线面角的求法(文科)

线面角的求法(文科)
线面角的求法(文科)

直线与平面所成的角

一、直线与平面所成的角的定义

平面的一条斜线和它在的射影所成的锐角,叫做直线和平面所成的角

注:1.如果这条直线垂直于平面,直线和平面所成的角是直角,

2.如果直线和平面平行或直线在平面内,直线和平面所成的角就是0度。

二、直线和平面所成角的范围 斜线和平面所成的角为00(0,90),所以直线和平面所成的角的范围为[]0,90??。

三、直线和平面所成的角的求法

①作:作(或找)出斜线在平面上的射影

②证:证明某平面角就是斜线与平面所成的角

③算:通常在垂线段、斜线段和射影所组成的直角三角形中计算 ★线面所成角的求法:]2,0[π

⒈作图——证明——计算

求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的问题。

2.向量法:

如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|

=|a ·n ||a ||n |

. 例1:在单位正方体1111ABCD A B C D -中,

①求直线11A C 与截面11ABC D 所成的角.

②求直线1BD 与截面D C A 11所成的角正弦 2.如图,在三棱锥P ABC -中,PA ⊥底面,ABC PA AB =

60,90ABC BCA ??∠=∠=,点D ,E 分别为棱,PB PC 的中点, 求AD 与平面PAC 所成角的正弦值

3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 为PB 的中

点,PD =,求AE 与平面PDB 所成的角

4.如图,DC ⊥平面ABC ,E B ∥DC ,AC=BC=EB=2DC=2,∠ACB=120°,P,Q 分别为AE ,AB 的中点.求AD 与平面ABE 所成角的正弦值.

参考答案

:1.,62445

ππ

π

A

课后练习

1.在正方体ABCD -A 1B 1C 1D 1中对角线B 1D 与平面A 1BC 1所成的角大小为 ( D )

2.如图,在棱长均为1的三棱锥S -ABC 中,E 为棱SA 的中点,F 为△ABC 的中心,则直线EF 与平面ABC 所成角的正切值是 ( C )

3.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( A )

A.64

B.104

C.22

D.32

4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,A 1D

与BC 1所成的角为π2,则BC 1与平面BB 1D 1D 所成角的正弦值为( ) A.63 B.12 C.155 D.32

5..正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是________.

6.如图,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.

(1)求DP 与CC ′所成角的大小;

(2)求DP 与平面AA ′D ′D 所成角的大小.

7.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB

上一点,AB =4AN ,M ,S 分别为PB 、BC 的中点.

(1)证明:CM ⊥SN ;

(2)求SN 与平面CMN 所成角的大小.

8.如图,在五棱锥P -ABCDE 中,P A ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC =45°,AB =22,BC =2AE =4,三角形P AB 是等腰三角形.

(1)求证:平面PCD ⊥平面P AC ;

(2)求直线PB 与平面PCD 所成角的大小;

(3)求四棱锥P -ACDE 的体积.

是棱DD1的中点.

(1)求直线BE和平面ABB1A1所成的角的正弦值;

(2)在棱C1D1上是否存在一点F,使B1F∥平面

A1BE?证明你的结论.

10.如图,四棱锥PABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,

E,F分别为CD,PB的中点.

(1)求证:EF⊥平面PAB;

(2)设AB=2BC,求AC与平面AEF所成

角的正弦值.

11.如图,四棱锥P-ABCD中,底面ABCD是矩形,P A⊥底面ABCD,P A

E在边BC上移动.

(1)点E为BC的中点时,试判断EF与平

面PAC的位置关系. 并说明理由;

(2)证明:无论点E在BC边的何处,都有

PE⊥AF;

(3)当BE等于何值时,PA与平面PDE所成

角的大小为45°?

