需要电流传感器来感知电流的绝对数值,从而进行“过流保护”。我们认为,通常IGBT驱动器是不能进行过流保护的。二类短路与过流之间没有明显的界限,学术上没有进行定义,在工程上,

可以做一个很粗略的假设:10A/us以下的电流变化率视为“过流”。

IGBT退饱和行为,其字面的意思是“退出了饱和区”,实际就是“进入线性区”的另外一种说法。IGBT的电流如果持续增大,当到达某一个点(退饱和点)时,IGBT的Vce会发生显著变化,会在非常短的时间内(例如几百纳秒内)上升至直流母线电压。退饱和行为的标志就是Vcesat上升至直流母线电压。Vcesat在饱和区内的变化是非常微弱的,如果想利用饱和压降的变化来辨识IGBT的电流是很困难的,通常我们只辨识IGBT的退饱和行为。

短路的检测和保护

短路保护设置:

设置Rvce的阻值,以使R流过电流大约0.6—1mA,比如V DC-LINK电压为1200V,则设置为1.2-1.8MΩ。流过的电流不要超过1mA。而且:在应用中,必须考虑PCB板的最小爬电距离。

参考电压Vref的设置,由于内部有150uA的电流源,参考电压,Rthx一般设计为68K,则比较电压为10.2V。

短路保护过程:

1、当IGBT关断时,内部mosfet打开,Cx上电压被钳在COM,比较器不翻转;

2、当IGBT导通时,驱动器内部的MOS管关闭,蓝点电位向红点充电,红点电位从-10V 开始上升(内部mosfet把红点电位钳在-10V),IGBT集电极电位下降至Vcesat,最终红点也到达Vcesat;

3、当IGBT短路后,IGBT会退出饱和区,此时蓝点电位迅速上升至直流母线电压,蓝点会通过电阻向红点充电,经过一段时间后(充电时间取决于直流母线电压、串联电阻值和电容值),红点电位会上升至绿点,比较器翻转,IGBT被关断。

门级钳位:

下图中的红圈内的二极管的作用是门极钳位,在IGBT短路时,门极电位有可能被抬升,门极钳位电路可以将门极电位钳住,以确保短路电流不会过高。

在IGBT短路时,集电极电流Ic剧烈上升,由于米勒效应的存在,在这个过程中,门级电位也会跟着上升,而门级电位高于15V,则短路电流也会冲高,可能比给定的短路电流

还高,如果不对门级进行钳位,短路电流可能跑的非常高,IGBT也会超出短路安全工作区。

大部分竞争的驱动器在过流或短路时是不能限制过压的。但是对高功率或高压IGBTs,这却是必要的。为了解决这个问题,SCALE-2即插即用驱动器提供了先进有效钳位功能。

先进有效钳位

关断电压尖峰的本质:

IGBT关断时,主回路的杂散电感中所存储的能量都需要有释放的途径,最常见的途径就是产生电压尖峰,在关断的过程中,这些能量都以关断损耗的形式耗散在IGBT上损耗的形式耗散在IGBT上。然而电压尖峰太高会损坏IGBT,因此,有源钳位就是将能量由高而窄的脉冲,转变成矮而宽的脉冲,这个过程中耗散掉的能量仍然是杂散的脉冲,转变成矮而宽的脉冲,这个过程中耗散掉的能量仍然是杂散电感所存储的能量。

有源钳位电路的本质:

驱动器使IGBT的关断过程延长目的是将杂散电感的能量耗散在IGBT上,或者说“让IGBT在线性区里多待一会”。

有效钳位是,如果集电极-发射极电压超过预定的门槛电压时,部分开通IGBT的一种技术。IGBT保持线性工作。

基本的有效钳位拓扑,建立1个单反馈通道,从IGBT的集电极通过暂态电压抑制器(TVS)到IGBT的门极。2SP0115T SCALE-2驱动器支持基于以下原则的CONCEPT先进有效钳位:当有效钳位有效时,驱动器的关断MOSFET断开,从而改善有效钳位的有效性,减少TVS上的损耗。

图就是CONCEPT公司推出的右图就是CONCEPT公司推出的基于SCALE2芯片组的Advanced Active Clamping的功能示意图。当TVS被击穿时,电流IAAC会流进ASIC(专用集成电路)的AAC单元。该单元会根据IAAC的大小操纵下管Mosfet。当该电流大于40mA 时,下管Mosfet开始被线性地关断,当电流大于500mA时,下管Mosfet完全关闭。

