重油

重油
重油

重油

简 介

重油是原油提取汽油、柴油后的剩余重质油,其特点是分子量大、粘度高。重油的比重一般在0.82~0.95,比热在10,000~11,000kcal/kg左右。其成分主要是炭水化物,另外含有部分的(约0.1~4%)的硫黄及微量的无机化合物。

重油又称燃料油,呈暗黑色液体,主要是以原油加工过程中的常压油,减压渣油、裂化渣油、裂化柴油和催化柴油等为原料调合而成。

按照国际公约的分类方法,重油叫做可持久性油类,顾名思义,这种油就比较粘稠,难挥发。所以一旦上了岸,它是很难清除的。另外这种油它对海洋环境的影响比起非持久性油来,要严重得多。比如它进入海水以后,因为比较粘稠,如果海鸟的羽毛沾了这些油,就影响海鸟不能够觅食,不能够飞行,同时海鸟在梳理羽毛的时候,就会把这个有害的油吞食到肚子里,造成海鸟的死亡.还有一些鱼类,特别是幼鱼和海洋浮游生物受到重油的影响是比较大的。到了海边的沙滩以后,这种油就粘在沙滩上,非常难清理。有关专家表示,对付油污染可以调用围油栏、吸油毡和化油剂等必要的溢油应急设施。由于油的粘附力强,养殖户在油污染来时可以用稻草、麻绳等物品来进行围油和回收油。

重油--21世纪的重要能源

在过去的150年中,人类主要消耗的是API大于32度的轻质油和API介于20和32之间的中质原油。传统原油的最终可

采储量约为2466亿t,近45%已被开采。石油时代结束后将迎来天然气的时代,但据一般预测,即使在2020年左右的产气高峰期,气产量达每年3.4万亿立方米,仍然不能满足需求。因此,应开发重油,以填补能源空缺。世界重油的资源量十分巨大,原始重油地质储量约为8630亿t,若采收率为15%,重油可采储量为1233亿t。

其中委内瑞拉的超重油和加拿大的沥青占总量的一半以上。这仅为已探明储量,真正的重油资源可能更多。1996年

世界石油年产量为35亿t,重油产量为2.9亿t,约占总产量的5%-10%。其中加拿大的重油产量为4500万t,美国的产量为3000万t,其余的产量来自世界上其它国家,包括中国、委内瑞拉、印度尼西亚等。在委内瑞拉,边际资源私有化后,国家宣布了许多重大的重油项目。委内瑞拉国家石油公司最近公布了200亿美元的Orinoco沥青砂开发项目,今后几年内的六个合成原油项目可使年产量达3500万t,到2010年,重油将占其石油总产量的40%。1992年加拿大西部的液态烃产量的40%以上来自重油和油砂。印度尼西亚的Duri油田是世界上的最大采用蒸汽驱动开发的油田。重油除了粘度高外,其硫含量、金属含量、酸含量和氮含量也较高,应研究如何开发的问题。

1.重油资源及其分布:

重油的资源量十分巨大,原始重油地质储量约为8630亿t,若采收率为15%,重油可采储量为1233亿t。其中委内瑞拉的超重油和加拿大的沥青占总量的一半以上。这仅为已探明储量,真正的重油资源可能更多。 1996年世界石油年产量为35亿t,重油产量为2.9亿t,约占总产量的5%-10%。其中加拿大的重油产量为4500万t,美国的产量为3000万t,其余的产量来自世界上其它国家,包括中国、委内瑞拉、印度尼西亚等。

2.世界范围的重油开发活动:

委内瑞拉--在委内瑞拉,边际资源私有化后,国家宣布了许多重大的重油项目。委内瑞拉国家石油公司最近公布了200亿美元的Orinoco沥青砂开发项目,今后几年内的六个合成原油项目可使年产量达3500万t,到2010年重油将占其石油总产量的40%。Petrozuata公司计划投资24亿美元,主要依靠水平井技术开采15-20亿桶9度API原油。道达尔公司也计划投资27亿美元依靠钻水平井使年产量增至1000万t。

加拿大--1992年加拿大西部的液态烃产量的40%以上来自重油和油砂。阿尔伯达油砂的原始重油地质储量至少有232 9亿t,基本上未开发,最终开采量估计为411亿t,Syncrude公司几年前就开始了投资约42亿美元的10年计划,到2007年-2010年间产量达2400万t。此外,壳牌加拿大公司、Broken Hill控股公司和Suncor公司也正在进行大规模地面开采项目。据阿尔伯达省能源部估计,到2005年,产量将达7500万t,到2010年重油和沥青产量约占其石油总产量的75%,已公布的油砂项目投资达140亿美元。

美国--在加利福尼亚,一些大生产商进行联合,以提高重油的市场份额。加利福尼亚已开采多年的重油油田采用热采提高采收率,产量很高。San Joaquin地区是加利福尼亚重油活动的焦点,它包括了Kern River、Midway Sunset、Coali nga等大型油田。谢夫隆等许多作业公司,通过实施项目热力管理,成功地使成本大大降低,该项目需要的投资小,特别适于应用。90年代中期,谢夫隆公司通过热力管理,优化了蒸汽注入,使注入量减少了30%,成本从每桶7美元降到4美元。

印度尼西亚--印度尼西亚的Duri油田是世界上的最大采用蒸汽驱动开发的油田。谢夫隆公司在Duri油田的作业中进

行了热管理项目,在维持净产量的同时,降低了燃料油的消耗和蒸汽注入量,同时使用了地震数据确定蒸汽移动情况,进一步提高了储层管理和采收率。

3.技术挑战:

重油除了粘度高外,其硫含量、金属含量、酸含量和氮含量也较高,因此提出了一些特殊的研究开发问题。在开采阶段,重油需要成本很高的二次、三次采油方法;管输时,为了达到一定的流速,需要提高泵能,同时要加热管线并加入稀释剂;改质时,重油通常需要特殊的脱硫和加气处理,重油中的镍和钒使催化剂受污染的机会增加,高比例的常压渣油需要更多的转化设备,将其改质成运输燃料。

重油开发中普遍使用的技术是在储层中降低重油粘度,提高温度,使粘度降低以提高产量和采收率。最近几年,水平井技术的应用日益增加,降低了开发成本。针对重油,正在开发一些先进的上游技术,如使用多分支水平井从每口井中获得更多的产量、蒸汽辅。

