环肽的合成方法

环肽的合成方法
环肽的合成方法

环肽的合成方法 Revised by BLUE on the afternoon of December 12,2020.

环肽的合成方法

多肽药物在治疗上的重要性,越来越引起广大药学工作者的重视。根据肽链的构成可将多肽分为同聚肽(Homomeric)和杂聚肽(Heteromeric)两大类,前者完全由氨基酸组成,后者是由氨基酸部分和非氨基酸部分组成的,如糖肽。根据肽键的结构又分为直链肽和环肽。其中直链肽的研究最为广泛和深入,尤其在直链肽的合成技术方面无论是液相法还是固相法都已成熟。虽然许多直链肽体外具有很好的生物活性和稳定性,但是进入体内后活性很快消失。因为体内环境复杂,存在各种各样的酶。直链肽在酶的作用下很快降解,导致活性丧失。另外,直链肽在液相里的构象柔性使得不大容易符合受体的构象要求。这些不利因素造成多肽药物仍有许多问题有待解决。为了得到生物活性优秀半衰期长,受体选择性高的多肽,文献报道过很多多肽改造的方法,其中包括将直链肽改造成环肽。这种大环分子具有明确的固定构象,能够与受体很好地契合,加上分子内不存在游离的氨端和羧端使得对氨肽酶和羧肽酶的敏感性大大降低。一般地说,环肽的代谢稳定性和生物利用度远远高于直链肽。鉴于环肽的诸多优点,近年来对多肽研究的热点已转移到环肽的合成和生物评价上。

根据环肽的环合方式又分为首尾相连环肽(Head-to-tail)、侧链和侧链相连环肽(Sidechain-to-sidechain)、侧链和端基相连环肽(Sidechain-to-end)、含二硫桥的环肽(Disufide-bridge)、以及含有其他桥连结构的环肽。从合成方法上讲,首尾相连的环肽的合成难度最大。因为环肽的前体-直链肽的肽键具有很强的p键特征,分子更偏爱形成反式构象,呈舒展状态,造成属于反应中心的端基的羧基和氨基在空间上距离较远,不利于发生分子内缩合反应,有利于分子间缩合。

首尾相连的环肽通常是N端和C端游离的直链肽在稀溶液中(10-3~10-4M)由羧基和氨基形成酰氨键来合成。直链前体中的氨基酸种类和数目对成环的难易程度和环肽的收率起着至关重要的作用。甘氨酸、脯氨酸或D-构型氨基酸具有诱导b-转角(b-Turn)的作用,常被认为可增加成环的可能性和收率。

1. 合成首尾相连环肽的经典方法

合成首尾相连环肽的经典方法是在稀溶液(10-3~10-4M) 中,将保护的线性前体选择性地活化并环合。常用活泼酯法和迭氮法。

1.1 活泼酯法

活泼酯法中活化羧基和环合反应是分两步进行的。活泼酯相对很稳定,一般不需要纯化可直接用于环合反应。几乎所有可用于偶联反应的活泼酯都可用于合成环肽,主要有对硝基酚酯、N-羟基琥珀酰亚胺酯、五氟苯酯和2,4,5-三氯苯酚酯。线性多肽的C端羧基与对硝基酚、N-羟基琥珀酰亚胺、五氟苯酚或2,4,5-三氯苯酚,在DCC或其他缩合剂存在下,于低温反应,很容易得到相应的活泼酯。这种N端通常带有BOC或Z保护的活泼酯在酸性条件下脱去保护基,形成活泼酯的氢卤酸盐,在弱碱性稀溶液中,如在吡啶,DMF或二氧六环一类介电常数较大的溶剂中,保持pH 8~9,加热(60~100°C)或室温搅拌数小时至数日,最终可得到环肽。

对硝基酚酯法合成环肽的通式如Scheme 1

Cyclo(b-Ala-Phe-Pro)的合成中应用了对硝基酚酯法。 Boc-b-Ala-Phe-Pro-OH在乙酸乙酯中与1.5摩尔量对硝基酚混合,DCC为缩合剂,得到Boc-b-Ala-Phe-Pro-ONp,经TFA脱去Boc,以0.1M NaHCO3和0.1M Na2CO3为碱,二氧六环为溶剂,室温反应,得到收率为32% 的环三肽。对硝基酚酯法的优点在

于对硝基酚价廉易得,缺点是过量的对硝基酚不易完全除去,产物不易纯化,颜色发黄。

1.1.2 N-羟基琥珀酰亚胺酯法:

该方法原理与对硝基酚法一致,唯一不同点在于线性多肽的C端羧基在缩合剂EDC的存在下与N-羟基琥珀酰亚胺(HONSu)缩合,形成直链多肽的N-羟基琥珀酰亚胺酯。应用这种方法Toshihisa等在吡啶溶液中合成了cyclo (Pro-Val-Pro-Val)和cyclo(Pro-D-Val-Pro-D-Val),收率分别为15%和12%。二者为非对映异构体,前者具有植物生长抑制作用,后者却表现为植物生长促进作用。

这类活泼酯用于环肽的合成是近年才发展起来的。Joullie在合成天然环肽生物碱Sanjoinine G1和其C11位对映异构体时在环合步骤中就应用了五氟苯酚酯法。首先以D-丝氨酸为原料,经多步反应得到环合前体,用五氟苯酚活化羧基,N端苄氧羰基经氢解脱掉后,以4-吡咯烷吡啶为催化剂,在二氧六环中回流,最终得到两个互为异构体的混合物,收率分别为27%和22%,环合步骤如下图:

另外,海洋生物环肽Patellamine B以及对纤维蛋白酶和丝氨酸蛋白酶有强烈抑制作用的环肽Cyclotheonamide A 的环合步骤也是应用了五氟苯酯法,收率分别是20%和53%。

1.2 迭氮法

在多肽合成中迭氮法是另一种比较经典的方法,这种方法的优点在于很少引起消旋反应,最早用于直链肽的合成,现在常常被用于环肽的合成。具体方法是,把直链肽的甲酯,乙酯,苄酯,取代苄酯或其它更活泼的酯通过肼解的

方式生成酰肼,溶于醋酸或盐酸-醋酸混合溶液,在-5°C左右的温度下加入1M 的亚硝酸钠溶液,产生的亚硝酸则与酰肼反应生成迭氮物。N端游离的直链肽迭氮物于4°C 搅拌一天再升温至室温,可得环肽。通式如Scheme 4

Scheme 4. Peptide Cyclization via the acyl azide(X=Z or Boc,R=Me,Et,Bzl)

Bodansky最早应用迭氮法合成了cyclo(D-Ala-D-Ala-Val-D-Leu-Ile),虽然上述环肽不具有其母体化合物malformin的生物活性,但合成它为应用迭氮法合成环肽开辟了前景。

应用迭氮法合成环肽的另一个成功的例子是内皮素拮抗剂的合成。Endothelin(ET)是一种高效的血管收缩剂,由21个氨基酸残基组成,其受体拮抗剂之一cyclo(D-Trp-D-Asp(OtBu)Fmoc-Ser-D-Val-Leu)的合成过程如下:

DPPA系二苯基磷酰基迭氮化物,是一种稳定的液体,沸点157°C,用二苯基磷酰氯和NaN3在丙酮中室温反应很方便地得到,可以直接用作多肽偶联的缩合剂,近年来多用于环肽的合成。

Arg-Gly-Asp(RGD)是多种细胞外蛋白与整合素相互作用时被整合素识别的关键序列,对含有该序列环肽的合成报道很多。Kessler等用固相合成仪

SP650合成了13个含RGD序列的线性六肽和七个含RGD序列的线性五肽,N端和C端均游离的直链肽在稀溶液中以DPPA为缩合剂,保持pH 8.5~9,反应4天,得到相应的环六肽和环五肽,收率在15%~50%之间。生物活性实验表明所有的环六肽对细胞粘附的抑制作用均明显低于线性肽GRGDS。环五肽中也只有Cyclo(RGDdFV)和Cyclo(RGDFd-V)对Laminin P1的细胞粘附具有明显的抑制作用。

对于某些在碱性条件下易分解的目的物,反应过程当中应用惰性气体进行保护,例如,线性多肽H-Asp(Fmoc)- d-Ser-Phe- D-Phe- Arg- Gly - OH在无水DMF中,加入5倍量NaHCO3和10倍量DPPA,反应66小时,得到收率仅为3%的纤维蛋白原受体拮抗剂Cyclo(Asp-D-Ser- Phe-D-Phe-Arg-Gly);若改变NaHCO3和DPPA用量,并且反应过程中用氩气保护,反应三天,可得到产率高达39%的上述环肽.两种条件下所得收率有如此大的差别,主要原因是目的物在碱性条件下易分解。

以DPPA为缩合剂合成环肽时,除了用NaHCO3、Na2CO3为无机碱外,也常使用KH2PO4。例如能够与鸦片受体结合的环肽Try-C的合成中,就使用了

KH2PO4这样的弱碱催化,收率高达75%。用同样的方法合成Somatostatin的类似物Cyclo(Lys-Phe-D-Trp-Lys-Thy-Phe),收率也达到了42%。

以DPPA为缩合剂合成环肽时,有机碱常用三乙胺(Et3N)、N-甲基吗啉(NMM)和二异丙基乙胺(DIEA),这三种弱碱能够与有机溶剂混溶,用量远远少于NaHCO3和KH2PO4,而且NMM和DIEA不易引起消旋。

2.环肽合成中新型缩合剂

2.11-羟基-7-氮杂苯骈三唑(HOAt)衍生物

近年来,HoAt类多肽合成缩合剂发展迅速,这类缩合剂包括TAPipU、HAPyU、PyAOP(7-azabenzo triazol -1- yloxyl - trispyrrolidino phosphonium hexa fluorophosphate)和HATU 等。使用这些缩合剂不仅反应速度快,而且手性不受损害。

Ehrlich等考察了不同缩合剂对GnRH衍生物十肽H-Nal-d-Cpa-d-Pal-Glu-Tyr-d-Arg-Leu-Arg-Pro-Lys(Ac)-OH环合反应的影响,发现HAPyU和TAPipU