此时门极处于开路状态,Iz会向门极电容充电,使门极电压从米勒平台回到+15V 从而使关断电流变缓慢达到电压钳位的效果这个电台回到+15V,从而使关断电流变缓慢,达到电压钳位的效果。这个电路的特点是TVS的负载非常小,TVS的工作点非常接近额定点,

钳位的准度大大提高。

电路原理图(左)

在DC-link电压800V,集电极电流900A(正常集电极电流的2倍)时,450A/1200V IGBT 模块关断特性

下图是关断7500A电流(短路图是关断流短路测试)时产生的有源钳位动作。

黄线为Vge;

蓝线为Vce;

绿线为Ic(2KA/格)

可以看出:

1.门极波形从15V下跳时,Ic开始下降,同时产生了电压尖峰峰高

2.电压尖峰最高到达约2600V,然后被钳在2500V

3.电流在下降过程中的斜率被改变了

4.通常需要500ns就能关断的电流用了1.5us才被完全关断

因为有源钳位的动作点实际上是一个范围,在CONCEPT产品(即插即用)的中通常会给出对母线电压最大值的约束不会直接给出有源datasheet中,通常会给出对母线电压最大值

的约束,而不会直接给出有源钳位点的数值。如下图(1SP0635-33)。

下图为2SP0320-12:

需要注意,以上截图中讨论的母线电压都是稳态值,不是指的电压尖峰。

最关键的元件。下面以ST公司的

SMBJ130A为例进行解读。该器

件漏电流为1uA时,电压为130V;

其漏电流为1uA时,电压为

130V;其击穿点是电流为1mA

时,此时电压为144V~152V。

当6片SMBJ130A串联在一起,则其击穿门槛的最低值为144V×6=864V,典型值为152

×6=912V。可以看出,由于TVS目前的技术水平所限,其击穿点的电压是比较宽的是一个

范围其击穿点的电压是比较宽的,是个范围。

TVS的温度特性是正温度特性的,ST公司的SMBJ130A的温度系数大TVS的温度特性

是正温度特性的,ST公司的SMBJ130A的温度系数大约为+1‰;其他品牌的温度系数都能在datasheet中查到。在-40度时,TVS的击穿点比25度时大约下降6%~8%.

通常在大功率的IGBT的应用中,有源钳位的功能是非常必要的,而功率越小,必要性越低。其原因是随着系统的功率变大,IGBT的di/dt会增大,且杂散电感也会越大,因此电压尖峰会越高。

下表说明不同IGBT在关断额定电流时的di/dt的水平

在IGBT短路时,关断短路电流的di/dt会更高,比关断额定电流要高很多在IGBT短路时,关断短路电流的di/dt会更高,比关断额定电流要高很多,因此短路时电压尖峰更高。所以有可能出现,驱动器发现了IGBT的短路现象,并且也及时关断,但是由于di/dt太高,产生了非常高的电压尖峰,在关断该短路电流后仍然可以打坏了IGBT。这时,有源钳位电路就非常必要。

假设母排杂散电感为100nH,则在7000A/us的电流变化率下,电压尖峰将高达700V。有源钳位和软关断的比较

软关断电路的原理是:在IGBT关断的过程中,用一个较大的电阻对门极的电荷进行释放,从而实现门极电压出现缓慢下降,这样IGBT的电流会缓慢下降,di/dt会比较小,产生的电压尖峰也会比较小。

所以,软关断电路的目的是:

减小关断过程的电压尖峰。

软关断电路触发的条件:

软关断电路可以在每个关断脉冲都工作吗? 答案是不行。因为那样损耗极高。软关断电路的触发条件是IGBT短路故障,也就是说,通常这耗极高软关断电路的触发条件是G 短路故障,也就是说,通常这个功能是用于关断短路电流的时刻。而且这个动作发生后,驱动

器一定会报保护信号,机器随后就会停机了。

软关断电路只适用于短路保护时刻!