高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】 1、异面直线所成的角:(1)范围:(0,]2π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ)证明:BC ⊥侧面PAB; (Ⅱ)证明: 侧面PAD ⊥侧面PAB; (Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D P

线面角地求法总结材料41837

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 图2 3. 利用公式cos θ=cos θ1·cos θ2 已知,如图,AO 是平面α的斜线,A 是斜足,OB 垂直于平面α,B 为垂足,则 直线AB 是斜线在平面α的射影。设AC 是平面α的任意一条直线,且 BC AC ⊥,垂足为C ,又设AO 与AB 所成角为1θ,AB 与AC 所成角为 2θ,AO 与AC 所成角为θ,则易知: 1||||cos AB AO θ=,212||||cos ||cos cos AC AB AO θθθ== 又∵||||cos AC AO θ=, θ θ2 θ1 O C B A α

线面角的求法总结

线面角的求法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι

其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1 C 1 D 1 H 4 C 1 2 3 B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cos θ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角, B α O A C 图3

线面所成角的求法

★线面所成角的求法:[。勺 1?作图一一证明一一计算 求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点 作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有 关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的 边长相等,则AB i 与侧面ACC i A i 所成角的正弦值等于 A 亞 B 血 C 边 A. 4 B. 4 C. 2 4.如图,在长方体 ABCD — A i B i C i D i 中,AB = BC = 2, 7 僅― A a 问题。 A i D

n 与BC i所成的角为2,则BC i与平面BB I D I D所成角的正弦值为()代£B? C.^5 D¥ 5..正四棱锥S-ABCD中,0为顶点在底面上的射影,P为侧棱SD的中点,且SO =0D,则直线BC与平面PAC所成的角是 _____________ . 6. 如图,已知点P在正万体ABC B A B‘ C D的对角线BD上,/ PDA F60° . (1)求DP与CC所成角的大小; ⑵求DP与平面AA D D所成角的大小. 1 7. 已知三棱锥P-ABC中,PA丄平面ABC, AB丄AC,PA= AC= qAB, N为 AB上一点,AB = 4AN,M,S分别为PB、BC的中点. “ (1)证明:CM丄SN; ⑵求SN与平面CMN所成角的大小. ' ; 8 如图,在五棱锥P-ABCDE中,PA丄平面ABCDE,AB - // CD, AC// ED,AE // BC,/ ABC = 45°, AB = 2迈,BC = 2AE = 4,三角形FAB 是等腰三角形. (1)求证:平面PCD丄平面PAC; ⑵求直线PB与平面PCD所成角的大小; (3)求四棱锥P-ACDE的体积.

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明:AC⊥平面BCDE; (Ⅱ)求直线AE与平面ABC所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=7,PA =3,∠ABC=120°,G为线段PC上的点. (1)证明:BD⊥平面APC; (43 3 ) (2)若G为PC的中点,求DG与平面APC所成的角的正切值; (3)若G满足PC⊥平面BGD,求PG GC 的值.(3/2) 直线与直线垂直直线与平面垂直平面与平面垂直

求线面角的三种常见思路方法

求线面角的三种常见思路方法 舒云水 本文以 2009年湖南卷理 18 题为例,介绍求线面角的三种常见思路方法,并对这三种方法作比较分析﹒ 如图 1,在正三棱柱ABC A1B1C1中,AB 2AA1,点 D是A1B1的中点,点 E 在A1C1上,且DE⊥ AE. (I)证明:平面ADE 平面ACC1A1 ; ( II )求直线 AD和平面ABC1所成角的正弦值. (Ⅰ)证明略.下面主要谈(Ⅱ)小题的解法﹒思路 1:直接作出线面角求解﹒ 分析:因为本题几何图形是特殊的几何体——正三棱柱,点 D 在特殊位置上——线段A1B1的中点,所以本题比较容易作出线面角﹒如图 2,取AB的中点F ,连结DF ,DC1 , C1F ,则面DFC1 面ABC1,过D作DH C1F于H ,则DH 面ABC1 ,连结AH,则HAD是AD和平面ABC1 所成的角﹒

解法 1 如图 2,设 F 是 AB 的中点,连结 DF , DC 1 , C 1F .由正 三棱柱 ABC A 1B 1C 1的性质及 D 是A 1B 1的中点知, A 1B 1 ⊥ C 1D ,A 1B 1⊥ DF . 又C 1D DF D ,所以 A 1B 1 ⊥平面C 1DF . 而 AB ∥ A 1B 1, 所以 AB⊥平面C 1DF .又 AB 平面ABC 1 ,故 平面 ABC 1 ⊥平面C 1DF . 过点 D 作DH 垂直C 1F 于点 H , 则 DH ⊥ 平面 ABC 1 . 连结 AH ,则 HAD 是直线 AD 和平面 ABC 1 所成的角. 由已知 AB 2AA 1,不妨设 AA 1 2,则 AB 2,DF 2, DC 1 3, 所以 sin HAD D A H D 15 思路 2:用等体积法求出点 D 到面 ABC 1的距离h ,A h D 为所求线 面 C 1F 5, AD AA 12 A 1D 2 3, DF ·DC 1 2 3 30 DH C 1F 55 即直线 AD 和平面 ABC 1所成角的正弦值为 10 .