重油——下世纪重要能源

命脉

石油工业堪称世界经济发展的命脉。随着人类年复一年地开采石油,常规原油的可采储量仅剩1500亿吨,而目前全球原油年产量己达30亿吨,如此算来,常规油的枯竭之日己不十分遥远。很多人甚至预期,到2020年左右人类就将买不到便宜的石油。所幸的是,大自然还给人类留下了另一个机会——重油和沥青砂。这种储量高达4000亿吨的烃类资

源日益引起人们的关注。

比重

重油是一种比重超过0.91的稠油,黏度大,含有大量的氮、硫、蜡质以及金属,基本不流动,而沥青砂则更是不能流动。开采时,有的需要向地下注热,比如注入蒸汽、热水,或者一些烃类物质将其溶解,增加其流动性,有的则是采用类似挖掘煤炭的方法。由于重油的勘探、开发、炼制技术比较复杂,资金投入大,而且容易造成环境污染,因而重油工业的发展比较艰难。然而,面对21世纪常规油资源趋于减少的威胁,许多有识之士从长远出发,正孜孜不倦地研究新技术开发重油,使人类广泛利用这种资源的可能性不断增强。

发展速度

近20年来,全球重油工业的发展速度比常规油快,重油和沥青砂的年产量由2000万吨上升到目前的近1亿吨。委内

瑞拉是重油储量最大的国家,人们预期在不远的将来其日产重油量可达120万桶;加拿大目前的油砂日产量达50万桶;欧洲北海的重油日产量达14万桶;中国、印度尼西亚等国的重油工业近年来也发展迅猛,年产量都在1000万吨以上。此外,还有一些国家重油储量很大,但由于油藏分布于海上,或在地面2000米以下,现在还难以大量开采利用。

比较

比较常规油、重油和天然气这三大类烃类资源的状况,可以看到重油的前景是最好的,因为它的储量是年产出量的几千倍,而常规油的这个指标只有50倍。天然气在全球的分布和利用程度很不平衡,在很多国家它占所利用能源的比重非常之小。据美国能源部的预测,世界常规油产量将在20年内达到高峰,然后出现递减。随之而来的资源短缺加上油价攀升,将标志着非常规资源投入工业化生产,这就是重油和沥青砂,它们可能构成21世纪中叶世界能源供给的一半以上。谢夫隆石油公司总裁兰尼尔预计,下个世纪全球重油资源量可能被证实为超过6万亿吨。由此可见,重油工业的发展潜力是相当巨大的。

原文地址:https://www.360docs.net/doc/db3077539.html,/baike/1699.html

重油回收处理技术

欧盟最经济与最环保的石化重油与油污泥解决技术方案FOXOIL? before after The very best solutions both in Economically & Ecofriendly upgrading and recycling waste fossil oil and oil sludge Presented by Taiwan and China exclusive representative Palacios International Co.,

一、FOXOIL?技术解决方案:针对高污染之石化废油和油泥回收与升级处理。 FOXOIL?技术说明: 高新技术的吹制分解制程(blowing decomposition process)的主要目标是分离的液体和固体,从回收的废弃原料通过机械和热降解的结合力,同时裂解较重的烃和抑制焦炭形成。该技术已被证明为处理升级废矿物油、油泥,润滑油和舱底油的最高效能与环保的最佳方案。 原料的再生制程的基本原理是一个由固体颗粒(如热砂)形成的热旋床,在一个特殊的装置--反应器中。在处理废弃油和污染物的过程中,液体成分的分离与碳氢化合物的裂解同时发生,会产生一个有经济价值的产品(质量升级)。 该过程为物理和化学的改变,其结果为:约100%的烃回收的同时,也改变在所获得的油的质量。对原废料的杂质进行有效分解,从而得到清洁无污染的高质量油和废水和固体碎片。

主要应用是:转制升级高污染CONVERTING HAZARDOUS WASTE 高污染之废弃油和炼油厂油泥为燃料油 ASTE OILS AND REFINERY OIL SLUDGES TO BUNKER OILS

重油开采技术

重油,越来越多人开始注意到这个名词,但是多人不知道什么是重油,相比于我们常用的轻质油又有什么区别。下面我在这专门解释什么是重油,重油的前景。 正所谓重油就是原油提取汽油、柴油后的剩余重质油,特点是分析量大、粘度高。其主要成分是碳水化物,有少量的约有0.1-4%硫磺及微量无机化合物。其比重一般在0.82-0.95,比热在10000-11000Kcal/Kg左右。 用一个准确的定义说明重油:重油又称燃料油,呈暗黑色液体,主要是以原油加工过程中的常压油,减压渣油、裂化渣油、裂化柴油和催化柴油等为原料调合而成;重油也因为难挥发,比较粘稠,重油又称为可持久性油类。 随着轻质油和中质有的开发利用,传统是有面临着枯竭的威胁,随着石油时代的结束,虽然迎来了天然气时代,但是由于气产量不能满足需求,所以各个国家都着手开始开发重油,以填补能源空缺。 重油将成为新世纪能源行业的“新宠”,世界重油的资源量十分巨大原始重油地址储量约为8630亿吨,即使采收率为15%,其产生的能源总量也是十分可观。也就是近几年出现的能源危机,重油和沥青砂,这种储量高达4000亿吨的烃类资源日益引起人们的关注。比较常规油、重油和天然气这三大类烃类资源的状况,可以看到重油的前景是最好的,因为它的储量是年产出量的几千倍,而常规油的这个指标只有50倍。天然气在全球的分布和利用程度很不平衡,在很多国家它占所利用能源的比重非常之小。据美国能源部的预测,世界常规油产量将在20年内达到高峰,然后出现递减。随之而来的资源短缺加上油价攀升,将标志着非常规资源投入工业化生产,这就是重油和沥青砂,它们可能构成21世纪中叶世界能源供给的一半以上。 经过20年的努力,全球重油工业有着比常规油更快的发展速度,重油、沥青砂的年产量由2000万吨上升到近亿吨,其重要性日益受到人们的关注。我国稠油热采技术虽起步较晚,但发展较快,已形成较为成熟的稠油热采配套技术,发现70多个稠油油田,总地质储量约12亿立方米,年产量达1300万吨,已累计生产逾亿吨。我国陆上稠油及沥青砂资源分布很广,约占石油资源量的20%,其产量已占世界的1/10。 180#重油测试项目质量指标检测方法 运动粘度(50℃),mm2/s 不大于180 GB/T 11137 闪点(闭口),℃不低于60 GB/T 261 密度(15℃),g/ cm3 不大于0.992 GB/T 1884 水分,%(v/v)不大于0.5 GB/T 260 硫含量,%(m/m)不大于3.2 GB/T 380 灰分,%(m/m)不大于0.10 GB/T 17144 机械杂质,%(m/m)不大于0.10 GB/T 511 净热值,J/g 不低于40400 GB/T 511 总热值,J/g 不低于42800 GB/T 384 V,ppm 不高于200 ASTMD 6595 Al+Si,ppm 不高于80 ASTMD 6595 Ca,ppm 不高于30 ASTMD 6595 重油作为新型能源,既然作为能源,其热值仍是一项重要指标,当其热值不能达到标准时,其作为能源也就没了价值,所以重油热值也是大家作为检测重油这种自然资源是否真的能成为拯救全球能源危机的新能源。重油的检测可以用市场上常见的分析仪器-量热仪,其硫磺含量也可以用定硫仪来检测,郑州泰能仪器设备有限公司,专注于量热仪,定硫仪生产,产有专门的设备用于重油化验检测。 综述,重油作为一种新型能源必将成为能源的中心。