是环肽合成中非常有效的缩合剂,直链肽浓度在1.5mmol/L时,30分钟内环合反应即完成。反应当中,缩合剂一般需要过量10%以保证反应完全。若增加溶液中线性多肽的浓度可以促使环合反应更快地发生。例如,线性十肽浓度在0.1M时,加入上述两种缩合剂,两分钟内即发生环合;此外,令人惊奇的是,即使线性多肽浓度高达0.2M时,也未发生分子间缩合反应,这表明在首尾和侧链环合反应中,稀溶液也许是不必要的。比较HAPyU和TAPipU在合成过程中对环肽消旋的影响,发现HAPyU更少引起消旋化反应,以TAPipU为缩合剂合成环六肽Cyclo时,收率为25%,引起末端酪氨酸的消旋化达8%,若以HAPyU为缩合剂时,30分钟内可得到55%收率的环六肽,D-构型酪氨酸-异构体不足

0.5%。

为了进一步验证HoAt类缩合剂在合成环肽中的优势,Ehrlich选择了使用一般缩合剂难于得到的thymopentin类似物作为研究对象,对HAPyU、PyAOP和HATU就环合的产率及环合过程中发生的二聚和C端酪氨酸残基构型的改变进行了系统的比较。结果表明,在线性多肽浓度为0.1mmol/L,DIEA三倍过量,HAPyU为缩合剂时,单体环肽的收率最高,达到82%,未检测到D-Tyr-异构体和二聚体,说明这一条件是合成thymopentin类似物的最适条件,其他缩合剂在环合时,一则收率偏低,甚至不反应,二则造成酪氨酸消旋化。虽然延长时间可以增加收率,但随之而来的是酪氨酸消旋化的增加。

Phakellistatin 5是一种从海绵中提取得到的环七肽,Pettit等采用固相法得到直链前体后,以PyAOP为缩合剂,得到收率为28%的R-Asn-Phakellistatin 5。

Mink等人以N端Boc保护的天冬氨酸和丝氨酸苄酯为原料,采用液相法经多步反应得到具有多个恶唑结构的直链前体,N端和C端经氢解和酸脱保护后以HATU为缩合剂,得到了此外,具有辅助放射性同位素(111In和125I)

进入平面结构的Dolastatin E类似物。这种具有多种功能团的化合物可用于超分子化学和组合化学。

血小板的载体功能的Dolastatin D类似物Cyclo,以及对血小板生长因子具有拮抗作用的血小板生长因子B链序列类似物Cyclo(Arg-Lys-Iles-Gla-Ile-

Val-Arg-Lys-Lys-Cys)也是采用HATU为缩合剂进行环合反应得到的。

从以上给出的例子可以看出,环肽合成的缩合剂不象DCC那样具有普遍的适用性。不同的环肽合成要求不同的缩合剂。

2.2 TBTU和HBTU

TBTU和HBTU最早是用于合成线性二肽和三肽的苯骈三氮唑类缩合剂。使用过程中,发现这两种化合物在某些环肽的合成中表现出快速、高效的优点。Knorr等以TBTU/HoBt为缩合剂在DMF中得到了Cyclo(Tyr-Asp-Phe-Phe-

Ser/Phr-Ala),Zimmer等人应用HPLC技术比较了TBTU/HOBt和DPPA/NaHCO3复合缩合剂在这种环六肽合成中的应用,结果表明前者反应速度非常快是后者的5~70倍。

从海洋生物海绵中提取分离得到的phakellistation2,具有抑制鼠P388淋巴细胞和人癌细胞增殖的作用。由于人工从海绵中提取这种环肽比较困难,Pettit等对这种化合物进行了全合成,以便深入研究其生物活性。其中关键的环合步骤分别采用TBTU,BOP-Cl,PyBrOP和TBTU/HOBt为缩合剂,经数日

(4~14天),得到收率不等的产物。其中TBTU为缩合剂时收率最高,达到55%。这种人工合成的环肽虽然在化学结构上与天然肽结构一致,但二者的生物活性却差异甚大,合成的环肽对P388白血病淋巴细胞的抑制作用远远低于天然环肽,原因可能是二者的构象不同。

在对生长激素释放抑制因子(SRIH)具有高效亲和能力的环六肽MK-

678:Cyclo的合成中HBTU充分发挥了其高效的特点。另一种环六肽Cyclo的合成也是应用HBTU为缩合剂,反应路线如下:

2.3 Bop法

McMurray等以Cyclo(Asp-Asn-Glu-Tyr-Ala-Ala-Arg-Gln-D-Phe-Pro)(Tyr I+1)为研究对象,以便确定Tyr I+1的哪些位置对蛋白酪氨酸激酶的亲和性是必不可少的,以及哪些氨基酸对活性贡献最大,以Bop/HOBt为复合缩合剂,在1mmol/L浓度下,合成了一系列Tyr I+1类似物,并经磷酸化和亲和力实验,

发现6位,7位是芳香类氨基酸的Cyclo(Asp-Asn-Gln- Tyr-Ala- Phe-Phe-

Gln-D-Phe-Pro)的活性最强。

以往具有RGD序列的多肽的研究多集中在抗血小板聚集方面,随着对这一类化合物生物活性的深入研究,兴奋点逐渐转移到含RGD序列多肽抗粘附、抗血管增生和骨质疏松等方面,两种含RGD的Cyclo(RGDRGD)和Cyclo(RGD RGd)(d=D-Asp)以及线性肽RGDRGD选择性地与aVb3-玻璃体粘连蛋白结合,在

骨再生实验中均显示出中等强度的活性,其中两个环肽的合成是以Bop/HOBt为复合缩合剂,6.2倍过量的DIEA存在下进行的,收率高达80%。

3. 固相法合成环肽

固相法能够有效地避免环合过程中二聚、多聚等副反应的发生。早在60年代,Fridkin等就应用高分子载体来合成环肽。线性多肽的C端羧基与树脂形

成酯键而将线性肽挂在树脂上,脱去N端保护基后,以三乙胺中和,室温12小时后得到60%~80%收率的环肽,具体过程如下:

近年来发展起来的通过氨基酸侧链与树脂连接合成环肽的策略在环肽合成中应用广泛。对具有天冬氨酸或谷氨酸残基的线性多肽,可选择这两个酸性氨

基酸残基的侧链羧基为C端,与PAC(烷氧基苄醇)或PAL(烷氧基苄胺)或其他类型树脂缩合,将线性多肽挂在树脂上。主链羧基用烯丙基保护。逐步接肽完成之后脱去N端和C端保护基,加入缩合剂得到连在树脂上的环合产物。最后用三氟醋酸:茴香硫醚:b-巯基乙醇:苯甲醚混合试剂从树脂上切下环肽,同时脱去其它侧链保护基。采用这种策略完成了Cyclo(Ala-Ala-Arg-D-Phe-Pro-Glu-asp-Asn-Tyr-glu)的合成,收率为71%。这种方法的局限性在于线性多肽前体中必需包含天冬氨酸或天冬酰氨,谷氨酸或谷氨酰胺。

对-硝基苯基甲酮肟聚合物最早被DeGrado和Kaiser作为固相载体用于多肽的固相合成。肽基肟酯在酸性条件下稳定,但在氨解的条件下很不稳定。利用肟酯能够氨解的特点,Ospay等在合成环十肽Tyrocidine A(TA)时应用此法在肟树脂上合成直链的十肽,N端经TFA脱去Boc基后用DIEA中和,使氨基游离,室温搅拌24小时后,得到侧链保护的环肽,脱去保护基,纯化,得到收率高达55%的TA

4. 酶法合成环肽:

在缓冲液中利用蛋白酶合成环肽也是正在发展的方法之一。Jackson等报道了以线性多肽酯的衍生物为底物,通过酶催化成环的方法合成了几个包含

12~25个氨基酸残基头尾相接的环肽,环化用的酶Subtiligase是枯草杆菌蛋白酶突变的产物,催化反应体系为pH=8的缓冲溶液。用HPLC检测,收率在30%~80%之间。环化效率与肽的序列和长度有关。利用Subtiligase合成环肽所需的线性肽的最小长度是12个氨基酸残基,低于此数将得到水解产物或线性肽二聚产物。可能是因为低于12个残基的肽底物形成的头尾相接的空间构象不能与酶的活性中心匹配。

5. 合成环肽的其它方法

下面介绍几种比较特殊的环肽合成方法:

Meuterman等人巧妙地将光敏感辅助剂融合在环肽合成过程中,这种与常规合成方法不同的策略,不仅丰富了环肽合成方法学的内容,也为其他合成工作者提供了想象空间。直链五肽H-Ala-Phe-Leu -Pro-Ala-OH H-Ala-Phe-Leu-Pro-D-Ala-OH和H- Phe- Leu -Pro-Ala -Ala-OH在常规条件下,溶于DMF,使成为10-3~10-4 M溶液,加入3倍量Bop为缩合剂,5倍量DIEA作为碱和催化

剂,未得到单体环合化合物,只得到了环二聚体和环三聚体。采用光敏辅助剂的方法,将5-硝基-2-羟基苄基和6-硝基-2-羟基苄基以及巯基乙基等光敏结构引入线性肽N端,这些结构中的羟基或巯基与C端羧基成酯后,使得N端与C 端在空间位置上更为接近,经酰基转移使环缩小而得到N端连有光敏辅助剂的环肽,最后经光解反应脱去光敏辅助剂,得到首尾相连的环五肽,收率为20%,以Cyclo(Ala-Phe-Leu-Pro-Ala)的合成为例,具体过程如下:在传统的环肽合成方法中,不仅线性肽前体的氨基酸侧链一般都需要保护,而且要求反应物在溶液中呈高度稀释状态,非保护的氨基酸的环合无论是在概念上还是在机理上都不同于传统环合方法,主要特征是(1)酰胺键在没有活化剂存在下,通过分子内酰基转移而形成;(2)两个反应端基在缓冲液中的可逆反应造成环-链的结构互变,调节和控制环的形成。这种非保护环肽的合成方法避免了烦琐的保护和脱保护步骤以及反应液高度稀释的要求,终产物可直接用于生物活性实验。