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1) 线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2) 二面角的大小求法,二面角的大小用它的平面角来度量. :] 【规律技巧】 平面角的作法常见的有①定义法;②垂面法?注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥 P-ABCD中,FA丄底面ABCD , AB⊥ AD , AC⊥ CD, ∠ ABC =60 ° , PA = AB = BC, E 是 PC 的中点. P (1)求PB和平面PAD所成的角的大小; ⑵证明:AE丄平面PCD ; ⑶求二面角 A — PD — C的正弦值. (1)解在四棱锥P — ABCD中, 因FA丄底面 ABCD , AB?平面 ABCD , 故PA⊥ AB.又AB⊥ AD , FA ∩ AD = A, 从而AB丄平面PAD, 故PB在平面PAD内的射影为FA, 从而∠ APB为PB和平面PAD所成的角. 在Rt△ PAB 中,AB= FA,故∠ APB = 45° 所以PB和平面PAD所成的角的大小为 45 ⑵证明在四棱锥P— ABCD中, 因FA丄底面 ABCD, CD?平面ABCD, 故CD丄FA.由条件 CD丄AC , PA ∩ AC= A , ??? CD丄平面PAC. 又 AE?平面 FAC,??? AE丄CD.

由FA= AB = BC,∠ ABC = 60° ,可得 AC = PA. ??? E 是 PC 的中点,???AE⊥ PC. 又PC∩ CD = C,综上得AE⊥平面PCD. 【变式探究】如图所示,在四棱锥P — ABCD中,底面ABCD是正方形,侧棱 PD丄底 面ABCD , PD = DC.E是PC的中点,作 EF丄PB交PB于点F. ⑴证明PA//平面EDB ; ⑵证明PB⊥平面EFD ; (3) 求二面角 C — PB— D的大小. ⑴证明如图所示,连接 AC, AC交BD于0,连接EO. ???底面ABCD是正方形, ?点0是AC的中点. 在厶PAC中,EO是中位线, ? PA // E0. 而E0?平面EDB且PA?平面EDB , ? PA //平面 EDB. 【针对训练】 1.如图,四棱锥 P — ABCD中,底面 ABCD为菱形,PA丄底面ABCD , AC = 2,2, FA =2, E 是PC 上的一点,PE= 2EC. (1)证明:PC⊥平面BED ; ⑵设二面角A — PB-C为90°,求PD与平面PBC所成角的大小.

用向量法求直线与平面所成的角教案

用向量法求直线与平面所 成的角教案 Prepared on 24 November 2020

第二讲:立体几何中的向量方法 ——利用空间向量求直线与平面所成的角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1.使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2.使学生能够应用向量方法解决一些简单的立体几何问题; 3.使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法.

教学难点 求解直线与平面所成的角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾有关知识: 1、直线与平面所成的角:(范围:]2,0[π θ∈) 思考:设平面α的法向量为n ,则>

线面角的三种求法

线面角的三种求法 河北 王学会 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂

线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1C 1D 1 H 4 C B 12 3B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cosθ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的 一条直线,其中θ为OA 与OC 所成的角, B αO A C 图3 θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理) 例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC 所成

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D

定义法求线面角(人教A版)

定义法求线面角(人教A版) 一、单选题(共10道,每道10分) 1.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点,则直线DE与平面ABCD 所成角的正切值为( ) A. B. C. D. 2.如图,在正方体ABCD-A1B1C1D1中,直线A1B与平面A1B1CD所成角的余弦值是( ) A. B. C. D. 3.如图,已知△ABS是等边三角形,四边形ABCD是正方形,平面ABS⊥平面ABCD, 则直线SC与平面ABCD所成角的余弦值为( )

A. B. C. D. 4.如图,在正三棱柱ABC-A1B1C1中,侧棱长为,底面三角形的边长为1,则直线BC1与平面ACC1A1所成角的正切值是( ) A. B. C. D. 5.如图,在三棱锥P-ABC中,PA=PB=PC=BC,且∠BAC=90°,则直线PA与底面ABC所成的角为( )

A.30° B.45° C.60° D.90° 6.如图,在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值为( ) A. B. C. D. 7.如图,在四棱锥A-BCDE中,AC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,则直线AE与平面ABC所成角的正切值为( )

A. B. C. D. 8.如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点, 则直线AD与平面B1DC所成角的正弦值为( ) A. B. C. D. 9.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,若M,N分别是PC,PB的中点,则CD与平面ADMN所成角的正弦值为( ) A. B. C. D.