2014年劣质重油改质与加工技术新进展(中国石油石油化工研究院副总工程师付兴国)

2014亚洲石化科技大会劣质重油改质与加工技术新进展中国石油天然气股份有限公司石油化工研究院 付兴国 2014年06月

目 录?一、劣质重油是可替代石油的现实资源?二、劣质重油改质与加工技术新进展

劣质重油是世界未来石油资源开发的主体 公司2011年全球石油资源评价表明:全球常规石油、重油和油砂的剩余可采储量分别为13260、7147和7095亿桶,分别占48%、26%和26%。 重油集中在南美的委内瑞拉,油砂集中在加拿大和俄罗斯。 全球重油资源分布全球油砂资源分布

劣质重油是世界未来石油资源开发的主体 Hart Energy 2011年预测,全球重油和油砂产量将快速增长,以南美和北美成熟勘探区为主。预计2035年全球、加拿大油砂沥青和委内瑞拉超重油日产 量达到15541、5096和2919万桶,相比2010年增长160%、330%和260%。 2013年中国原油消费达到4.98亿吨,对外依存度已达56.6%,预计2020年将达到68%,劣质重油将成为石油进口增长的最主要来源。 我国原油进口量不断提高,对外依存度逐年提高(万吨) 超重油、油砂沥青日产量

委内瑞拉超重油 VS. 大庆原油 项目大庆原油委内瑞拉重油密度,g/cm315℃0.8628 1.0148 API度 31.937.8 运动粘度 , mm2/s 100℃/ 429.1残炭,wt% 3.0615.1 硫wt%0.13 4.08 氮wt%0.29950.5414沥青质wt%0.089.5 金属含量, ppm 镍 2.2780钒 1.29404 大于520℃馏分比例, m%37.34 62.10 委内瑞拉超重油开发计划图 673 2145 4290 劣质重油是世界未来石油资源开发的主体 委油常温下不流动,50 ℃运动粘度大于30000mm2/s。中委合资MPE-3区块2012年产量达673万吨,掺调18%的稀释剂生产合成油。 2015年、2020年MPE-3和Junin4区块年产量将达数千万吨,急需低成本的委内瑞拉超重油改质降粘技术,解决储运难题。

重油加氢技术特点和发展趋势

113重油加氢技术特点和发展趋势 卜蔚达 (中国石油大学(北京)化学科学与工程学院,北京 102249) 摘要:本文针对重油加氢技术的重要性和应用情况,从工艺和催化剂角度分别介绍了固定床、悬浮 床、沸腾床、移动床加氢技术的特点和发展现状,通过对四个工艺优缺点的分析提出了重油加氢的研 究方向和发展趋势。 关键词:重油加氢;固定床;悬浮床;沸腾床 引言 随着原油的变重、变稠以及轻质油品的需求量不断增大,重油加工成为现代炼厂面临的主要问题。目前重油加工主要有延迟焦化、减粘裂化、重油催化裂化和重油加氢4个工艺过程[1]。延迟焦化和减粘裂化属于热加工过程,其特点是可以处理各种渣油,但是液体产物的质量差、焦炭产率高。重油催化裂化对原料的要求较高,无法处理劣质的渣油。重油加氢一方面可以处理高硫、高残炭、高金属的劣质渣油,另一方面可以提高液收率和液体产物的质量。同时可以和其它工艺进行组合,特别是重油加氢和催化裂化组合工艺。我国在重油加氢方面和国外存在着较大的差距,但是随着国内环保机制的日益严格化,对油品的质量提出了更高的要求,提高重油加氢技术显得尤为迫切。 1 重油加氢技术 1.1 固定床加氢技术 固定床渣油加氢技术的应用最为广泛,工业化过程也最多。我国引进和自行设计开发的渣油固定床加氢工艺如下[2,3]: 1.1.1 VRDS工艺 我国第一套渣油固定床加氢工艺,于20世纪90年代初由齐鲁石油化工公司从美国Chevoron公司引进。最初的设计以孤岛减压渣油为原料,以生产低硫燃料油为目的,后来发展成VRDS-RFCC组合工艺,即减压渣油经固定床加氢处理后给重油催化裂化提供原料。采用组合工艺后,其渣油能够全部转化,加工深度高,轻质油收率高。 1.1.2 ARDS工艺 我国从UOP公司引进的中东含硫原油常压渣油加氢脱硫装置。对常压渣油进行加氢脱硫、脱氮、脱金属、脱残炭等使加氢后的重馏分可在催化裂化等装置中进一步轻质化。 1.1.3 S-RHT工艺 茂名石油化工公司渣油固定床加氢脱硫装置是我国自行设计开发的固定床加氢处理技术,洛阳石油化工工程公司承担此项目的工程开发、工程设计,设计原料为中东含硫原油的减压渣油及部分减压蜡油混合料,主要产品为少量石脑油、柴油和大量的脱硫改质催化裂化进料。 固定床重油加氢的优点是工艺成熟,产品收率高,精致深度高,脱硫率可以达到90%[4]以上,工艺和设备结构简单,易操作。缺点是无法及时更新催化剂,在处理高金属和高沥青质、高胶质含量的原料时,催化剂减活和结焦较快,床层也易被焦炭和金属有机物堵塞。只能加工金属<200μg/g,残炭<15%的渣油[4],因此对原料的适应性较差。固定床反应器是非等温反应器,对于放热的加氢反应容易产生飞温现象。另外,固定床加氢工艺单程转化率低(20%-50%)[4],需要有较大的重油催化裂化、柴油加氢精制装置进行配套,产品中柴汽比较低。1.2 悬浮床加氢技术 我国悬浮床加氢工艺还处于研究和开发阶段,目前主要有两种工艺过程,即[1]。 1.2.1 FRIPP的悬浮床工艺 该工艺采用空筒式反应器和高活性水溶性多金属分散催化剂、现场乳化分散、硫化剂直接加入到原料中,在加热过程中催化剂进行预硫化的方式操作,催化剂具有较强的抑焦功能,可实现长周期连续运转。催化剂水溶液被乳化分散在原料油中直接通过反应器,流程简单、操作方便,克服了早期的悬浮床工艺尾油中含有大量固体颗粒从而难以 2010年第3期2010年3月 化学工程与装备 Chemical Engineering & Equipment