Jame P.Tam等建立了分子内转移硫内酯化和Ag+离子辅助环合来制备非保护环肽的方法。对于N端为半胱氨酸,C端为硫酯的线性多肽,在pH=7的磷酸缓冲液中,巯基与硫酯基生成共价的硫内酯,这种硫内酯自发地经过S原子到N原子酰基迁移而形成环肽,如图:

作者应用上述方法合成了一系列N端为半胱氨酸的Cyclo(Cys-Tyr-Gly-Xaa-Yaa-Leu),为了防止二硫桥的形成和加速环合反应的进行,反应过程中加入TCEP(三羧基乙基膦),反应时间约为4小时,收率在78%~92%之间,HPLC检测未发现副反应和低聚物。

对于不含半胱氨酸的线性多肽的环合,采用亲硫的Ag+离子辅助配位柔性的线性多肽的N端氨基与C端硫酯形成一个环状的中间体,通过熵活化促进分子内环合。与硫内酯环合方法原理相似,Ag+离子通过一种非经典环-链结构互变而促使分子内环合的发生,环状中间体如下图:

应用上述方法合成环肽的具体实例是Cyclo(Ala-Lys-Try-Gly- Gly-Phe-Leu)的合成。在pH5.7的醋酸缓冲溶液中加入10%的DMSO作为助溶剂,反应5小时后得到收率为67%的目的物。

6. 环二肽的合成:

环二肽(2,5-哌嗪二酮)是最小的环肽,许多天然环二肽化合物都具有明确的生物活性,例如作为抗生素,苦味剂,植物生长抑制剂以及激素释放抑制剂等。环二肽结构的特殊性使得这类化合物的合成自成体系,通常由N端游离的直链肽酯在极性溶剂中回流,便可以很容易地得到目的物。Fischer虽然在甲醇氨中氨解线性二肽甲酯而得到环二肽,但同时发现这种方法易引起消旋。Nitecki提出将N端游离的线性二肽甲酯在丁醇和甲苯的混合溶剂中回流合成环二肽不会造成消旋。Ueda使用甲醇为溶剂进行回流,也得到了很好收率的环二肽;Cook等人应用1,2-乙二醇作为反应溶剂,得到了两种非对映异构体环二肽,总收率达64.5%。最近汪有初等报道了参照Ueda和Cook的方法合成了一系列环二肽,收率在55%~99%之间,并且通过生物活性实验发现Cyclo(Phe-Pro),Cyclo(Ile-Ile)和Cyclo(Met-Met)具有轻微的钙拮抗效应,Cyclo(Ala-Ala)和Cyclo(Pro-Pro)则显示了增强钾所致的收缩效应。

以上介绍了迄今为止合成首尾相连环肽的方法。由于环肽的前体-直链肽所包含的氨基酸的数目和种类的千差万别,造成了环肽合成方法的多样化。对某

种直链肽表现出高效,快速缩合作用的试剂和方法对另外一种肽链就可能变得

低效或无效。因此,根据目标环肽的序列寻找对应的环肽合成方法必须通过认

真的探索和艰辛的努力。

参考文献

1 Takashi Mizuma,Satoshi Masubushi,Shoji Augzu J.Pharm. Pharmacol. 1997,49,1067-1071

2 Pauletti,G.M.,Okumu,F.W.,Borchardt,R.T., Parm. Res. 1997, 4,164

3 Hruby,V.J.,Al-obeidi,F.,Kazmierski,W., Biochem. J. 1990,268,249

4 Marshell,G., Tetrahedron 1993,49,3547-3558

5 Jackson,s.,Degrado,W.,Dwivedi,A.,Parthasarathy A., J. Am. Chem. Soc. 1994,116,3220-3230

6 Morgan,B.P.,Bartlett,P.A.,Holland,D.R.,Matthews,B.W., J.Am. Chem. Soc. 1994,116,3251-3260

7 Bitern,G.,Sukhotinsky,I.,Mashriki,Y., Int.J. Pept. Protein Res. 1997,49,421-426

8 Friedler,A.,Zakai,N.,Kami,C.,Broder,T.C., Biochem 1998,37,5616-5622

9 Fairlie,D.P.,Abbenante,G.,March,D.R., Curr. Med. Chem. 1995,2,654-686

10 Bruce J,Aungst and Hirosi Saitoh, Pharmaceutical Researc

1996,13(1),114-119

11 Dae-Yeon Suh,Yong Chul Kim,Young-Hwa Kang J.Nat. Prod.

1997,60,265-269

13 Dermoc Cox,Toshiaki Aoki,Jiro Seki,Yukio Motoyama, keizo Yoshida Med. Res. Rev. 1994,14(2),195-228

14 Gilon,C.,alle,D.,Chorev,M.,Selinger,Z.,Byk,G., Biopolymers

1991,31,745-750

15 Siemion,Ignacy Z, Pol. J. Chem. 1989,63(4-12),431-438

16 Darshan Rangana,V.Haridas and Isabella L. J. Am. Chem. Soc.

1998,120(12),2695-2720

17 Hocart,Simon J,Jain.Rahal,Murphy,William a,Taylar,Jone E, J. Med. Chem. 1998,41(7),1146-1154

18 D.S. Seetharaman Jois, Dananjay Pal,Scott a.Tibbetts,Marcia A,Chan, J. Pept. Res. 1997,49, 517-526

19 Muriel Amblaard,Marc Rodriguez,Marie Francoise Lignon Eur. J. Med. Chem. 1998,33,171-180

20 Kevin Shreder, li Zhang, Trunghan Dang and Murray Goodman J. Med. Chem. 1998,41,2631-2635

21 Claim Gilon,Martin Huenges,Barbara Matha,Gary Gellerman J. Med. Chem. 1998,41,919-929

22 Binghe Wang,Sanjeev Gangwar,Giovannj M.Pauletti, Teruna J.Siahaan and Rouald T.Borchard, J. Org. Chem. 1997,62, 1363-1367