《直线与平面所成角复习课——线面角的三种常见求法》教案

直线与平面所成角复习课(2) ——线面角的三种常见求法一、教学内容解析 新课标立体几何内容较大纲教材变化大,三垂线及其逆定理作为阅读教材,对于有关线、面的垂直的求解方式方法带来很大的改变,对求解二面角及线面角的方式方法也带来很大的改变。对我校大部分学生而言,二面角求解要求属于了解层次,斜线与平面角所成的角属于理解与掌握层次,“求解线面角”变成我校学生学习立体几何有关角的计算最难的一个问题。特别是教材中对线在平面上的射影这一概念比较弱化,点面距离的概念在教材中已经退化,我校学生学习线面角主要方法就是定义法。那如何化解难点,使学生能够有条不紊的找出线面角并求解,成为这堂课的重中之重。 二、教学目标设置 1、知识与技能:正确认识直线与平面所成角的概念,能够利用面面垂直的性质找出已知平面的垂线从而找出线面角,能够利用向量法和等体积法帮助求解线面角。 2、过程与方法: (1)空间想象能力:认识直线与平面的位置关系,遵循从实图和简单的几何体入手,逐步培养学生的几何直观和空间想象能力。 (2)转化的思想方法:在二维与三维空间的转化及线面角与线线角的转化过程中,体现出转化的思想方法。 (3)逻辑思维与运算能力:通过对线面角大小的求解,加强算中有证,以证助算,以培养学生的逻辑思维能力及运算能力。 3、情感、态度与价值观:体验概念的形成过程,培养创新意识和数学应用意识,提高学习数学的兴趣。 三、学生学情分析 我班学生“偏文”,尤其是女生的空间想象能力很弱,拿到立体几何题恨不得道道用向量法求解,因而忽视了定义法的重要性。学生在寻找线面角的过程中往往毫无头绪无从下手,缺少应有的逻辑推理能力和空间想象能力,不喜欢或不擅长添加复杂的辅助线帮助找角和证明。本节课旨在打开他们的解题思路,将求解过程规范化,有序化,从而能够进一步提高他们求解立体几何有关角的计算能力。 四、教学策略分析 由于这是一节复习课,所以我选择在前一节课留给他们一道简单而又经典的线面角问题,让他们自由发挥,各尽所能。然后,我挑选几位同学的做法,就他们的解题思路予以细节上的纠正和方法的总结。再之后,留给他们大段的思考整理时间,并给予一道类似但难度有所上升的题目交给他们再次求解,要求尽量用三种方法解答出来。整节课堂基本由学生们自己回忆,自己思考,自己讨论和总结。当然,线面角的方法复习并不是一蹴而就的,还需要不断地润色和努力。 五、教学过程 前情提要:

线面角与面面角同步练习题

线面角与面面角同步练习题 1.设集合A 、B 、C 分别表示异面直线所成的角、平面的斜线与平面所成的角、直线与平面所成的角的取值范围,则 (A)A=B=C (B)A=B ?C (C)A ?B ?C (D) B ?A ?C. 2.已知平面α的一条斜线a 与平面α成θ角,直线b ?α,且a,b 异面,则a 与b 所成的角为 A .有最小值θ,有最大值2π B .无最小值,有最大值2 π 。 C .有最小值θ,无最大值 D .有最小值θ,有最大值π-θ。 3.∠ACB=90ο在平面α内,PC 与CA 、CB 所成的角∠PCA=∠PCB=60o ,则PC 与平面α所成的角为 . 4.平面α与直线a 所成的角为 3 π ,则直线a 与平面α内所有直线所成的角的 取值范围是 . 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上,当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值是 . 6.正三棱锥的侧面与底面所成的二面角为arctan ,则它的侧棱与底面所成的角为 7.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 8.如图,把等腰直角三角形ABC 以斜边AB 为轴旋转,使C 点移动的距离等于AC 时停止,并记为点P .(1)求证:面ABP ⊥面ABC ;(2)求二面角C-BP-A 的余弦值. 9.A 是△BCD 所在平面外的点,∠BAC=∠CAB=∠DAB=60°,AB=3,AC=AD=2. (Ⅰ)求证:AB ⊥CD ; (Ⅱ)求AB 与平面BCD 所成角的余弦值. 10.正四面体ABCD 中,E 是AD 边的中点,求:CE 与底面BCD 所成角的正弦值. A C B