软关断电路是一个开环电路,它被触发的条件是驱动器检测到短路保护,它只能在这个时候有效。

有源钳位电路是一个闭环电路,它被触发的条件是集电极电位到达击穿门槛它在任何时候都有效TVS击穿门槛,它在任何时候都有效。

IGBT在关断1倍额定电流或者2倍额定电流时,产生的电压尖峰已经很高,但此时关断IGBT,并不会触发软关断功能,不过IGBT可能会面临高电压尖峰的风险;

对于有源钳位功能,无论IGBT关断多大的电流,无论是否短路保护或者霍尔器件发出的过流保护指令,只要电压尖峰到达TVS击穿门槛,电路就会工作对IGBT进行防护路就会工作,对IGBT进行防护;

总结:

软关断功能所覆盖的场合很单一,在更多的场合下,它不能有效动作;

有源钳位功能由于是闭环系统,在所有的场合下都能有效工作进行IGBT防护。

IGBT的结构和工作原理

IGBT的结构和工作原理 图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区(Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区(Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。 2.IGBT 的工作特性 1.静态特性 IGBT 的静态特性主要有伏安特性、转移特性和开关特性。 IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高,Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。 IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内,Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。 IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示: Uds(on) =Uj1 +Udr +IdRoh 式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。

igbt工作原理及应用

igbt工作原理及应用 绝缘栅双极型晶体管(IGBT)的保护 引言 绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。在中大功率的开关电源装置中,IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或GTO。但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。因而,在选择IGBT时除了要作降额考虑外,对IGBT的保护设计也是电源设计时需要重点考虑的一个环节。 1 IGBT的工作原理 IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止 由此可知,IGBT的安全可靠与否主要由以下因素决定:

——IGBT栅极与发射极之间的电压; ——IGBT集电极与发射极之间的电压; ——流过IGBT集电极-发射极的电流; ——IGBT的结温。 如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。 2 保护措施 在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。 2.1 IGBT栅极的保护 IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的驱动电路中应当设置栅压限幅电路。另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。如果设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上

解析IGBT工作原理及作用

解析IGBT工作原理及作用 一、IGBT是什幺 ?IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半 导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小, 开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流 系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 ?通俗来讲:IGBT是一种大功率的电力电子器件,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。三大特点就是高压、大电流、高速。 ?二、IGBT模块 ?IGBT是Insulated Gate Bipolar Transistor(绝缘栅双极型晶体管)的缩写,IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,它融和了这两种器件的优点,既具有MOSFET器件驱动功率小和开关速度快的优点,又具有双极型器件饱和压降 低而容量大的优点,其频率特性介于MOSFET与功率晶体管之间,可正常工 作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位。 ?IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之 间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之 间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,

IGBT系列焊机工作原理

第十一章IGBT系列焊机工作原理 一、功率开关管的比较 常用的功率开关有晶闸管、IGBT、场效应管等。其中,晶闸管(可控硅)的开关频率最低约1000次/秒左右,一般不适用于高频工作的开关电路。 1、效应管的特点: 场效应管的突出优点在于其极高的开关频率,其每秒钟可开关50万次以上,耐压一般在500V以上,耐温150℃(管芯),而且导通电阻,管子损耗低,是理想的开关器件,尤其适合在高频电路中作开关器件使用。 但是场效应管的工作电流较小,高的约20A低的一般在9A左右,限制了电路中的最大电流,而且由于场效应管的封装形式,使得其引脚的爬电距离(导电体到另一导电体间的表面距离)较小,在环境高压下容易被击穿,使得引脚间导电而损坏机器或危害人身安全。 2、IGBT的特点: IGBT即双极型绝缘效应管,符号及等效电路图见图11.1,其开关频率在20KHZ~30KHZ 之间。但它可以通过大电流(100A以上),而且由于外封装引脚间距大,爬电距离大,能抵御环境高压的影响,安全可靠。 图11.1 二、场效应管逆变焊机的特点 由于场效应管的突出优点,用场效应管作逆变器的开关器件时,可以把开关频率设计得很高,以提高转换效率和节省成本(使用高频率变压器以减小焊机的体积,使焊机向小型化,微型化方便使用。(高频变压器与低频变压器的比较见第三章《逆变弧焊电源整机方框图》。 但无论弧焊机还是切割机,它们的工作电流都很大。使用一个场效应管满足不了焊机对电流的需求,一般采用多只并联的形式来提高焊机电源的输出电流。这样既增加了成本,又降低了电路的稳定性和可靠性。 三、IGBT焊机的特点 IGBT焊机指的是使用IGBT作为逆变器开关器件的弧焊机。由于IGBT的开关频率较低,电流大,焊机使用的主变压器、滤波、储能电容、电抗器等电子器件都较场效应管焊机有很大不同,不但体积增大,各类技术参数也改变了。