生物质热解燃料油

生物质热解燃料油制备和精制技术 摘要:能源问题在世界经济中具有战略意义。据预测,地球上可利用的石油将在今后几十年内耗竭,从长远看液体燃料短缺仍将是困扰人类发展的大问题。在此背景下,生物质能作为唯一可转化为液体燃料的可再生资源,正日益受到重视。由生物质转化而来的燃料比较干净,有利于环境保护。同时使用这类燃料也有助于减少温室气体的排放。实际上这也是很多发达国家开发生物质能的主要动力。生物质能是通过光合作用以生物形态储存的太阳能,可作为能源利用的生物质包括林产品下脚料,薪柴,农作物秸秆及城市垃圾中的生物质废弃物等。目前生物质的直接燃烧已不能满足人们对能量的需求,由生物质直接液化制取燃料油将是下世纪有发展潜力的技术,它主要包括生物质的裂解和高压液化两类。此外还可将生物质气化后再由气体产品生产液体燃料,也可将生物质水解后发酵制燃料酒精。 关键词:生物质废弃物热解燃料油制备精制技术可再生 一、生物质燃料油的制备 1. 生物质裂解制燃料油 裂解是在无氧或缺氧条件下,利用热能切断生物质大分子中的化学键,使之转变为低分子物质的过程。裂解中生物质中的碳氢化合物都可转化为能源形式。和焚烧相比,热解温度相对较低,处理装置较小,便于造在原料产地附近。生物废弃物的热解是复杂的化学过程,包含分子键断裂,异构化和小分子的聚合等反应。通过控制反应条件(主要是加热速率,反应气氛,最终温度和反应时间),可得不同的产物分布。据试验,中等温度(500-600℃)下的快速裂解有利与生产液体产品,其收率可达80%。裂解中产生的少量中热值气体可用作系统内部的热源,气体中氮氧化合物的浓度很低,无污染问题。 国际上近来很重视这类技术,除了从能源利用考虑外,还因生物油含有较多的醇类化合物,作汽车用油时不必为提高辛烷值而外加添加剂。其油品基本上不含硫,氮和金属成分,可看作绿色燃料,对环境影响小。 1.1 裂解工艺

重油输送过程流动性改进方法概述

龙源期刊网 https://www.360docs.net/doc/db3077539.html, 重油输送过程流动性改进方法概述 作者:靳浩邵小伟 来源:《中国化工贸易·下旬刊》2018年第05期 摘要:随着重油输送量逐渐增加,重油输送过程出现了易结蜡、粘度高、流动性差、管 输阻力大等问题。目前常用的重油流动性改进方法包括以加热法、掺稀法为代表的物理法,以添加降粘剂、降凝剂、减阻剂为代表的添加剂法和采用热加工过程的改质法。为了促进重油输送过程流动性改进技术的发展,综述了不同种类重油流动性改进方法的机理和优缺点,并对不同的方法进行对比,最后展望了重油流动性改进的发展方向。 关键词:重油输送;流动性 1 重油简介 世界已探明重油可采储量远比常规石油可采储量丰富。近年来,随着全球石油资源劣质化趋势不断加剧,重油已经成为委内瑞拉、加拿大、俄罗斯等国家原油输出的主要支柱。但是重油具有粘度大、流动性差等缺点,这为开采、输送和后续加工过程带来很大困难。因此降低重油粘度,改进重油流动性,实现其低成本开采和输送是重油大规模加工利用需解决的首要问题。 2 前重油流动性改进方法 目前重油流动性改进方法大致有三种:一种是物理法,常用的有加热法和掺稀法等;第二种是添加剂法,例如向重油中添加油溶性降粘剂、减阻剂、降凝剂、表面活性剂等;第三种是通过加氢或者脱碳工艺的改质降粘。 2.1 加热法 由于重油遇到温度降低,粘度会急剧降低,甚至有蜡的系数,大大影响重油的稠度,导致重油运输间断性停止输送的时候,管道内部残留重油会凝结在管壁内部,从而影响管线的正常运行,二加热法是在输油管线加上蒸汽伴管,用提高温度的方法降低粘度。 2.1.1 机理 因为重油粘度对温度极其敏感,适当提高温度可大幅度降低重油粘度。随着温度升高,重油粘度显著下降。加热法因其效果显著获得广泛应用。 2.1.2 存在问题

对重油质量的要求

对重油质量的要求 1.发热量 锅炉燃料油的发热量,是决定炉膛的温度和燃料的消耗单位的主要因素。海军船舰燃料油,热能愈高,航行里程愈远,发挥机械的功率也越髙,油料消耗也越少。对其它方面的应用,发热量也有同样的经济意义。因此,要求每公斤燃料油的热能不低于9870千卡。 2.粘度 重油粘度对抽油泵、喷油嘴的喷射效率和燃料单位消耗有直接影响。 粘度大,阻力大,流速慢,抽油泵喷嘴工作效率降低。油品流速慢雾化不良,燃烧不完全,烟囱黑烟浓雾,喷嘴积炭增多,炉膛残炭、焦炭沉积增加,增大油料消耗。 粘度小,在容器中水杂易于分离,喷射速度快,夹角大,油粒细与空气混合均匀,雾化良好燃烧完全,单位耗油童小。 3.重油流动性 流动性能取决油料的凝点,凝点高低与化学组成和制取方法有关。 裂化残渣重油的凝点比含蜡常压残渣油低。 由环烷基、芳基或沥青基原油提炼的常压残渣重油,凝点较低。裂化残渣油性质不稳定,在储存中易生成沉淀与胶渣。 凝点髙,在低温时无加热设备,必然给装卸运输带来一定困难。为保证冬季供油,在供油地点应设有加温设备。其次油中含水,在冬季对凝点也有一定影响。 4.闪点 闪点是判断重油中轻质成分存在的程度及发生火灾的可能性,一般炉房、船舰底舱气温可达70℃以上,如油料中轻质馏分多,易发生火灾。 5.重油的腐蚀性 重油的腐蚀性主要是含有硫化物,原油提炼后,硫化物主要集中在残渣油中,燃烧后生成二氧化硫和少景的三氧化硫,遇水即变成亚硫酸和硫酸,对金属腐蚀。为防止腐蚀,要减少废气中水分。 6.灰分 原油经脱水脱盐炼制后,还有部分残留下来的盐类存在于重油中,増大了灰分的含量。