23 Jensen,Knud j.,alsina,Jordi,Songster,Michael F., J. Am. Chem. Soc. 1998,120(22),5441-5452

24 Horst Kessler,Burkhard Haase Int. J, Pept. Protein Res. 1992,39,36

25 Ehrlich,A.,eyne,.U.,Winter,R.,Beyermann,M.,Haber,H., J. Org. Chem. 1996,61,8831-8838

26 Kenneth D. Kopple J. Pharmaceutical Sciences 1972, 61(9),1346

27 M.Bodansky and V Duvigneaud J. Am. Chem. Soc. 1959,81,5688

29 Stephen P.East,Feng Shao,Lorenzo Williams,Madeleine M.Joullie Tetrahedron 1998,54,13371-13390

30 Stephen P.East,Madeleine M.Joullie Tetrahedron Lett. 1998,39,7211-7214

31 Schmidt U.,Griesser H. Tetrahedron Lett. 1986,27 163

32 Izumiya,N.,Kato,T.,Waki,M. Biopolymers 1981,20,1985

33 Schmidt,R.,Neubert,K. Int. J. Pept. Protein Res. 1991, 37,502

34 Earner, G.A.,Audhya,T.,Deyle,D.,Tjoeng,F.S.,Goldstein,G. Int. J. Pep. Protein Res. 1991,37,198

35 Miklos Bodanszky,Jill B, Henes Bioorganic Chemistry 1975,4,212-213

36 Yanajisawa,M.,Kuriara,H.,Kimura,S.,Tomobe,Y,,Kobayashi,

M.,Mitsui,Y.,Yazaki Y.,Goto,K.,Masaki,T.A. Nature 1988, 332,411-415

41 David Freeman and Gerald Pattenden Tetrahedron Lett. 1998,39,3251-3254

42 Pierschbacher,MD,Ruoslahti,E. Nature 1984,309,30-33

44 Bean,J.W.,Kopple,K.D.,Peishoff,C.E. J. Am. Chem. Soc.

1992,114,5328-5334

45 Peishoff,C.E.,Ali,F.E.,Bean,J.W.,Calvo,R. J. Med. Chem.

1992,35,3962-3969

46 Marion Gurrath,Gerherd Miller,Horst Kessler Eur.j. Biochem. 1992,210,911-921

49 Odilee,S.N.,Eduard R.,Toshimasa Yamazaki,Murray Goodman Int. J. Peptide Protein Res. 1992,39,145-160

50 Mierke,D.F.,Luccietto,P.,Schiller,P.W.,Goodman,M. Biopolymers 1987,26,1573-1586

52 Hamada,Y.,Shibata,M.,Shioiri,T. Tetrahedron Lett. 1985,20,6501

53 Carpino L.A. J. Am. Chem. Soc. 1993,115,4397

54 Carpino L.A.,El-Faham A.,Minor,C.A.,Albericio,F. J. Chem. Soc. Chem. Commun. 1994,201

55 Ehrlich,A.,Rothemund,S.,Brudel,M.,Byermann,M.,Carpino,

L.A.,Bienert ,M. Tetrahedron Lett. 1993,34,4781

57 Ehrlich A.,Rothemund S., Beyermann M.,Winter R., Carpino L.A. and Bienert M., Tetrahedron Lett. 1993,34,4781

58 Angelika Ehrlich,Hans Ulrich Heyne J. Org. Chem. 1996,

61(25),8831-8838

59 Pettit G.R.,Toki B.E.,Xu JP,Brunne D.C. J. Nat. Prod.

2000,63(1),22-28

60 Danniel Mink,Sandro Mecozzi,and Julius Rebell J. Tetrahedron Lett. 1998,39,5709-5712

61 H.Sone,H.Kigoshi,K.Yamada Tetrahedron 1997,53, 8149 -8154

63 Davis,Johns,Howe,Joanne,Jayatilake,Janita,Riley,Tony, Lett. Pept. Sci. 1997,4(4/4,6),441-445

65 Knorr,R.,Trzeciak,A.,Bannwarth,W and Gillessen,G. Tetrahedron Lett. 1989,30,1927

66 Susanne Zimmer,Eike Hoffman,Gilather Jung,Horst Kessler Peptides 1992,393-394

68 Veber,D.F.,saperstein,R.,Nutt,R.F.,Freidinger,R.M., Brady,S.F., Science 1984,34,1371-1378

69 Spanevello,R.A.,Hirscmann,R.,Raynor,K.,Reisire,T.,Nutt,R. Tetrahedron Lett. 1991,32,4675-4678

70 Mcmurray,J.S.,Budde,R.J.A,Dykes,D.F. Int. J. Pept. Protein Res. 1993,41,447-454

71 Mcmurray,J.S.,and Lewis,C.A. Tetrahedron Lett. 1993, 34,8059-8061

72 Sparrow,J.T.,Knieb-Cordonier,N.G.,Obeyseskere N.U.,and

Mcmurray,J.S. Pept. Res. 1996,9,297-304

74 Kevin Burgess,Dongyeo lim,Shaker A Mousa J. M. C. 1996,39,

4520-26

75 Mati Fridkin,Abraham Patchornik,Ephraim Katchalki,J. Am. Chem. Soc. 1965,87,4646

76 Rovero,P.,Quartara,L.,Fabbri,G., Tetrahedron Lett. 1994, 32,2639

77 Steven A.Kates,Nuria A.Sole,Charles R.Johnson. Tetrahedron Letters 1993,34(10),1549-1552

78 Kapurniotu,A.,Talor,J.W. Tetrahedron Lett. 1993,34, 7031-7034

79 Kates,S.A.,Sole,N.A.,Johnson,C.R., Tetrahedron Lett. 1993,34,1549-1552

80 Rovero,P.,Quartara,L.,Farbbri,G. Tetrahedron Lett. 1991, 32,2639-2642

83 DeGrdo,W.F,Kaiser E.T., J. Org. Chem. 1980,45,1295-1300

84 George Osapay,adam Profit and John W. Taylor Tetrahedron Lett. 1990,31(43),6121-6124

85 Jackson D.Y.,Burnier J.P.,Walls J.A., J. Am. Chem. Soc.,

1995,117,819

86 Mentermans W.DF,Golding SW,Bourne GT,Miranda LP J. Am. Chem. Soc. 1999,121,9790-9796

88 Pallin,T.D. and Tam,J.P. J. Chem. Soc. Commun. 1995,19, 2021

89 Botti P. Pallin,D.P. and Tam,J.P. J. Am. Chem.Soc. 1996, 118,10018

90 Zhang,L. And Tam,J.P. J. Am. Chem. Soc. 1997,119,2362

91 Kimura Y.Tani K.,Kojima A., Photochemistry 1996,41,665

92 Massharu K.,Jpn Kokai Tokyo Koho Jp0543,408,1993

(CA1993,119,295,133454y)

94 Toshihisa Ueda,Morinobu Saito,Tetsuo Kato,and Nobou Izumiya Bull. Chem. Soc. Jpn.,1983,56,568-572

95 Brando Cook,Roger R.Hill and Graham E.Joffs J. Chem. Soc. Perkin Trans 1 1992 1199-1201

96 汪有初,周俊,潭宁华药学学报 1999,34(1)19-22

97 陶兆林,汪有初安徽师范大学学报 1999,22(3)216-218

合成二肽工作中些许心得

作者: 收录: 2010-06-25 发布: 2010-06-15

最近一直在做合成N-Boc-L-His-L-Thr-OMe的实验,刚读研一的我来到实验室,看着凌乱的玻璃仪器,油腻的桌面,而且旋蒸的压力一点也上不去,看到这些心就凉了一半。刚开始的我不敢向导师提出任何要求,就这样按着老师给的方案(方案是两年前师姐用色氨酸和苏氨酸合成二肽的实验。)开始了,实验方案如下:

(1)合成N-Boc-L-Tryptophan色氨酸的合成

在150ml单口瓶中加入2.04g的L-色氨酸,80ml的10%的三乙胺甲醇混合

溶液,搅拌溶解。随后加入叔丁氧碳酸酐4.35g,控制温度在55℃以下反应

30min。反应完后,有机相减压蒸馏,蒸出大部分的三乙胺甲醇混合溶液。剩余的溶液在冰水浴下用10ml的盐酸酸化至pH=2,再用乙酸乙酯萃取

(60ml×3),合并有机相并用80ml的饱和食盐水洗涤,无水MgSO4干燥,过滤,蒸除溶剂得到淡黄色的固体。

(2)L-Tyrosine-OMe L-酪氨酸甲酯盐酸盐的合成

向装有回流冷凝器的150ml单口瓶中加入50ml无水甲醇,冰水浴冷却下

10min内地家乙酰氯6ml,并继续搅拌5min。将酪氨酸2.5g一次性加入,然后缓慢升温至回流,反应3小时。蒸除溶剂得到产品L-Tyrosine-OMe盐酸盐备用。

(3)N-Boc-L-Trypophan-L-Tyrosine-OMe

将L-Tyrosine-OMe盐酸盐2.31g溶于15mlDMF,加入3ml的三乙胺,搅拌反应15min,加入3.05g的N-Boc-L-Tryptophan色氨酸和二氯甲烷的溶液,滴加5.67gN,N-二环己基亚酰胺(DCC)溶于10ml二氯甲烷的溶液,反应4小时,过滤。滤液减压浓缩,加入乙酸乙酯和水,水层以乙酸乙酯提取。将提取液与有机层合并,用10%柠檬酸、饱和食盐水、饱和碳酸氢钠依次洗涤。将液体干燥、浓缩,加入石油醚结晶。

当按着实验做第一步时,就遇到了问题,查阅了相关文献,并且得到虫子上高手的指点,后来又问了导师,才明白其中的一些原因:师姐论文上的方案改动过,并不是实际方案,当时我感觉好凄凉,悲哀啊,我也明白是导师下令让改的,目的想必大家都清楚。我想导师也没想到吧,他这样做的后果是:吃亏,浪费经费的是他的下下界学生。另外我个人还觉得可能还有其他原因,就是师姐做的色氨酸的方案不适合组氨酸,不过从(BOC)2保护氨基酸氨基的普遍方法来看,原方案确实不妥,而且组氨酸很难溶于三乙胺溶液。所以基本可以否定原方案了。

接下来按着修改过的方案做:

L-His溶于THF:水(1:1),室温搅拌5min,加入NaOH溶液是PH为9~10,冰浴至0℃,在1小时~1.5小时内滴加(Boc) 2O,滴加完毕,冰浴下继续搅拌2小时,然后缓慢升温至室温,反应20小时后,冰浴下调PH为7,减压蒸除THF,用稀盐酸调PH为2~3,用乙酸乙酯(60ml×3)萃取,合并有机相,用饱和食盐水洗涤,然后用无水MgSO4干燥,过滤,减压蒸馏的粘稠状固体。

但产率实在太低,而且反应过程没找到合适的展开剂,因此无法检测反应。因此又制定了方案II

250mL反应器,加入水和二氧六环各60 mL,再加入L-组氨酸(4. 0 g, 25. 78mmol) ,

用冰浴冷却至0 ℃,然后加入(Boc)2O (12.376g, 56.71 mmol) ,缓慢加入NaOH 溶液,保持容液PH为8~9,自然升至室温,反应20h. 减压去除二氧六环,水相用乙醚提取两次,然后以饱和KHSO4 调节pH = 1~2,乙酸乙酯萃取三次,饱和NaCl溶液洗涤有机相,无水Na2 SO4 干燥,然后减压蒸干,得到淡黄色粘稠物。可是问题又出现在我自身上,由于我把一小打pH试纸放在抽屉中,没有放入小袋中,而是长期暴露于空气中,导致失效,可我没注意到这一点,导致调pH 值时调过了头。结果Boc从氨基上脱落。

在实验中观察的现象是长期暴露于空气中的pH试纸,首先颜色比原色稍白,调pH到4以下,试纸曾现暗灰色,所以4以下就没法辨别pH值了。

由于在做第一步时否定了原定方案,接着自己对原定方案的第二步的可行性产生了怀疑,于是再次求助于小木虫,得到了虫子们的热情帮助,肯定了原实验方案的可行性,并且让我明白了其中的反应机理,获益匪浅。

接着开始了第三步,先是查阅大量文献(在这次查阅中得知第一步中的反应物的量对反应有着显着的影响,即是否应该把咪唑上的氨也保护的问题。),通过比对文献以及文献中与原实验方案第三步的不同之处,制定了新的方案:

N-Boc-L-His-L-Thr-OMe的合成

称取N-Boc-L-His10mmol 溶于四氢呋喃(THF),冰水浴冷却,冰水浴中缓慢加入DCC 10.8mmol,HOBt 10.8mmol ,冰浴冷却(溶液1) ,磁力搅拌; 称取L-Thr-OMe 2 mmol 和0.3mL 三乙胺溶于适量的THF溶液中(溶液2) ,将溶液2 和溶液1 混合,并在0℃下搅拌10 h。TLC 显示原料点消失。停止反应,抽滤。滤液减压浓缩,溶于乙酸乙酯,分别用质量浓度为饱和碳酸氢钠、饱和柠檬酸溶液各洗两次,饱和氯化钠溶液洗涤一次。取有机相,用无水硫酸钠干燥。减压蒸馏,石油醚结晶。

做实验中,1、发现L-Thr-Me不溶于THF中,加入适量DMF,才溶解掉。

2、减压蒸馏后发现大量暗黄色物质。

3、结晶后暗黄色物质与针状结晶一并析出,于是溶解热过滤,导致产物大量损失。原因可能是:

a、没有按虫友们说的DCC与HOBt的比例应为1.2:0.8加量。

b、用饱和碳酸氢钠、饱和柠檬酸溶液各洗两次,饱和氯化钠溶液的洗涤不够彻底。

c、在实验中发现乙酰氯滴到醇或水上时,产生爆鸣,由此乙酰氯在常温滴到醇或水中时,可能会爆炸。

d、还发现柠檬酸稀释为吸热反应,杯底冰凉。

f、还明白了放久了的1,4-二氧六环放久了旋蒸不会爆炸。(当然旋蒸完要慢慢放气)。

本次实验中,虽然产率很低,但作为初次独立做实验的我来说,还是学到了很多,而且在实验室我还领悟到了学做实验,其实也是在学做人,我学到的东西就是:虽然导师的方案有不妥,但你尊重他,导师不但不会责怪你,还会尽最大努力支持你,我实验室欠缺的仪器和损坏的仪器,导师都给买了,虽然比不上那些好学校的实验室,但比刚到实验室时有了很大改观。