IGBT的工作原理和工作特性

IGBT的工作原理和工作特性 IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。 IGBT的工作特性包括静态和动态两类: 1.静态特性 IGBT的静态特性主要有伏安特性、转移特性和开关特性。IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,

其最佳值一般取为15V左右。IGBT的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示: Uds(on)=Uj1+Udr+IdRoh (2-14) 式中Uj1——JI结的正向电压,其值为0.7~IV; Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。 通态电流Ids可用下式表示:Ids=(1+Bpnp)Imos (2-15) 式中Imos——流过MOSFET的电流。 由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V 的IGBT通态压降为2~3V。IGBT处于断态时,只有很小的泄漏电流存在。 2.动态特性 IGBT在开通过程中,大部分时间是作为MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on)为开通延迟时间,tri为电流上升时间。实际应用中常给出的漏极电流开通时间ton即为td(on)tri之和。漏源电压的下降时间由tfe1和tfe2组成,如图2-58所示

igbt逆变器工作原理_igbt在逆变器中的作用

igbt逆变器工作原理_igbt在逆变器中的作用 IGBT(绝缘栅双极型晶体管),是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。 IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。目前国内缺乏高质量IGBT模块,几乎全部靠进口。绝缘栅双极晶体管(IGBT)是高压开关家族中最为年轻的一位。由一个15V高阻抗电压源即可便利的控制电流流通器件从而可达到用较低的控制功率来控制高电流。 IGBT的工作原理和作用通俗易懂版:IGBT就是一个开关,非通即断,如何控制他的通还是断,就是靠的是栅源极的电压,当栅源极加+12V(大于6V,一般取12V到15V)时IGBT 导通,栅源极不加电压或者是加负压时,IGBT关断,加负压就是为了可靠关断。 IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。 IGBT有三个端子,分别是G,D,S,在G和S两端加上电压后,内部的电子发生转移(半导体材料的特点,这也是为什么用半导体材料做电力电子开关的原因),本来是正离子和负离子一一对应,半导体材料呈中性,但是加上电压后,电子在电压的作用下,累积到一边,形成了一层导电沟道,因为电子是可以导电的,变成了导体。如果撤掉加在GS两端的电压,这层导电的沟道就消失了,就不可以导电了,变成了绝缘体。 IGBT的工作原理和作用电路分析版:IGBT的等效电路如图1所示。由图1可知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。 由此可知,IGBT的安全可靠与否主要由以下因素决定: --IGBT栅极与发射极之间的电压;

IGBT管的结构与工作原理

IGBT管的结构与工作原理 1.IGBT的结构与工作原理图1所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。 2.IGBT 的工作特性 1.静态特性 IGBT 的静态特性主要有伏安特性、转移特性和开关特性。 IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无 N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。 IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最

IGBT工作原理

IGBT IGBT(InsulatedGateBipolarTransistor),绝缘栅极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。 IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET 的这些主要缺点。虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。IGBT基本结构见图1中的纵剖面图及等效电路。 导通 IGBT硅片的结构与功率MOSFET的结构十分相似,主要差异是IGBT增加了P+基片和一个N+缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和N+区之间创建了一个J1结。 当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET电流);空穴电流(双极)。 关断 当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是

IGBT原理

IGBT原理 什么是 IGBT IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 图1所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 和P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它是IGBT 特有的功能区,与漏区和亚沟道区一起形成PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 IGBT 的开关作用是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT 关断。IGBT 的驱动方法和MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。 IGBT 的工作特性包括静态和动态两类: 1 .静态特性 IGBT 的静态特性主要有伏安特性、转移特性和开关特性。 IGBT 的伏安特性是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱和区1 、放大区2 和击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。 IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关

IGBT工作原理及应用

IGBT工作原理及应用 绝缘栅双极型晶体管(IGBT)的保护 引言 绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而,在现代电力电子技术中得到了越来越广泛的应用。在中大功率的开关电源装置中,IGBT由于其控制驱动电路简单、工作频率较高、容量较大的特点,已逐步取代晶闸管或GTO。但是在开关电源装置中,由于它工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,由于受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT的可靠性直接关系到电源的可靠性。因而,在选择IGBT时除了要作降额考虑外,对IGBT的保护设计也是电源设计时需要重点考虑的一个环节。 1 IGBT的工作原理 IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止 由此可知,IGBT的安全可靠与否主要由以下因素决定:

——IGBT栅极与发射极之间的电压; ——IGBT集电极与发射极之间的电压; ——流过IGBT集电极-发射极的电流; ——IGBT的结温。 如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。 2 保护措施 在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。 2.1 IGBT栅极的保护 IGBT的栅极-发射极驱动电压VGE的保证值为±20V,如果在它的栅极与发射极之间加上超出保证值的电压,则可能会损坏IGBT,因此,在IGBT的驱动电路中应当设置栅压限幅电路。另外,若IGBT的栅极与发射极间开路,而在其集电极与发射极之间加上电压,则随着集电极电位的变化,由于栅极与集电极和发射极之间寄生电容的存在,使得栅极电位升高,集电极-发射极有电流流过。这时若集电极和发射极间处于高压状态时,可能会使IGBT发热甚至损坏。如果设备在运输或振动过程中使得栅极回路断开,在不被察觉的情况下给主电路加上

IGBT原理与特性介绍

缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。 IGBT 的转移特性是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(th) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs 呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。 IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示 Uds(on) = Uj1 + Udr + IdRoh 式中Uj1 —— JI 结的正向电压,其值为0.7 ~1V ;Udr ——扩展电阻Rdr 上的压降;Roh ——沟道电阻。 通态电流Ids 可用下式表示: Ids=(1+Bpnp)Imos 式中Imos ——流过MOSFET 的电流。 由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V 的IGBT 通态压降为2 ~ 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。 动态特性 IGBT 在开通过程中,大部分时间是作为MOSFET 来运行的,只是在漏源电压Uds 下降过程后期, PNP 晶体管由放大区至饱和,又增加了一段延迟时间。td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间ton 即为td (on) tri 之和。漏源电压的下降时间由tfe1 和tfe2 组成。 IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。 IGBT在关断过程中,漏极电流的波形变为两段。因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而漏极电流的关断时间 t(off)=td(off)+trv十t(f) 式中,td(off)与trv之和又称为存储时间。 IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增

IGBT 的工作原理和工作特性

IGBT 的工作原理和工作特性 IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N 一沟道MOSFET,所以具有高输入阻抗特性。 当MOSFET的沟道形成后,从 P+基极注入到 N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。 IGBT的工作特性包括静态和动态两类: 1.静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。 IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id

越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无 N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT 处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。 IGBT的开关特性是指漏极电流与漏源电压之间的关系.IGBT 处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示 Uds(on)=Uj1+Udr+IdRoh (2-14) 式中Uj1——JI结的正向电压,其值为0.7~IV; Udr——扩展电阻Rdr上的压降; Roh——沟道电阻。 通态电流Ids可用下式表示: Ids=(1+Bpnp)Imos (2-15) 式中Imos——流过MOSFET的电流。 由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V的IGBT通态压降为 2~ 3V。 IGBT处于断态时,只有很小的泄漏电流存在。 2.动态特性IGBT在开通过程中,大部分时间是作为 MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on)为开通延迟时间, tri为电流上升时间。实际应用中常给出的漏极电流开通时间ton即为 td (on) tri 之和。漏源电压的下降时间由tfe1 和tfe2组成,如图2-58所示

IGBT工作原理

IGBT 的工作原理是什么? IGBT 的等效电路如图1所示。由图1可知 知,若在IGBT 的栅极和发射极之间加上驱动正电压,则MOSFET 导通,这样PNP 晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT 的栅极和发射极之间电压为0V,则MOSFET 截止,切断PNP 晶体管 基极电流的供给,使得晶体管截止。 由此可知,IGBT 的安全可靠与否主要由以下因素决定: ——IGBT 栅极与发射极之间的电压; ——IGBT 集电极与发射极之间的电压; ——流过IGBT 集电极-发射极的电流; ——IGBT 的结温。 如果IGBT 栅极与发射极之间的电压,即驱动电压过低,则IGBT 不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT 可能永久性损坏;同样,如果加在IGBT 集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT 集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT 的结温超过 其结温的允许值,IGBT 都可能会永久性损坏。 绝缘栅极双极型晶体管绝缘栅极双极型晶体管((IGBT )

IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。 当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N 一层的电阻,使IGBT在高电压时,也具有低的通态电压。

IGBT的工作特性包括静态和动态两类: 1 .静态特性:IGBT的静态特性主要有伏安特性、转移特性和开关特性。 IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1 、放大区2和击穿特性3部分。在截止状态下的IGBT ,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性 相同,当栅源电压小于开启电压Ugs(th) 时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流 范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。 IGBT 的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体 管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on) 可用下式表示 Uds(on) =Uj1 +Udr +IdRoh 式中Uj1 —— JI 结的正向电压,其值为0.7 ~IV ; Udr ——扩展电阻Rdr 上的压降; Roh ——沟道电阻。 通态电流Ids 可用下式表示: Ids=(1+Bpnp)Imos 式中Imos ——流过MOSFET 的电流。

concept的IGBT驱动板原理解读..

板子的解读 a、有电气接口,即插即用,适用于17mm双管IGBT模块 b、基于SCALE-2芯片组双通道驱动器 命名规则: 工作框图

MOD(模式选择) MOD输入,可以选择工作模式 直接模式 如果MOD输入没有连接(悬空),或连接到VCC,选择直接模式,死区时间由控制器设定。该模式下,两个通道之间没有相互依赖关系。输入INA直接影响通道1,输入INB 直接影响通道2。在输入(INA或INB)的高电位,总是导致相应IGBT的导通。每个IGBT 接收各自的驱动信号。 半桥模式 如果MOD输入是低电位(连接到GND),就选择了半桥模式。死区时间由驱动器内部设定,该模式下死区时间Td为3us。输入INA和INB具有以下功能:当INB作为使能输入时,INA是驱动信号输入。 当输入INB是低电位,两个通道都闭锁。如果INB电位变高,两个通道都使能,而且跟随输入INA的信号。在INA由低变高时,通道2立即关断,1个死区时间后,通道1导通。 只有在控制电路产生死区时间的情况下,才能选择该模式,死区时间由电阻设定。 典型值和经验公式: Rm(kΩ)=33*Td(us)+56.4 范围:0.5us

它们安全的识别整个逻辑电位3.3V-15V范围内的信号。它们具有内置的4.7k下拉电阻,及施密特触发特性(见给定IGBT的专用参数表/3/)。INA或INB的输入信号任意处于临界值时,可以触发1个输入跃变。 跳变电平设置: SCALE-2输入信号的跳变电平比较低,可以在输入侧配置电阻分压网络,相当于提升了输入侧的跳变门槛,因此更难响应噪声。 SCALE-2驱动器的信号传输延迟极短,通常小于90ns。其中包括35ns的窄脉冲抑制时间。这样可以避免可能存在的EMI问题导致的门极误触发。不建议直接将RC网络应用于INA或INB,因为传输延迟的抖动会显著升高。建议使用施密特触发器以避免这种缺点。 注意,如果同时使用直接并联与窄脉冲抑制,建议在施密特触发器后将驱动器的输入INA/INB并联起来。建议在直接并联应用中不要为每个驱动核单独使用施密特触发器,因为施密特触发器的延迟时间的误差可能会较高,导致IGBT换流时动态均流不理想。 典型情况下,当INA/INB升高到大约2.6V的阈值电压时,所有SCALE-2驱动核将会开启相应的通道。而关断阈值电压大约为1.3V。因此,回差为1.3V。在有些噪声干扰很严重的应用中,升高输入阈值电压有助于避免错误的开关行为。为此,按照图13在尽可能靠近驱动核的位置放置分压电阻R2和R3。确保分压电阻R2和R3与驱动器之间的距离尽可能小对于避免在PCB上引起干扰至关重要。 在开通瞬间,假设R2=3.3k?,R3=1k?,INA=+15V。在没有R2和R3的情况下,INA 达到2.6V后驱动器立即导通。分压网络可将开通阈值电压升高至大约11.2V,关断阈值电压则提升至大约5.6V。在此例中,INA和INB信号的驱动器在IGBT导通状态下必须持续提供3.5mA(串联电路上为4.3K,15V时所消耗)的电流。 SO1,SO2(状态输出) 输出SOx是集电极开路三极管。没有检测到故障条件,输出是高阻。开路时,内部500uA 电流源提升SOx输出到大约4V的电压。在通道“x”检测到故障条件时,相应的状态输出SOx变低电位(连接到GND)。