燃料在燃烧时火焰温度很髙,而灰分的熔点较低,可溶融而粘附在金属管壁上,使传热效率减低。比如硫酸钠盐类,是一种易沉淀的盐类,形成半玻璃状物质,会引起设备的腐蚀和传热。其它氧化物也会增加设备的腐蚀。 来源:https://www.360docs.net/doc/db3077539.html,/

重油库应急处理措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 重油库应急处理措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8428-72 重油库应急处理措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 第一条转油泵油压突然升高或超过1.0MPa应立即停泵、迅速报告调度待命。 第二条油管断裂或漏油应立即停泵、用锯末吸收清理并迅速报告调度待命。 第三条重油供油或卸油加热温度超过80℃,应立即调低蒸气流量(油罐内加热蒸汽温度不得超过250℃),报告调度。 第四条油罐泡沫溢流应立即调低加热温度、用锯末吸收清理并报告调度。 第五条油罐排水阀失灵应立即用平时准备的盲板在排水阀外侧连接封堵,待油罐清空后换阀。 第六条油罐、阀门及管线油品凝固时,严禁火烤或敲击,只能用蒸汽或加热流化。 第七条卸油时遭遇雷雨天气或附近发生火灾,应

立即停止卸油作业,通知油车关闸迅速开离油库。 第八条发生火患、火警后,应立即切断油路、针对不同情况采取以下相应灭火措施并报警。 第九条油罐设有半干式泡沫灭火系统,外接管接头位于各油罐东侧,油罐出现火情时,将防护堤外的固定式泡沫液管与消防车上的泡沫液管通过快速接头相连,实施油罐灭火;同时在确认没有泄漏和油水接触可能的情况下,用消防水枪对堤外相临易燃易爆设施作水幕隔离和降温冷却处理,防止联锁反应。 第十条油泵房或油池外起火,应立即使用泡沫灭火器或细砂灭火,不准直接用水灭火。平时要备足灭火器和黄砂。 请在这里输入公司或组织的名字 Enter The Name Of The Company Or Organization Here

重油转化--21世纪石油炼制技术的焦点

炼油设计 PETROLEUM REFINERY ENGINEERING 1999年第29卷第12期V ol.29 No.12 1999 重油转化——21世纪石油炼制技术的焦点 李志强 摘要:由于常规石油资源的可利用量日益减少,在全世界资源中数量相当可观的重质原油将成为21世纪的重要能源。同样,我国大多数原油较重,减压渣油含量一般高达40%~50%,甚至更高。因此,如何采用脱碳和加氢等转化工艺加工重质原油或渣油就成为当今世界各国石油加工的重要课题和提高炼油厂经济效益的重要手段。主题词:重质原油渣油加工综合利用催化裂化加氢处理延迟焦化沥青燃料油技术发展水平 HEAVY OIL UPGRADING——A FOCUS OF PETROLEUM REFINING TECHNIQUES IN 21ST CENTURY Li Zhiqiang Beijing Design Institute of SINOPEC Engineering Incorporation(Beijing,100011) Abstract Because the conventional petroleum resources are becoming increasingly short,heavy crude becomes an important energy source in the 21st century due to its considerable reserves.Most of the Chinese crudes are heavy crudes.Of which the vacuum reside contents are generally 40%~50%,or even higher.Therefore,by decarbonization and hydroupgrading to process heavy crude or residue is important problems of petroleum processing in the world and important methods to enhance economic benefits of the refineries.Heavy oil upgrading is an important petroleum refining technique in the 21st century. Keywords heavy crude,residue,processing,comprehensive utilization,catalytic cracking,hydrotreating,delayed coking,asphalt,fuel oil,state-of-the-art 全世界常规石油资源的可供利用量在日益减少,而重质原油资源量超过6 Tt,因而重质原油将成为21世纪的重要能源。 我国大多数原油较重,减压渣油的含量一般高达40%~50%。特别需要指出的是在减压渣油中,重质非饱和烃组分占一半以上,除芳香组分含一些非烃类外,其他主要的非烃组分都在胶质和沥青质中(尤其是胶质)。此外,产量日益增长的稠油,其相对密度高达0.98以上。因此如何转化这些重质原油和大量的减压渣油,就成为21世纪我国炼油工业的重要课题。 近年来,由于国内对石油产品需要的迅速增长、轻质油与重质油价格差异的加大以及政府税收和政策性的调节,促使石化企业、科研开发和工程设计单位联合,以探索有效利用重油的商业政策和致力于开发与完善各种重油转化工艺。因此,我国在重油转化领域已取得了许多重大的技术进展,如脱碳和加氢工艺有了新的发展与突破、溶剂萃取沥青和胶质的改性工艺日趋完善、以及许多不同工艺联合的组合工艺等,为重油转化提供了多种可供选择的手段。 1 脱碳工艺 延迟焦化和重油催化裂化在脱碳工艺中仍占主导地位,是重要的重油加工手段。 1.1延迟焦化 1.1.1 世界延迟焦化现状 据资料统计,1991年世界主要地区延迟焦化装置约有81套,处理能力达110.41 Mt/a;到1994年增加到112套,处理能力增至143.0 Mt/a;1997年初全世界延迟焦化总处理能力达185.57 Mt/a;1998年初延迟焦化装置增加到133套,总处理能力增加到190.51 Mt/a。 1997年初全世界有焦化装置的国家为26个,1998年为28个。1997年和1998年初世界焦化处理能力排名前10位的国家见表1。

页岩油开采方法及关键技术

特殊油气田报告页岩油的开采方法及关键技术 汇报课程特殊油气田开发 汇报项目页岩油的开采方法及关键技术 院(系)石油工程学院 班级油工11-7 小组成员郭晓俊、辛晓霖、刘爽、 周楚琪、马晓曦 汇报日期 2014.12.15 指导教师刘丽 2014 年 12 月 14 日