以上是我这段时间的工作内容和小小心得,不足之处请大家尽情指点。

最后祝愿大家都取得好的成绩,愿木虫越办越好,同时也愿我在虫子的帮助下学到更多知识。

如果要最后的二肽不成盐,我觉得Cbz和苄酯的保护策略更好

Cbz保护氨基端氨基酸,苄酯保护羧基端氨基酸

接肽后,氢化同时脱除Cbz和苄酯

得到的产品不会带盐

嗯需要用钯氢化钯太贵了能不能用强碱型的离子交换树脂把氯离子交换成氢氧根后就能把盐酸盐游离出来了呢

如果有一定量的话,可以溶解到少量水中,用相对较浓的酸碱冰浴下缓慢调节应该在一个PH值的环境下能析出固体的

【求助】关于合成多肽(10肽)的HPLC分析

固相合成了一个10肽,含有Gln,Val ,Gly ,Lys,Asp,Glu,Asn,Ser和修饰的Cys(含有两个棕榈酸(16炭酸)酯),HPLC分析,紫外检测选用哪个波长吸收会强些(因为没有芳香环,液相谱图中峰小得很,也不知道是不是产

品峰),另外,除紫外检测器外,这样的10肽还可采用何种检测方法,感谢大家给我指点一下,谢谢!

可以用HPLC-MS分析。我们可以交流交流,hhynjnu@163。com

我感觉用CE更好一些,我曾经用CE做过类似物质,感觉很好

不是CES,是CE,毛细管电泳啊,对氨基酸,蛋白质有着不错的分离效果,你可以尝试一下,不过HPLC应该也行,我没用它做过氨基酸

另外,关于你说的峰响应很小的问题,我觉得你可以在做之前衍生一下,把氨基酸和一些有生色团的试剂反应,再进行紫外检测。

你是要测多肽还是氨基酸分析啊?

如果是多肽,220nm附近即可,肽键的吸收峰,我们常用214nm

如果是氨基酸,则需要做柱前衍生化,Waters有试剂盒,很简单

楼上说的对,这段波长下酰胺键的伸缩振动对紫外有吸收

大家好,知道多肽的序列,如何查到它的分子结构式以及合成方法。简单点比如Gly-trp-lys-his,它的化学结构是什么,如果是一个20肽,不会要一个一个接上去吧?一般在哪些期刊可找到相关资料

你看下多肽合成方面的书就知道了,20肽用固相合成法也是很方便的。

这些东西在CA上都可以查到。

固相合成法合成是用肽合成仪还是像书上说的用树脂固定C端向N端延长,重复,一个一个接上去,很多基团要保护,再去保护,这样下来最后的产率不是超低在生产上(用来做配体)有意义吗你们要是有固相合成仪,那就合成快了啊,没有的话就一个个接吧,不过可以采用片段合成,先把20肽分割成几个小肽,各个合成再接起来。收率超低那你就错了,固相合成操作的好,收率都是定量的啊。

20肽固相合成吧。

液相合成太难了,想想当年的牛胰岛素的合成吧

AB链,21和30肽,花了多大代价,才做出来了多少东西啊。

这么长的序列已经有一定的三级结构了。液相合成收率非常非常低。

但是20肽,固相合成应该很容易。做点研究用的样品应该是没问题的。

固相合成仪器,简单的就是一个特殊的玻璃管,贵不到哪里去的

呵呵,可以在有磨砂的抽滤漏斗内反应,底下接口通N2,可作搅拌用。反应完后,讲小分子原料全部洗掉,然后继续接其他氨基酸。原料可以多投料,保证收率接近定量。

用固相合成法,手动合成需要摇床、反应器、树脂、保护的氨基酸、反相HPLC。

固相法合成多肽一般有两种方法,Boc方法和Fmoc方法,如果是刚开始做,建议使用Fmoc方法,因为Boc方法最后从树脂上切下来需要用HF气体,一般难弄到。Fmoc方法用TFA,一般公司都能买到。

反应器可以定做,做成缩小版的柱子就可以了,根据做肽量的大小决定直径和高度,一般直径1~2cm,总长10~20cm

树脂有很多种,根据选择的方法和多肽C端是羧酸还是酰胺选择不同的树脂,常用的有wang树脂,Rink Amide树脂等。

保护的氨基酸各大公司有卖。

反相HPLC主要是分析和分离用,产率没有楼上说的那么高,一般Boc方法产率高点,估计能有个40%-50%,Fmoc方法能有30%。简单算一下,就算每步产率

多肽合成方法

多肽合成中肽键形成的基本原理 一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。 在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。 因此,多肽合成-即每一个肽键的形成,包括三个步聚: 第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在; 第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。 第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。 由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一的例外),存在发生的消旋的潜在危险。 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑地规划,依战略选择,可以选择性脱除Nα-氨基保护基或羧基保护基。“战略”一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分割成合适的片段,并确定在片段缩合过程中,它们能使能C端差向异构化程度最小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最恰当的保护基组合和最佳的片段偶联方法。 最初的固相多肽合成(SPPS)只是肽和蛋白质逐步合成法的一种变化,其概念是将增长的肽链连接到一个不溶性的聚合物载体上,由Robert Bruce Merrifield在1963年首次报道。今天,为纪念他1984年获得诺贝尔奖而称之为Merrifield。在聚合物载体上,也可以进行片段缩合反应。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

环戊烷制备方法

一种环戊烷的制备方法 发明人: 万书晓;汪孟言;叶岗;陈亚军 摘要: 一种由双环戊二烯连续解聚、加氢制备环戊烷的方法,是在0.1~2.5MPa的系统压力下,在氢气和稀释剂的存在下,将双环戊二烯在160~400℃的解聚器中解聚为环戊二烯,将环戊二烯在10~100℃的装有换热装置的固定床反应器中加氢为环戊烷,并收集环戊烷.该方法可使解聚、加氢两步反应连续进行,提高了双环戊二烯的解聚率,环戊烷的收率也明显提高,可达70%以上,而且延长了催化剂的使用寿命. 硫是环戊烷中主要杂质,严重影响PU产品的颜色和强度.该文以N-甲酰吗啉作萃取剂,研究了脱除油田轻烃为原料生产的环戊烷中硫的工艺条件对分离效果的影响,得到了最佳工艺条件:V(N-甲酰吗啉)∶V(环戊烷)=1.03∶1.00,w(N-甲酰吗啉)≥95%,操作温度25~38℃;低压运行,常压再生.工业化中试结果为:环戊烷中含硫量为9.38μmol/L,环戊烷的收率为93.7%,每生产1 t产品N-甲酰吗啉的消耗量为2 kg,该工艺在油田轻烃深加工领域具有一定的工业应用前景. 【分类号】:TQ231.1 【DOI】:cnki:ISSN:1003-5214.0.2006-07-019 【正文快照】: 环戊烷(cyclopentane)是无色透明液体,因分子呈环状结构,故为多种有机物的优良溶剂[1].近年来,环戊烷成为氟氯烃发泡剂的理想替代品,用于冰箱生产等.目前,环戊烷是对环境最为有利的发泡剂.环戊烷与传统的发泡剂R11相比,具有如下优点:(1)分子结构中不存在卤素原子,ODP(臭氧消 CAJViewer7.0阅读器支持所有CNKI文件格式,AdobeReader仅支持PDF格式Desulfidation Process of Cyclopentane Sulfides are principal impurities in cyclopentane,and seriously affect the color and stress of polyurethane products.A process has been investigated with N-formylmorpholine as extractant to remove sulfides in cyclopentane produced from the light hydrocarbons of oil field.The optimal operating conditions are V(N-formylmorpholine)∶V(cyclopentane)=1.03∶1.00,w(N-formylmorpholine)≥95%,temperature 25~38 ℃,low pressure extraction and atmospheric pressure regeneration.The pilot plant results are as follows.Yield of cyclopentane is 93.7% and the consume of N-formylmorpholine is 2.0 kg/t a ccording to 9.38 μmol/L of the sulfides content in cyclopentane.This technique shows its potential industrial prospect in deep processing of light hydrocarbons from the oil field. 对以双环戊二烯为原料,经解聚、加氢制备环戊烷的工艺进行了研究,重点考察了环戊二烯加氢条件.结果表明:在Raney镍催化剂加入量为0.5%~2%,加氢压力为0.5~3.0MPa,加氢温度为30~50℃时,环戊二烯的加氢转化率约为100%,加氢选择性也在99%以上,由双环戊二烯制备环戊烷的总收率>60%,产品的纯度在99%以上. 【分类号】:TQ231.13 【DOI】:cnki:ISSN:1004-017X.0.2003-06-007 【正文快照】: 1前言环戊烷作为CFC的理想替代品,被广泛地用作电冰箱、冰柜的保温材料及其他硬质PU泡沫的发泡剂.世界发达国家如德国、美国、英国已率先在冰箱及PU行业实现了无氟化.我国已在保护大气臭氧层的蒙特利尔公约上签字,随着该公约执行期限的临近,国内大部分冰