变频器IGBT模块的工作原理及特性

变频器IGBT模块的工作原理及特性 变频器IGBT模块的工作原理 变频器IGBT模块的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。 当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N 一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。 变频器IGBT模块的特性 静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。 IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT模块的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。IGBT 模块的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示 Uds(on)=Uj1+Udr+IdRoh(2-14) 式中Uj1——JI结的正向电压,其值为0.7~IV;

IGBT驱动基础学习知识原理

IGBT驱动原理 目录 一、简介 二、工作原理 三、技术现状 四、测试方法 五、选取方法 简介: 绝缘栅双极晶体管 IGBT 是第三代电力电子器件,安全工作,它集功率晶体管 GTR 和功率场效应管MOSFET 的优点于一身,具有易于驱动、峰值电流容量大、自关断、开关频率高(10-40 kHz) 的特点,是目前发展最为迅速的新一代电力电子器件。广泛应用于小体积、高效率的变频电源、电机调速、 UPS 及逆变焊机当中。 IGBT 的驱动和保护是其应用中的关键技术。 1 IGBT 门极驱动要求 1.1 栅极驱动电压 因 IGBT 栅极 - 发射极阻抗大,故可使用 MOSFET 驱动技术进行驱动,但 IGBT 的输入电容较 MOSFET 大,所以 IGBT 的驱动偏压应比 MOSFET 驱动所需偏压强。图 1 是一个典型的例子。在+20 ℃情况下,实测 60 A , 1200 V 以下的 IGBT 开通电压阀值为 5 ~6 V ,在实际使用时,为获得最小导通压降,应选取Ugc ≥ (1.5 ~ 3)Uge(th) ,当 Uge 增加时,导通时集射电压 Uce 将减小,开通损耗随之减小,但在负载短路过程中 Uge 增加,集电极电流 Ic 也将随之增加,使得 IGBT 能承受短路损坏的脉宽变窄,因此 Ugc 的选择不应太大,这足以使 IGBT 完全饱和,同时也限制了短路电流及其所带来的应力 ( 在具有短路工作过程的设备中,如在电机中使用 IGBT 时, +Uge 在满足要求的情况下尽量选取最小值,以提高其耐短路能力 ) 。

1.2 对电源的要求 对于全桥或半桥电路来说,上下管的驱动电源要相互隔离,由于 IGBT 是电压控制器件,所需要的驱动功率很小,主要是对其内部几百至几千皮法的输入电容的充放电,要求能提供较大的瞬时电流,要使 IGBT 迅速关断,应尽量减小电源的内阻,并且为防止 IGBT 关断时产生的 du/dt 误使 IGBT 导通,应加上一个 -5 V 的关栅电压,以确保其完全可靠的关断( 过大的反向电压会造成 IGBT 栅射反向击穿,一般为 -2 ~ 10 V 之间 ) 。 1.3 对驱动波形的要求 从减小损耗角度讲,门极驱动电压脉冲的上升沿和下降沿要尽量陡峭,前沿很陡的门极电压使 IGBT 快速开通,达到饱和的时间很短,因此可以降低开通损耗,同理,在 IGBT 关断时,陡峭的下降沿可以缩短关断时间,从而减小了关断损耗,发热量降低。但在实际使用中,过快的开通和关断在大电感负载情况下反而是不利的。因为在这种情况下, IGBT 过快的开通与关断将在电路中产生频率很高、幅值很大、脉宽很窄的尖峰电压 Ldi/dt ,并且这种尖峰很难被吸收掉。此电压有可能会造成 IGBT 或其他元器件被过压击穿而损坏。所以在选择驱动波形的上升和下降速度时,应根据电路中元件的耐压能力及 du/dt 吸收电路性能综合考虑。 1.4 对驱动功率的要求 由于 IGBT 的开关过程需要消耗一定的电源功率,最小峰值电流可由下式求出: I GP = △ U ge /R G +R g ; 式中△ Uge=+Uge+|Uge| ; RG 是 IGBT 内部电阻; Rg 是栅极电阻。 驱动电源的平均功率为: P AV =C ge △ Uge 2 f, 式中. f 为开关频率; Cge 为栅极电容。 1.5 栅极电阻 为改变控制脉冲的前后沿陡度和防止震荡,减小 IGBT 集电极的电压尖峰,应在 IGBT 栅极串上合适的电阻 Rg 。当 Rg 增大时, IGBT 导通时间延长,损耗发热加剧; Rg 减小时, di/dt 增高,可能产生误导通,使 IGBT 损坏。应根据 IGBT 的电流容量和电压额定值以及开关频率来选取 Rg 的数值。通常在几欧至几十欧之间 ( 在具体应用中,还应根据实际情况予以适当调整 ) 。另外为防止门极开路或门极损坏时主电路加电损坏IGBT ,建议在栅射间加入一电阻 Rge ,阻值为10 k Ω左右。 1.6 栅极布线要求 合理的栅极布线对防止潜在震荡,减小噪声干扰,保护 IGBT 正常工作有很大帮助。 a .布线时须将驱动器的输出级和 lGBT 之间的寄生电感减至最低 ( 把驱动回路包围的面积减到最小 ) ; b .正确放置栅极驱动板或屏蔽驱动电路,防止功率电路和控制电路之间的耦合; c .应使用辅助发射极端子连接驱动电路; d .驱动电路输出不能和 IGBT 栅极直接相连时,应使用双绞线连接 (2 转/ cm) ; e .栅极保护,箝位元件要尽量靠近栅射极。 1.7 隔离问题