目录 一、页岩油简介 ...................................... - 1 - 二、页岩油的发展现状 ................................ - 3 - (一)页岩油储量 ................................. - 3 - (二)页岩油产量 ................................. - 4 - 三、页岩油开采 ...................................... - 4 - (一)传统的直接开采方法——异地开采法............ - 5 - (二)油页岩地下转化原位开采技术.................. - 6 - 1、壳牌原位转化(ICP)工艺....................... - 7 - 2、埃克森美孚电压裂工艺....................... - 11 - 3、斯伦贝谢的临界流射频技术................... - 12 - 4、钻孔采矿技术............................... - 13 - 四、页岩油的发展前景............................... - 14 - (一)页岩油相对传统原油的优势................... - 15 - (二)页岩油发展的制约因素....................... - 15 - 五、小结........................................... - 16 -

重油定义

1基本简介 重油又称燃料油,呈暗黑色液体,主要是以原油加工过程中的常压油,减压渣油、裂化渣油、裂化柴油和催化柴油等为原料调合而成。 按照国际公约的分类方法,重油叫做可持久性油类,顾名思义,这种油就比较粘稠,难挥发。所以一旦上了岸,它是很难清除的。另外这种油它对海洋环境的影响比起非持久性油来,要严重得多。比如它进入海水以后,因为比较粘稠,如果海鸟的羽毛沾了这些油,就影响海鸟不能够觅食,不能够飞行,同时海鸟在梳理羽毛的时候,就会把这个有害的油吞食到肚子里,造成海鸟的死亡.还有一些鱼类,特别是幼鱼和海洋浮游生物受到重油的影响是比较大的。到了海边的沙滩以后,这种油就粘在沙滩上,非常难清理。有关专家表示,对付油污染可以调用围油栏、吸油毡和化油剂等必要的溢油应急设施。由于油的粘附力强,养殖户在油污染来时可以用稻草、麻绳等物品来进行围油和回收油。 2主要分布 重油的资源量十分巨大,原始重油地质储量约为8630亿吨,若采收率为15%,重油可采储量为1233亿吨。其中委内瑞拉的超重油和加拿大的沥青占总量的一半以上。这仅为已探明储量,真正的重油资源可能更多。 1996年世界石油年产量为35亿吨,重油产量为2.9亿吨,约占总产量的5%-10%。其中加拿大的重油产量为4500万吨,美国的产量为3000万吨,其余的产量来自世界上其它国家,包括中国、委内瑞拉、印度尼西亚等。 3开发活动 委内瑞拉--在委内瑞拉,边际资源私有化后,国家宣布了许多重大的重油项目。委内瑞拉国家石油公司最近公布了200亿美元的Orinoco沥青砂开发项目,今后几年内的六个合成原油项目可使年产量达3500万吨,到2010年重油将占其石油总产量的40%。Petrozuata公司计划投资24亿美元,主要依靠水平井技术开采15-20亿桶9度API原油。道达尔公司也计划投资27亿美元依靠钻水平井使年产量增至1000万吨。 加拿大--1992年加拿大西部的液态烃产量的40%以上来自重油和油砂。阿尔伯达油砂的原始重油地质储量至少有2329亿吨,基本上未开发,最终开采量估计为411亿吨,Syncrude 公司几年前就开始了投资约42亿美元的10年计划,到2007年-2010年间产量达2400万t。此外,壳牌加拿大公司、Broken Hill控股公司和Suncor公司也正在进行大规模地面开采项目。据阿尔伯达省能源部估计,到2005年,产量将达7500万t,到2010年重油和沥青产量约占

重油库应急处理措施(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 重油库应急处理措施(最新版)

重油库应急处理措施(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 第一条转油泵油压突然升高或超过1.0MPa应立即停泵、迅速报告调度待命。 第二条油管断裂或漏油应立即停泵、用锯末吸收清理并迅速报告调度待命。 第三条重油供油或卸油加热温度超过80℃,应立即调低蒸气流量(油罐内加热蒸汽温度不得超过250℃),报告调度。 第四条油罐泡沫溢流应立即调低加热温度、用锯末吸收清理并报告调度。 第五条油罐排水阀失灵应立即用平时准备的盲板在排水阀外侧连接封堵,待油罐清空后换阀。 第六条油罐、阀门及管线油品凝固时,严禁火烤或敲击,只能用蒸汽或加热流化。 第七条卸油时遭遇雷雨天气或附近发生火灾,应立即停止卸油作业,通知油车关闸迅速开离油库。

第八条发生火患、火警后,应立即切断油路、针对不同情况采取以下相应灭火措施并报警。 第九条油罐设有半干式泡沫灭火系统,外接管接头位于各油罐东侧,油罐出现火情时,将防护堤外的固定式泡沫液管与消防车上的泡沫液管通过快速接头相连,实施油罐灭火;同时在确认没有泄漏和油水接触可能的情况下,用消防水枪对堤外相临易燃易爆设施作水幕隔离和降温冷却处理,防止联锁反应。 第十条油泵房或油池外起火,应立即使用泡沫灭火器或细砂灭火,不准直接用水灭火。平时要备足灭火器和黄砂。 XX设计有限公司 Your Name Design Co., Ltd.