酚醛树脂合成原理

酚醛树脂是由酚类化合物(如苯酚、甲酚、二甲酚、间苯二酚、叔丁酚、双酚A等)与醛类化合物(如甲醛、乙醛、多聚甲醛、糠醛等)在碱性或酸性催化剂作用下,经加成缩聚反应制得的树脂统称为酚醛树脂。酚与醛的反应是比较复杂的,由于苯酚与甲醛的摩尔比,所用催化剂的不同,加成与缩聚反应的速度和生成物也有差异。 一、碱性催化剂的反应 很多无机碱和有机碱都可用作碱性催化剂,常用的有氢氧化钠、氢氧化钡、氢氧化铵、氢氧化钙、乙胺等。1mol(有时高达2.5mol)甲醛在碱性催化剂条件下,加成反应占优势,而缩合反应进行较慢,生成的初期树脂为甲阶酚醛树脂,主要反应历程如下: 1、加成反应(羟甲基化) 苯酚与甲醛首先进行加成反应,生成1~3羟甲基苯酚 2、缩合反应(亚甲基化) 羟甲基酚进一步缩合形成初期树脂或称热固性酚醛树(resols)、甲阶树脂(A-stage resins)、一步树脂。 (1)、苯酚与羟甲基酚进行反应生成二(羟苯基甲烷) (2)、羟甲基酚之间进行反应 (3)、苯酚或羟甲基与二聚体或多聚体进行反应,多聚体之间进行反应。 二、酸性催化剂的反应 酸性催化剂是较强的酸,包括无机酸和有机酸,常用的有盐酸、硫酸、草酸、苯磺酸、石油磺酸、氯代醋酸等。在酸性催化反应中,一般采均用苯酚与甲醛的摩尔比大于1:0.9,生成的羟甲基与酚核的缩合速度远远超过甲醛与苯酚的加成速度,得到的树脂呈线型结构,是可熔的。因此称为热塑性酚醛树脂(novolak)或线型酚醛树脂。反应历程如下: 酸性催化下甲醛被活化亚甲基化反应速度大于羟甲基化反应速度生成线型热塑性酚醛树脂。 (1)、甲醛与水结合可形成亚甲基二醇(HOCH2OH),在酸性介质中,亚甲基二醇生成羟甲基正离子;(+CH2OH)羟甲基正离子在苯酚的邻位和对位上进行亲电取代反应,生成邻羟甲基苯酚和对羟甲基苯酚

聚碳酸酯的合成工艺对比及进展分析

聚碳酸酯的合成工艺对比及进展分析 聚碳酸酯(PC)是一种无味、无毒、透明的无定形热塑性材料,是分子链中含有碳酸酯链一类高分子化合物的总称。 聚碳酸酯可分为脂肪族、脂环族、芳香族等几大类田。但因制品、加工性能及经济等因素的制约,目前仅有双酚A型的芳香族聚碳酸酯投入工业化规模生产和应用。自从1958年聚碳酸酯商业化生产以来,其种类和用途两方面的研发均获得了巨大进展,因此其作为一种主要的热塑性工程塑料而广泛进入了国民经济的各个领域。双酚A型聚碳酸酯是目前产量最大、用途最广的一种聚碳酸酯,也是发展最快的工程塑料之一。本文所述聚碳酸酯即为双酚A型聚碳酸酯。 聚碳酸酯是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变,尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,被广泛用于电子电气、电动工具、交通运输、汽车、机械、仪表、建筑、信息存储、光学材料、医疗器械、体育用品、民用制品、保安、航空航天及国防军工等领域,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。预测我国聚碳酸酯市场的年均增长率将达到10.2%,至2010年工程塑料需求量将接近400万t。聚碳酸酯产量年增长可能达到9%,销售量年增长将达10%。 在聚碳酸酯的合成工艺发展历程中,出现的合成方法颇多,如低温溶液缩聚法、高温溶液缩聚法、吡啶法和部分吡啶法等等,至今仍不断有新的合成方法报道,但已工业化、形成大规模生产的工艺路线并不多,这些方法或者不成熟,或者因成本较高而制约了实际应用m。目前世界上大部分生产厂家普遍采用界面缩聚法或熔融酯交换法,其中80%的生产厂家采用界面缩聚法。 聚碳酸酯工业化生产工艺按照是否使用光气作原料可主要分为两大类。第一类是使用光气的生产工艺。第二类是完全不使用光气的生产工艺。 1光气法 1.1溶液光气法 以光气和双酚A为原料,在碱性水溶液和二氯甲烷(或二氯乙烷)溶剂中进行界面缩聚,得到的聚碳酸酯胶液经洗涤、沉淀、干燥、挤出造粒等工序制得聚碳酸酯产品。此工艺经济性较差,且存在环保问题,缺乏竞争力,已完全淘汰。1.2界面缩聚法 1.2.1二步界面缩聚法 界面缩聚法合成聚碳酸酯化学原理:参与界面缩聚反应的两种单体是双酚A 钠盐和光气,其化学反应式如上所示。按传统的方法,在实施上述反应时,一般分为两步,即光气化阶段和缩聚阶段,这便是通常所说的“二步界面缩聚法”。 1.2.2一步界面缩聚法 近年来,“二步界面缩聚法”正在向“一步界面缩聚法”发展。 在一步界面缩聚法反应过程中,在反应一开始就加入催化剂,由于催化剂显著地加速氯甲酸酯基团与酚盐酯化的反应速度,故当双酚A钠盐光气化的同时,就伴随着缩聚反应的进行,而且几乎在光气化反应结束的同时,缩聚反应也随之结束。 “一步法”光气界面聚合生产聚碳酸酯,反应速度快,双酚A、光气等原料消耗大大降低。工艺成熟、生产稳定、易于操控,是目前世界上比较成熟的合成聚碳酸酯方法之一。 1.3酯交换法

环肽的合成方法及技巧

环肽的合成方法(1) 多肽药物在治疗上的重要性,越来越引起广大药学工作者的重视。根据肽链的构成可将多肽分为同聚肽(Homomeric)和杂聚肽(Heteromeric)两大类,前者完全由氨基酸组成,后者是由氨基酸部分和非氨基酸部分组成的,如糖肽。根据肽键的结构又分为直链肽和环肽。其中直链肽的研究最为广泛和深入,尤其在直链肽的合成技术方面无论是液相法还是固相法都已成熟。虽然许多直链肽体外具有很好的生物活性和稳定性,但是进入体内后活性很快消失。因为体内环境复杂,存在各种各样的酶。直链肽在酶的作用下很快降解,导致活性丧失[1-2]。另外,直链肽在液相里的构象柔性使得不大容易符合受体的构象要求。这些不利因素造成多肽药物仍有许多问题有待解决。为了得到生物活性优秀半衰期长,受体选择性高的多肽,文献报道过很多多肽改造的方法,其中包括将直链肽改造成环肽[3-8]。这种大环分子具有明确的固定构象[9],能够与受体很好地契合,加上分子内不存在游离的氨端和羧端使得对氨肽酶和羧肽酶的敏感性大大降低[10-12]。一般地说,环肽的代谢稳定性和生物利用度远远高于直链肽[13]。鉴于环肽的诸多优点,近年来对多肽研究的热点已转移到环肽的合成和生物评价上。 根据环肽的环合方式又分为首尾相连环肽(Head-to-tail)、侧链和侧链相连环肽(Sidech ain-to-sidechain)[14]、侧链和端基相连环肽(Sidechain-to-end)[15]、含二硫桥的环肽(D isufide-bridge)[16-18]、以及含有其他桥连结构的环肽[19-23]。从合成方法上讲,首尾相连的环肽的合成难度最大。因为环肽的前体-直链肽的肽键具有很强的p键特征,分子更偏爱形成反式构象,呈舒展状态,造成属于反应中心的端基的羧基和氨基在空间上距离较远,不利于发生分子内缩合反应,有利于分子间缩合。 首尾相连的环肽通常是N端和C端游离的直链肽在稀溶液中(10-3~10-4M)由羧基和氨基形成酰氨键来合成。直链前体中的氨基酸种类和数目对成环的难易程度和环肽的收率起着至关重要的作用。甘氨酸、脯氨酸或D-构型氨基酸具有诱导b-转角(b-Turn)的作用,常被认为可增加成环的可能性和收率[24-25]。 1. 合成首尾相连环肽的经典方法 合成首尾相连环肽的经典方法是在稀溶液(10-3~10-4M) 中,将保护的线性前体选择性地活化并环合。常用活泼酯法和迭氮法。 1.1 活泼酯法 活泼酯法中活化羧基和环合反应是分两步进行的。活泼酯相对很稳定,一般不需要纯化可直接用于环合反应。几乎所有可用于偶联反应的活泼酯都可用于合成环肽,主要有对硝基酚酯、N-羟基琥珀酰亚胺酯、五氟苯酯和2,4,5-三氯苯酚酯。线性多肽的C端羧基与对硝基酚、N-羟基琥珀酰亚胺、五氟苯酚或2,4,5-三氯苯酚,在DCC或其他缩合剂存在下,于低温反应,很容易得到相应的活泼酯。这种N端通常带有BOC或Z保护的活泼酯在酸性条件下脱去保护基,形成活泼酯的氢卤酸盐,在弱碱性稀溶液中,如在吡啶,DMF或二氧六环一类介电常数较大的溶剂中,保持pH 8~9,加热(60~100°C)或室温搅拌数小时至数日,最终可得到环肽。 1.1.1对硝基酚酯法 对硝基酚酯法合成环肽的通式如Scheme 1[26]

酚醛树脂的制备

酚醛树脂的制备 酚醛树脂的制备受很多因素影响,其中原料摩尔比、催化剂种类和用量、反应温度和投料方式等,对酚醛树脂的反应速度、产物结构和质量都有很大影响。 一、苯酚与甲醛摩尔比的影响 苯酚与甲醛的摩尔比影响历程反应和分子结构,在酸性催化反应中,当甲醛的摩尔比小于苯酚时,不能形成足够的羟甲基,使缩合反应进行到一定程度便停止。在碱性催化反应中,当甲醛摩尔数小于苯酚时,又有部分苯酚以游离状态存在于树脂中,反应不完全。从酚醛树脂较理想的结构考虑,作为热固性树脂苯酚的麻尔数应略小于甲醛的摩尔数。 苯酚与甲醛的摩尔比反应,主要是生成邻甲基酚和对羟甲基酚,其中对羟甲基酚含量居多。苯酚与甲醛的摩尔比为1:2以上时以生成二羟基酚和三羟基酚为主。 苯酚与甲醛的摩尔比不同树脂平均相对分子质量也不相同,摩尔比越大树脂平均相对分子质量越大, 苯酚与甲醛摩尔比同树脂平均相对分子质量的关系