机车IGBT的工作原理

IGBT的工作原理是什么? 2010年03月05日 11:43 www.elecfans.co 作者:佚名用户评论(0) 关键字: IGBT的工作原理是什么? IGBT的等效电路如图1所示。由图1可知,若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。 由此可知,IGBT的安全可靠与否主要由以下因素决定: ——IGBT栅极与发射极之间的电压; ——IGBT集电极与发射极之间的电压; ——流过IGBT集电极-发射极的电流; ——IGBT的结温。 如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许 值,IGBT都可能会永久性损坏。 绝缘栅极双极型晶体管(IGBT)?

详细介绍IGBT的工作原理 电子元件知识 11月9日讯,今天,POWER MOSFET(POWER METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR:大功率金属氧化物半导体场效晶体管)已成为大功率组件(POWER DEVICE)的主流,在市场上居于主导地位。以计算机为首之电子装置对轻薄短小化以及高机能化的要求带动POWER MOSFET的发展,此一趋势方兴未艾,技术之进步永无止境。在庞大计算机市场支撑之下,IC 开发技术人员在「大功率组件采用单晶IC(MONOLITHIC)技术」方面促成了MOS系大功率组件的突破。尤其是低耐压大功率MOSFET,随者其母体“MOS IC”之集积度的提高而性能大增(双极晶体管﹝BIPOLAR TRANSISTOR﹞无法达到)。大功率M OSFET的动作原理十分容易了解,适合于驱动电路及保护电路等制成IC。 大功率组件(POWER DEVICE)不可避免地会发热,在此情况下,POWER MOSFET的MOS(METAL OXID E SEMICONDUCTOR)系闸极(GATE)四周围绕的绝缘膜(材质通常为SiO2)的质量决定其特性及可靠度。在组件技术及应用技术确立之时期,开发完成“AVALANCHE FET”并付诸生产,此种组件即使是在崩溃(AVALA NCHE)之情况下也不会发生破坏。之后,大功率MOSFET(POWER MOSFET)剩下的未解决课题是高耐压化,1998年在市场崭露头角的“COOL MOS”将业界水平一举提高至相当高的层次。AVALANCHE FET 及COOL M OS可以说是确定MOS系大功率组件之评价的两大支柱。838电子在当初,IGBT(INSULATED GATE BIPOL AR TRANSISTOR)期待只将NCH POWER MOSFET 的基片(SUBSTRATE)的极性从n型变更成p型就能够实现高耐压、大电流组件,但是,IGBT 在本质上为双及组件(BIPOLAR DEVICE),对于单及组件(UNIP OLAR DEVICE)POWER MOSFET 世代的技术人员而言较为难以了解。近年来,双极晶体管(BIPOLAR TRA NSISTOR)的基础知识以及以往所累积的宝贵经验重新受到重视,这是有趣的现象(本来,电子之技术革新有全

相关主题
相关文档
最新文档