重油和轻油

石脑油naphtha=轻油。 可以作为石化原料。石脑油又称为「轻油」,过去多指沸点高于汽油而低于煤油之馏份;但沸点较此为低或较此为高者,也常称为石脑油。 石脑油是一种轻质油品,词源于波斯语,指易挥发的石油产品。石脑油由原油蒸馏或石油二次加工切取相应馏分而得。其沸点范围依需要而定,通常为较宽的馏程,如30-220℃。石脑油是管式炉裂解制取乙烯,丙烯,催化重整制取苯,甲苯,二甲苯的重要原料。作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70%(体积);作为催化重整原料用于生产高辛烷值汽油组分时,进料为宽馏分,沸点范围一般为80-180℃,用于生产芳烃时,进料为窄馏分,沸点范围为60-165℃。国外常用的轻质直馏石脑油沸程为0-100℃,重质直馏石脑油沸程为100-200℃;催化裂化石脑油有<105℃,105-160℃及160-200℃的轻、中、重质三种。 石脑油又名轻汽油,是一种无色透明液体,系石油馏分之一。本产品馏分轻,烷烃、环烷烃含量高,安定性能好,重金属含量低,硫含量低,毒性较小。 生产方法:本产品为原有经初馏、常压蒸馏在一定的条件下蒸出的轻馏分,或二次加工汽油经家氢精制而得的汽油馏分。沸程一般是初馏点至220℃,也可以根据使用场合加以调整。如用作催化重整原料生产芳烃时,可取60℃——145℃馏分(称轻石脑油);用作催化重整原料生产高辛烷值汽油组分时,可取60℃——180℃馏分(称重石脑油);用作蒸汽裂解制乙烯原料或合成氨造气原料时,可取初馏点至220℃馏分。用途:主要用作裂解、催化重整和制氨原料,也可作为化工原料及一般溶剂。 目前国内有燕山石化公司炼油厂、天津石化公司炼油厂、大庆石化总厂炼油厂等20多家化工企业在生产石脑油。 重油是原油提取汽油、柴油后的剩余重质油,其特点是分子量大、粘度高。重油的比重一般在0.82~0.95,比热在10,000~11,000kcal/kg左右。其成分主要是炭水化点物素,另外含有部分的(约0.1~4%)的硫黄及微量的无机化合物。 ——“重油”的基本情况 1、什么是重油? 重油又称燃料油,呈暗黑色液体,主要是以原油加工过程中的常压油,减压渣油、裂化渣油、裂化柴油和催化柴油等为原料调合而成。 按照国际公约的分类方法,重油叫做可持久性油类,顾名思义,这种油就比较粘稠,难挥发。所以一旦上了岸,它是很难清除的。另外这种油它对海洋环境的影响比起非持久性油来,要严重得多。比如它进入海水以后,因为比较粘稠,如果海鸟的羽毛沾了这些油,就影响海鸟不能够觅食,不能够飞行,同时海鸟在梳理羽毛的时候,就会把这个有害的油吞食到肚子里,造成海鸟的死亡.还有一些鱼类,特别是幼鱼和海洋浮游生物受到重油的影响是比较大的。到了海边的沙滩以后,这种油就粘在沙滩上,非常难清理。有关专家表示,对付油污染可以调用围油栏、吸油毡和化油剂等必要的溢油应急设施。由于油的粘附力强,养殖户在油污染来时可以用稻草、麻绳等物品来进行围油和回收油。

重油库应急处理措施(新版)

重油库应急处理措施(新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0531

重油库应急处理措施(新版) 第一条转油泵油压突然升高或超过1.0MPa应立即停泵、迅速报告调度待命。 第二条油管断裂或漏油应立即停泵、用锯末吸收清理并迅速报告调度待命。 第三条重油供油或卸油加热温度超过80℃,应立即调低蒸气流量(油罐内加热蒸汽温度不得超过250℃),报告调度。 第四条油罐泡沫溢流应立即调低加热温度、用锯末吸收清理并报告调度。 第五条油罐排水阀失灵应立即用平时准备的盲板在排水阀外侧连接封堵,待油罐清空后换阀。 第六条油罐、阀门及管线油品凝固时,严禁火烤或敲击,只能用蒸汽或加热流化。

第七条卸油时遭遇雷雨天气或附近发生火灾,应立即停止卸油作业,通知油车关闸迅速开离油库。 第八条发生火患、火警后,应立即切断油路、针对不同情况采取以下相应灭火措施并报警。 第九条油罐设有半干式泡沫灭火系统,外接管接头位于各油罐东侧,油罐出现火情时,将防护堤外的固定式泡沫液管与消防车上的泡沫液管通过快速接头相连,实施油罐灭火;同时在确认没有泄漏和油水接触可能的情况下,用消防水枪对堤外相临易燃易爆设施作水幕隔离和降温冷却处理,防止联锁反应。 第十条油泵房或油池外起火,应立即使用泡沫灭火器或细砂灭火,不准直接用水灭火。平时要备足灭火器和黄砂。 XXX图文设计 本文档文字均可以自由修改

重油热解

2 实验装置与流程 重油快速热解反应在小型流化床反应装置上进行,实验流程如图2-1所示。原料油由油泵抽出送经预热炉加热到预定温度,从下部进入流化床反应器与加热好的高温催化剂接触进行催化裂解反应。反应油气在反应器扩大段内经过过滤器与催化剂分离,进入冷凝器将气体产物冷凝分离,经气液分离器后,液体产物被收集,气体产物进入湿式流量计,测量体积,然后进入集气袋,留作取样分析。 整个反应系统可分为进样系统,反应系统,分离系统,测量分析系统四部分。 1.进样系统 包括一台自加热双通道柱塞式计量泵、原料油瓶、储水瓶和两台电子天平。通过调节计量泵改变反应的水油比,进常压渣油时要边加热边输送,防止渣油冷凝堵塞管路。 2.反应系统 包括流化床反应器、预热炉、加热炉、热电偶等。反应器是反应系统的核心,为了保证流化床内的流化状态,在反应器底端设置不锈钢分布板。反应器中心是一端封闭的热电偶盲管,内置测量反应管芯温度的热电偶,测温点处于加热炉的恒温区域内,以保证反应温度的准确性。反应器出口设有200目丝网过滤器,防止磨损的石油焦被气流带出反应器。预热炉与加热炉是反应的热源,为了保证流化床内的反应温度均匀温度,加热炉采用四段控温加热,分别由四个温度控制器控制并指示温度,通过对加热炉四段温度的调节,可以保证在反应器中重油裂解反应所需热量。

图2-1 重油快速裂解反应流程图 1.柱塞式计量泵 2.气瓶 3.预热炉 4.电加热炉 5.流化床反应器 6.热电偶 7.冷凝器 8.气液分离器9.电子天平10.湿式流量计11.集气袋12.气相色谱仪 Fig 2-1 Reaction flowsheet of heavy oil fast cracking 1.pluger meter ring pump 2.gas bottle 3.preheating furnace 4.electric heating furnace 5.fluidized reator 6. thermocouple 7.condensator 8.gas-liquid separator 9.electronical balance 10.water-sealed flowmeter 11.gas collection bag 12. Gas chromatograhy 3.分离系统 包括冷凝器、气液分离器两部分。裂解产生的高温油气先经过水冷,将温度降至常温,液相冷凝在气液分离器底部,气体产品从分离器顶部排出,进入后续测量分析系统。 4.测量分析系统 包括气相色谱仪、湿式流量计、电子天平。气相色谱仪用来分析气体产物的组成,其中,氢火焰检测器分析可燃组分,热导检测器分析氢气、一氧化碳和二氧化碳。湿式流量计用来测量气相产物的体积。电子天平用来称量反应过程中,反应中进入反应系统的水和原料油的质量,以及反应后液体产物的质量。 2.1.3 实验步骤与数据处理方法 2.1. 3.1 实验步骤

重油库应急处理措施实用版

YF-ED-J2249 可按资料类型定义编号 重油库应急处理措施实用 版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