苯酚与甲醛摩尔比1:1.1 1:1.2 1:1.3 1:1.4 1:1.5 1:1.6 1:1.7 树脂平均分子量228 256

291 334 371 437 638 对于不同用途的酚醛树脂,应控制苯酚与甲醛的不同摩尔比,胶合板用的树脂最好是1:(1.4~1.5),收率高游离酚少;浸渍用的酚醛树脂,摩尔比应为1:(1.1~1.3),树脂平均相对分子质量秒渗透性好作为耐水增强的酚醛树脂要示平均相对分子质量大一些游离酚尽量减少摩尔比一般为1:2.0左右。 苯酚与甲醛的摩尔比亦影响树脂的反应速度和固化时间摩尔比越大即甲醛用量增大树脂反应速度越快固化时间缩短而粘度下降储存稳定性变差。苯酚与甲醛摩托车尔比对树脂物化性质的影响如表。 苯酚与甲醛摩尔比

冰箱用环戊烷组合聚醚的研制

冰箱用环戊烷组合聚醚的研制 石芳录 王娟 王严平 梁策 (兰州华宇创新科技有限公司甘肃兰州 730000) 摘要:通过对几种泡沫稳定剂和国产聚醚进行全面试验筛选,研制开发的环戊烷组合聚醚体系 具有互溶性良好,不分层,流动性优良及泡孔结构细腻等特点。用于冰箱泡沫的主要性能指标:平均 芯密度 35.6 kg /m ,最大和最小芯密度偏差Δρm ax 为 1.6 kg /m ,压缩强度(10%)170 kPa ,导热系数 3 3 0.0191 W/(m ·K),低温尺寸稳定性 0.21%,结果表明:5106环戊烷组合聚醚完全满足家电等产品的生 产。 关键词:聚氨酯;硬质泡沫塑料;环戊烷;发泡剂;组合聚醚 1前言 经过人们十多年不懈努力,在替代技术领域相继开发出削减 50%C F C-11、低 O D P 值及零 O D P 值 的替代技术及产品,并有多种发泡剂问世,这些产品在许多行业已获得广泛应用(见表 1),事实证明, 这种逐步替代方案的成功实施已经对环境发挥了十分有益的影响。 表 1常用发泡剂的性能 发泡剂种类 沸点/℃ 闪点 O D P 特点 主要用途 环境不友好 隔热性能优良 加工性能优良 安全性优良 环境基本友好 隔热性能良好 加工性能良好 安全性良好 环境友好 CF C (氯氟烃) 家电、建筑、石化、管 道 氟里昂-11 23.8 无 1 141b 142b 32 -9.2 -40.8 -28 36 无 有 无 无 有 0.1 0.07 0.06 0.06 0 H CF C (氢化氯氟烃) 家电、建筑、石化、管 道 22 22/142b 正戊烷 H C (碳氢化合物) 异戊烷 28 有 0 隔热性能一般 加工性能良好 安全差 家电 环戊烷 49 有 0 152a 134a -27.4 -26.3 -26 40 有 无 无 有 无 无 0 0 0 0 0 0 环境友好 H F C (氢氟烃) 134a /152a 365mfc 365mfc /227 245fa 隔热性能优良 成本较高 (国内尚未商品化) 建筑、石化、管道 24 15 安全性尚可 环境友好 隔热性能较差 加工性能一般 安全性优良 H 2O C O 2 无 0 在低 O D P 值产品开发中人们首先将目标锁定在与 C F C-11各性十分接近的氢化氯氟烃 H CF C-141b 发泡剂上,开发出的产品在家电、建筑等行业已普遍使用,然而由于它的臭氧消耗能力不 完全为零(O DP 值 0.11),H CF C-141b 最终仍会被取代。但为更快淘汰 C F C ,修正后的蒙特尔协议 规定 H C F C-141b 在发达国家于 2003年淘汰,而发展中国家可延至 2040年。尽管如

聚碳酸酯的非光气合成法

第27卷第8期高分子材料科学与工程 Vol.27,No.8 2011年8月 POLYMER MATERIALS SCIENCE AND ENGINEERING Aug 2011 聚碳酸酯的非光气合成法 荀红娣,王小梅,周宏勇,王家喜 (河北工业大学化工学院,天津300130) 摘要:以双酚A(BPA ),碳酸二丁酯(DBC)为原料,制备出双酚A 单丁基碳酸酯(I )和双酚A 二丁基碳酸酯(II),用核磁共振波谱表征其结构。通过I 、II 的熔融自缩聚及I I 与BPA 酯交换反应合成了双酚A 型聚碳酸酯(PC),用凝胶渗透色谱法(GPC)和热失重法(T GA)对PC 的分子量和热力学性质进行分析。研究发现,I I 自缩聚更易得到高分子量的PC,II 在230 自聚6h 后产物的 M w 可达3 1 104,其主链降解温度(50%)已达475 ,开拓了一种非光气合成聚碳酸酯PC 的途径。 关键词:双酚A;碳酸二丁酯;双酚A 聚碳酸酯;非光气法;环境友好过程 中图分类号:T Q 323.4+1 文献标识码:A 文章编号:1000 7555(2011)08 0013 04 收稿日期:2010 07 14 通讯联系人:王家喜,主要从事绿色催化及功能高分子研究,E mai ll:jw ang252004@https://www.360docs.net/doc/db12579262.html, 双酚A 型聚碳酸酯(PC)是一种无定型、高抗击、具有良好透明性能的热塑性工程塑料,工业上通常采用双酚A(BPA)和光气缩合聚合反应制备PC,由于这一过程存在着严重的环境问题,发展一种环境友好的聚碳酸酯合成方法,成为绿色化学的需要[1,2]。Desi moned [3] 等以BPA 和碳酸二苯酯(DPC)为原料制得PC 缩聚物,Su 等报道了碳酸二甲酯(DM C)和BPA 反应制备聚碳酸酯[4]。由于DPC 大多采用光气与苯酚反应制备,BPA 与DM C 反应活性较低,提高反应温度后很难保持合适的原料配比,制备的PC 分子量较低[5]。考虑到丁醇沸点相对较低及碳酸二丁酯沸点较高,有利于提高BPA 与碳酸酯的反应温度进而提高反应的转化率,本文以高沸点的碳酸二丁酯(DBC)代替DMC 和BPA 反应制备PC,研究了反应条件对形成高分子量的PC 的影响。1 实验部分 1.1 原料和试剂 双酚A:化学纯;碳酸二甲酯:分析纯;正丁醇:分析纯,天津市大茂化学试剂厂;碳酸钾:分析纯,天津大学科威公司;二丁基氧化锡:分析纯;单丁基氧化锡:分析纯,天津市化学试剂研究所。 1.2 仪器 GC:山东鲁南瑞虹化工仪器有限公司SP 6800A 型气相色谱仪,SE 30毛细管柱,内径0 25mm,长30m,数据处理采用N2000色谱数据工作站,浙江大学智能信息工程研究所;NM R:瑞士布鲁克公司A VANCE400型核磁共振谱仪;T GA:美国TA 公司SDT 2960热重分析仪,升温速率10 /min,氮气流速为40mL/min,20 ~600 温度范围内记录样品的失重曲线;FT IR:德国BRUCK 公司Vector 22型红外光谱仪;GPC:美国SSI H PLC 公司CS4000;GPC 柱为Agilent PLg el 10 m MZXED B,流动相为THF,温度为30 ,UV 监测器波长259nm 。1.3 DBC 的合成 按文献[6]方法制备DBC 。1H NMR (CDCl 3,400MH z, ):4 16(t,4H ,-OCOOCH 2),1 66(m,4H , -OCOOCH 2CH 2), 1 42 (m, 4H, -OCOOCH 2CH 2CH 2),0 94(t,6H,-CH 2CH 3)。1.4 双酚A 单丁基碳酸酯I 的合成 常压下,将BPA (11 4g,0 05mol),DBC (43 5g,0 25mol),催化剂二丁基氧化锡(0 55g)和三苯基膦(0 55g)置入到三口瓶中,油浴加热190 反应,用GC 跟踪馏分中丁醇的量来计算双酚A 与DBC 酯交换反应的反应程度。当馏分中的丁醇与双酚A 物质的量相等时(10h 后),降低温度,将过量的DBC 蒸出,得到淡黄色粘稠物(16 3g,91%)。1H

多肽合成

多肽合成技术 多肽化学已经走过了一百多年的光辉历程,1902年,Emil Fischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢,当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,Max Bergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,Fred Sanger发明了氨基酸序列测定方法,并为此获得了1958年的Nobel 化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,Lou Carpino 首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因

酚醛树脂合成及应用

高分子科学概论课程论文 论文题目:酚醛树脂的合成及应用 学院:化学与材料科学学院 专业:应用化学 班级: 1 班 姓名:涵 学号:20100635 指导老师:董静

酚醛树脂的合成及应用 摘要:酚醛树脂是一种最经典的人工合成树脂,有近百年的使用史。由于酚醛树脂原料易得,价格低廉,生产工艺和设备简单,而且制品具有优异的机械性能,耐热性、耐寒性、电绝性、尺寸稳定性、成型加工型、阻燃性及低烟雾性。成为工业部门不可缺少的材料,被广泛应用于固结磨具、涂附磨具、摩擦材料、耐火材料以及电木粉、烟花爆竹、铸造等各个领域。本文主要介绍了酚醛树脂的合成及研究,并简单的阐述了酚醛树脂的应用和未来发展趋势。 关键词:酚醛树脂;合成;应用。 1872年德国化学家拜尔(A. Baeyer)首先合成了酚醛树脂,1907年比利时裔美国人贝克兰提出酚醛树脂加热固化法,使酚醛树脂实现工业化生产,1910年德国柏林建成世界第一家合成酚醛树脂的工厂,开创了人类合成高分子化合物的纪元。由于采用酚、醛的种类、催化剂类别、酚与醛的摩尔比的不同可生产出多种多样的酚醛树脂,它包括:线型酚醛树脂、热固性酚醛树脂和油溶性酚醛树脂、水溶性酚醛树脂。主要用于生产压塑粉、层压塑料;制造清漆或绝缘、耐腐蚀涂料;制造日用品、装饰品;制造隔音、隔热材料、人造板、铸造、耐火材料等。 酚醛树脂是世界最早人工合成和工业化生产的一类合成树脂,其原料易得,生产工艺简单,综合性能优良,应用非常广泛,因此研究酚醛树脂的制备方法,具有很高的社会意义和经济价值。 近年来科研人员对酚醛树脂本身的脆性和力学性能进行改进,在下游产品应用新工艺,使酚醛树脂基复合材料有了更大的发展。随着电子产业的迅速成长,高纯度及改性酚醛树脂也在半导体封装材料、印制电路基板材料和光刻胶领域发挥着越来越重要的作用。现代酚醛泡沫反应机理和生产工艺的不断创新,使酚醛泡沫材料应用于民用建筑、采矿等新领域。各种改性酚醛树脂作为增粘、增硬、补强材料,也不断地应用于橡胶工艺的改进中。 酚醛树脂的特点 酚醛树脂是一种以酚类化合物与醛类化合物经缩聚而制得的一大类合成树脂。所用酚类化合物主要是苯酚、其他还可以用甲酚、混合酚、壬基酚、辛基酚、二甲酚、腰果酚、芳烷基酚、双酚A或几种酚的混合物的;所用醛类化合物主要