空间中线线角,线面角,面面角成法原理与求法思路

D B A C α 空间中的夹角 福建屏南一中 李家有 QQ52331550 空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 1、异面直线所成的角 (1)异面直线所成的角的范围是]2,0(π 。求两条异面直线所成的角的大小一般方法是通过平行移动 直线,把异面问题转化为共面问题来解决。 具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用解三角形来求角。简称为“作,证,求” 2、线面夹角 直线与平面所成的角的范围是]2,0[π 。求直线和平面所成的角用的是射影转化法。 具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道) ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 也是简称为“作,证,求” 注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角 中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角,则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。在右图的解释为 BAD CAD ∠>∠) ) 2.1确定点的射影位置有以下几种方法: ①斜线上任意一点在平面上的射影必在斜线在平面的射影上; ②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上; 已知:如图,BAC ∠在一个平面α内, ,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角 两边的距离相等)过P 作PO α⊥(说明点O 为P 点 在面α内的射影) 求证:OAN OAM ∠∠= (OAN OAM ∠∠=,所以AO 为BAC ∠的角 平分线,所以点O 会在BAC ∠的角平分线上) 证明:Q PA =PA ,PN =PM , 90PNA PMA ∠∠?== PNA PMA ∴???(斜边直角边定理) AN AM ∴= ①

线面所成角的求法

线面所成角的求法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

★线面所成角的求法:]2 ,0[ ⒈作图——证明——计算 求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的问题。 3.向量法: 如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的 法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. 1.在正方体ABCD -A 1B 1C 1D 1中对角线B 1D 与 平面A 1BC 1所成的角大小为 ( ) 2.如图,在棱长均为1的三棱锥S -ABC 中,E 为棱SA 的中点,F 为△ABC 的

中心,则直线EF 与平面ABC 所成角的正切值是 ( ) 3.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( ) 4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,A 1D 与 BC 1所成的角为π2 ,则BC 1与平面BB 1D 1D 所成角的正弦值为( ) 5..正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是________. 6.如图,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°. (1)求DP 与CC ′所成角的大小; (2)求DP 与平面AA ′D ′D 所成角的大小. 7.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12 AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB 、BC 的中点. (1)证明:CM ⊥SN ; (2)求SN 与平面CMN 所成角的大小.

线面所成角的求法

线面所成角的求法 ⒈作图——证明——计算 求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的问题。 3.向量法: 如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n | . 1.在正方体ABCD -A 1B 1C 1D 1中对角线B 1D 与平面 A 1BC 1所成的角大小为 ( ) 2.如图,在棱长均为1的三棱锥S -ABC 中,E 为棱SA 的中点,F 为△ABC 的中心,则直线EF 与平面ABC 所成角的正切值是 ( ) 3.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于( ) A.64 B.104 C.22 D.32 4.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,A 1D 与BC 1 所成的角为π2 ,则BC 1与平面BB 1D 1D 所成角的正弦值为( )

A.63 B.12 C.155 D.32 5..正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是________. 6.如图,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°. (1)求DP 与CC ′所成角的大小; (2)求DP 与平面AA ′D ′D 所成角的大小. 7.已知三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12 AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB 、BC 的中点. (1)证明:CM ⊥SN ; (2)求SN 与平面CMN 所成角的大小. 8.如图,在五棱锥P -ABCDE 中,P A ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC =45°,AB =22,BC =2AE =4,三角形P AB 是等腰三角形! (1)求证:平面PCD ⊥平面P AC ; (2)求直线PB 与平面PCD 所成角的大小; (3)求四棱锥P -ACDE 的体积. 9.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是棱DD 1 的中点. (1)求直线BE 和平面ABB 1A 1所成的角的正弦值; (2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?

线面角的三种求法

河北 王学会 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5

相关文档
最新文档