重油库应急处理措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 第一条转油泵油压突然升高或超过1.0MPa 应立即停泵、迅速报告调度待命。 第二条油管断裂或漏油应立即停泵、用锯 末吸收清理并迅速报告调度待命。 第三条重油供油或卸油加热温度超过 80℃,应立即调低蒸气流量(油罐内加热蒸汽 温度不得超过250℃),报告调度。 第四条油罐泡沫溢流应立即调低加热温 度、用锯末吸收清理并报告调度。 第五条油罐排水阀失灵应立即用平时准备 的盲板在排水阀外侧连接封堵,待油罐清空后

换阀。 第六条油罐、阀门及管线油品凝固时,严禁火烤或敲击,只能用蒸汽或加热流化。 第七条卸油时遭遇雷雨天气或附近发生火灾,应立即停止卸油作业,通知油车关闸迅速开离油库。 第八条发生火患、火警后,应立即切断油路、针对不同情况采取以下相应灭火措施并报警。 第九条油罐设有半干式泡沫灭火系统,外接管接头位于各油罐东侧,油罐出现火情时,将防护堤外的固定式泡沫液管与消防车上的泡沫液管通过快速接头相连,实施油罐灭火;同时在确认没有泄漏和油水接触可能的情况下,用消防水枪对堤外相临易燃易爆设施作水幕隔

油砂的传统开采方法及新技术展望

(一)、油砂的开采方法 最近几年, 油砂开发技术的进步不断推进着油砂工业的发展, 并已经取得了巨大的进步。主要有以下几方面: 用巨型卡车和铲车开采油砂, 增加了开采的灵活性, 同时降低了成本; 用水力运输管道系统代替了传送带系统, 使油砂达到管输要求, 并简化了把沥青和砂分离开来的萃取过程; 在萃取阶段, 降低了加工的温度; 采用固化或合成残渣的技术, 加快了大面积残渣池的治理, 并在努力研究一种覆盖技术来处理残渣。 目前,油砂开采方式有两种,一类是露天开采,适用于埋深小于75m,厚度大于3m,另一类是井下开采,适用于埋深大于75m的矿层。针对莫尔图克矿一层埋深较浅(0-46m),因此采用露天开采。 露天开采程序上分为采矿和萃取两个部分,主要用于开采埋藏较浅的近地表油砂,具有回收率高、效率高、安全的特点。露天开采所需的设备及费用、油砂油采收率较其他方法好,技术上较为成熟,在加拿大及委内瑞拉等都已形成大规模工业开采。多年来,油砂的露天开采技术已经取得的重要进步如下: 采矿过程主要分为以下几个部分: ?用卡车和铲车除去盖层; ?用电动或水力铲车挖出油砂; ?把油砂从矿场运送到压碎机; ?把油砂加工碾碎; ?将油砂混合成砂浆; ?用离心泵和管线(常称为水力输送)把油砂从矿区运送到萃取区域。

图1-1 采矿过程示意图 (二)、油砂的萃取分离 1、油砂的分离工艺步骤 采矿设备和某些采矿操作是油砂工业所独有的, 现在这一操作主要受到下一分离过程的限制;而萃取过程也是沥青损失最大的过程, 因此, 必须综合考虑采矿和萃取两个步骤。 在过去的15 年里, 水力传输已经代替了其他的设备。从矿石浆中萃取沥青由两个步骤组成: 步骤一: 分离初级分离器( primary separat io nvessel) 中的沥青泡沫, 其中含60% 沥青, 30%水, 10% 微固体。 步骤二: 稀释发泡处理(见图2-1) : 提取沥青, 尽可能排除水和固体。如今, 实现此过程主要有两种方法: 最初的石脑油溶剂处理过程需要斜板分离器 ( inclined plate separators) 和离心分离机除去残余固体和水; 新的石蜡溶剂处理过程需要沉降容器, 但是由于不用离心分离机, 可以得到较纯净的产品。 图2-1 萃取过程示意图 ( 1) 初级分离 初级分离器是一个巨大、昂贵、固定不易移动的装置。运行条件必须稳定, 对矿石等级、温度、进料速度和其他因素的微小变化非常敏感。35℃以上的温度条件需要大量的能量, 占一桶合成原油能量消耗的40%。此过程还需要加入添加剂, 将pH值控制在8.5 左右。

油泥热解参考数据

油泥热解参考数据 1、一般认为反应机理如下: 在100 度左右。主要是水分等易挥发组分的蒸发; 在200度, 油泥的热解反应开始, 而热解反应转化速率最快是在350度~ 500度, 重质油是在370度开始裂解 2、温度对热解反应的影响 当温度低于200度时, 产油率低, 甚至低于不加热分解的污泥产油率, 这说明在低温下, 污泥不发生热解反应; 当温度高于200度时, 随温度升高, 产油率增大;当温度达到250度时, 产油率可达48% ; 当温度为300度, 产油率大于54%。在460度~490度, 随着反应温度的提高, 液相收率和反应转化率增加趋势明显, 但高于490度时液相收率有所下降, 反应转化率增长趋缓。另外, 反应温度太低, 热解反应不足, 不能达标排放。温度对汽油和重油密度影响较大, 当温度下降 汽油比列下降, 重油比列上升。Lilly Shen[ 31] 报道, 获得的最大的油量是污泥总量的30%, 其温度是525度, 气体停留时间是1. 5 s。随着停留时间的增加, 其产量降低。这和污泥中各种有机质的化学键在不同温度下的断裂有关, 在450度后, 裂解产生的重油, 发生了第二次化学键断裂, 形成了轻质油, 气体停留时间也相应地增加。在525度以后, 会形成更轻质的油和气态烃, 不凝性气体的量提高, 炭的量也随着气体量的增加而减少。 3、加热速率对热解反应的影响 随着加热速率的加大, 液相收率随之降低, 反应转化率降低不显著。这是 因为较低的加热速率下,加热至设定的反应温度需要较长的时间, 这实际上 相对延长了在较低反应温度下的反应时间, 所以液相收率和反应转化率相对较高; 而在较高的加热速率下则相反。还有随着加热速率的提高, 实验中水分蒸 发加剧, 出现沸腾, 沸腾的泡沫携带部分实验含油污泥成分残留在热解反应器 上部( 温度较低) 而难以反应, 影响了液相收率。较低的加热速率虽然有利于 液相收率和反应转化率的提高, 但增加幅度有限, 而且会使得反应时间和能耗 也随之增加。而对于轻质油的产率, 随着加热速率的增加而降低, 并且加热速 率的影响具有阶段性。M. In guan报道, 加热速率的影响, 只是在较低的热解 温度下才有很重要的作用( 如在450度) ; 而在较高的热解温度下, 其加热速率的影响可以忽略不计( 如在650度)

相关文档
最新文档