245fa和环戊烷泡

图中可以看出,发泡体系中的含水量对泡沫的导热系数由不利的影响,而泡沫密度对导热系数的影响则较复杂,泡沫导热系数与泡沫密度呈抛物线的关系,在泡沫芯密度34.5k g/m3附近存在一个作低点,表明合适的泡沫密度对降低泡沫的导热系数非常重要。 在发泡过程中,由于H F C-245f a沸点较低,汽化速度快,会产生泡沫表面发酥发脆,粘接性能差等的现象,通过聚醚多元醇和交联剂的选择、发泡剂用量和体系含水量的控制,可以有效改善泡沫与冰箱A B S板的粘接性。另外,由于H F C-245f a汽化快,发泡料在出发泡机枪头时就已发泡,从而导致发泡料粘度过大,影响了泡沫在冰箱或板材内的流动。采用以有机金属盐与六氢化三嗪及二甲基环已胺按比例复配而成复配催化剂,可有效调节和控制H F C-245f a的发泡速度,达到各阶段均衡发泡,改善泡沫质量。 (2)混合发泡剂的开发 H F C-245f a的沸点为15.3℃,与C F C-11和H C F C-141b相比沸点较低,应用以现有的发泡系统,组合料的混合设备及存储设备需做一定的改进。开发混合发泡剂,将H F C-245f a与沸点较高的发泡剂混合,就可以有效地解决H F C-245f a沸点偏低的问题。 ①H F C-245f a与H F C-365m f c的混合 H F C-365m f c也是目前具有应用前景的零O D P的发泡剂,其物理性能列于表十四中。 与H F C-245f a比较,H F C-365m f c具有较高的沸点和较低的气体导热系数,缺点是具有可燃性,因此H F C-245f a与H F C-365m f c应当是比较理想的混配组合。表15为H F C-245f a与H F C-365m f c混合发泡剂的一些物理性能。以50/50的配比为例,混配后H F C-245f a的沸点和导热系数有了较大的改善。

聚碳酸酯的合成与制备

聚碳酸酯的合成与制备 摘要:主要介绍了聚碳酸酯在工业生产中常用的几种工艺合成路线和新的合成方法,并在其发展趋势中总结了各种制备方法的优点和缺点,对当前国际国内形势作出相应的展望 关键词:聚碳酸酯;合成;光气法;酯交换法;开环聚合法;固相缩聚法 1 引言 聚碳酸酯(PC)是一种无味、无毒、透明的无定形热塑性材料,是分子链中含有碳酸酯链一类高分子化合物的总称,可分为脂肪族、脂环族、芳香族等几大类, 目前仅有双酚A型的芳香族聚碳酸酯投入工业化规模生产和应用。 聚碳酸酯是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变,尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,被广泛用于电子电气、电动工具、交通运输、汽车、机械、仪表、建筑、信息存储、光学材料、医疗器械、体育用品、民用制品、保安、航空航天及国防军工等领域,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。 2 聚碳酸酯的合成与制备 在聚碳酸酯的合成工艺发展历程中,出现的合成方法颇多,如低温溶液缩聚法、高温溶液缩聚法、吡啶法和部分吡啶法等等,至今仍不断有新的合成方法报道,但已工业化、形成大规模生产的工艺路线并不多,这些方法或者不成熟,或者因成本较高而制约了实际应用m。目前世界上大部分生产厂家普遍采用界面缩聚法或熔融酯交换法,其中80%的生产厂家采用界面缩聚法[1]。 聚碳酸酯工业化生产工艺按照是否使用光气作原料可主要分为两大类。第一类是使用光气的生产工艺。第二类是完全不使用光气的生产工艺。 2.1 光气法 2.1.1 溶液光气法[2] 以光气和双酚A为原料,在碱性水溶液和二氯甲烷(或二氯乙烷)溶剂中进行界面缩聚,得到的聚碳酸酯胶液经洗涤、沉淀、干燥、挤出造粒等工序制得聚碳酸酯产品。此工艺经济性较差,且存在环保问题,缺乏竞争力,已完全淘汰。

多肽合成技术

精心整理 多肽合成技术多肽化学已经走过了一百多年的光辉历程,1902年,EmilFischer首先开始关注多肽合成,由于当时在多肽合成方面的知识太少,进展也相当缓慢当时合成采用了苯甲酰,乙酰保护,脱去相当困难,而且容易导致肽链断裂。直到1932年,MaxBergmann等人开始使用苄氧羰基(Z)来保护α-氨基,该保护基可以在催化氢化或氢溴酸的条件下定量脱除,多肽合成才开始有了一定的发展。到了20世纪50年代,随着越来越多的生物活性多肽的发现,大大推动了有机化学家们对多肽合成方法以及保护基的研究,因此这一阶段的研究成果也非常丰富,人们合成了大量的生物活性多肽,包括催产素(oxytocin),胰岛素等,同时在多肽合成方法以及氨基酸保护基上面也取得了不少成绩,这为后来的固相合成方法的出现也提供了实验和理论基础。也就是这个阶段,FredSanger 发明了氨基酸序列测定方法,并为此获得了1958年的Nobel化学奖。还是他后来发明了DNA序列检测方法,并于1980年再次获得了Nobel化学奖,成为到目前为止唯一获得两次Nobel化学奖的科学家。1963年,Merrifield 提出了固相多肽合成方法(SPPS),这个在多肽化学上具有里程碑意义的合成方法,一出来,就由于其合成方便,迅速,现在已经成为多肽合成的首选方法,随后的发展也证明了该方法不仅仅是一种合成方法,而且也带来了有机合成上的一次革命,并成为了一支独立的学科,固相有机合成(SPOS)。当然,Merrifield也因此荣获了1984年的Nobel化学奖。也正是Merrifield,他经过了反复的筛选,最终屏弃了苄氧羰基(Z)在固相上的使用,首先将叔丁氧羰基(BOC)用于保护α-氨基并在固相多肽合成上使用,其可以在酸性条件下定量的脱除,反应也非常迅速,在30min就可以反应完全。由于叔丁氧羰基(BOC)方法中,氨基酸侧链的保护基团大多基于苄基(Bzl),因此也称为BOC-Bzl策略。同时,Merrifield在20世纪60年代末发明了第一台全自动多肽合成仪,并首次合成生物蛋白酶,核糖核酸酶(124个氨基酸)。随后的多肽化学研究主要集中在固相合成树脂,多肽缩合试剂,氨基酸保护基的研究。1972,LouCarpino首先将9-芴甲氧羰基(FMOC)用于保护α-氨基,其在碱性条件下可以迅速脱除,10min就可以反应完全,而且由于其反应条件温和,迅速得到广泛使用,到了20世纪80年代取代了叔丁氧羰基(BOC),成为了固相多肽合成中的首选合成方法。该方法中氨基酸的侧链大多基于叔丁基(But),因此,也称为FMOC-But策略。同时,在多肽合成树脂,缩合试剂以及氨基酸保护,包括合成环肽的氨基酸正交保护上也取得了丰硕的成果。 进入21世纪,随着蛋白质组学的研究深入,对于多肽化学的要求不仅仅是合成方法,而更多的集中在多肽标记与修饰方法,以及蛋白结构与功能模拟多肽的合成以及长肽或蛋白合成。 多肽化学合成的基本介绍 多肽化学合成方法,包括液相和固相两种方法。液相合成方法现在主要采用BOC和Z两种保护方法,现在主要应用在短肽合成,如阿斯巴甜,力肽,催产素等,其相对与固相合成,具有保护基选择多,成本低廉,合成规模容易放大的许多优点。与固相合成比较,液相合成主要缺点是,合成范围小,一般都集中在10个氨基酸以内的多肽合成,还有合成中需要对中间体进行提纯,时间长,工作量大。固相合成方法现在主要采用FMOC和BOC两种方法,它具有合成方便,迅速,容易实现自动化,而且可以比较容易的合成到30个氨基酸左右多肽。 1.1.氨基酸保护基 20种常见氨基酸,根据侧链可以分为几类:脂肪族氨基酸(Ala,Gly,Val,Leu,Ile,),芳香族氨基酸(Phe,Tyr,Trp,His),酰胺或羧基侧链氨基酸(Asp,Glu,Asn,Gln),碱性侧链氨基酸(Lys,Arg),含硫氨基酸(Cys,Met),含醇氨基酸(Ser,Thr),亚氨型基酸(Pro)。多肽化学合成中氨基酸的保护非常关键,直接决定了合成能够成功的关键。因为常见的20中氨基酸中有很多都是带有活性侧链的,需要进行保护,一般要求,这些保护基在合成过程中稳定,无副反应,合成结束后可以完全定量的脱除。合成中需要进行保护的氨基酸包括:Cys,Asp,Glu,His,Lys,Asn,Gln,Arg,Ser,Thr,Trp,Tyr。需要进行保护的基团:羟基,羧基,巯基,氨基,酰胺基,胍基,吲哚,咪唑等。其中Trp也可以不保护,因为吲哚性质比较稳定。当然在特殊的情况下,有些氨基酸也可以不保护,象,Asn,Gln,Thr,Tyr。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

相关文档
最新文档