纳米复合材料

纳米复合材料
纳米复合材料

高分子纳米复合材料

第一章功能高分子材料的概述

1.1 功能高分子材料的定义及简介

天然的、合成的和复合的高分子材料已经遍及人们的衣、食、住、行乃至信息、能源、航空航天以及国防等各个领域,其重要性是不言而喻的。那么到底什么是高分子呢?看看我们的周围世界,人们穿的是棉、毛、涤纶等制成的衣服,吃的是富含淀粉和蛋白质的米、面、肉、蛋等食物,家里用的是由各种聚乙烯、聚氯乙烯等塑料制成的器皿,出门坐的是装有橡胶轮胎的汽车,所有这些不都是高分子在生活中生动的体现吗!

高分子是由分子量很大的长链分子所组成,而每个分子链都是由共价键联合的成百上千的一种或多种小分子构造而成。

功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。

功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。

1.2功能高分子材料的发展历史

最早的功能高分子可追述到1935年离子交换树脂的发明。20世纪50年代,美国人开发了感光高分子用于印刷工业,后来又发展到电子工业和微电子工业。1957年发现了聚乙烯基咔唑的光电导性,打破了多年来认为高分子材料只能是绝缘体的观念。1966年little提出了超导高分子模型,预计了高分子材料超导和高温超导的可能性,随后在1975年发现了聚氮化硫的超导性。1993年,俄罗斯科学家报道了在经过长期氧化的聚丙烯体系中发现了室温超导体,这是迄今为止唯一报道的超导性有机高分子。20世纪80年代,高分子传感器、人工脏器、高分子分离膜等技术得到快速发展。1991年发现了尼龙11的铁电性,1994年塑料柔性太阳能电池在美国阿尔贡实验室研制成功,1997年发现聚乙炔经过掺杂具有金属导电性,导致了聚苯胺、聚吡咯等一系列导电高分子的问世。这一切多反映了功能高分子日新月异的发展其中从20世纪50年代发展起来的光敏高分子化学,在光聚合、光交联、光降解、荧光以及光导机理的研究方面都取得了重大突破,特别在过去20多年中有了飞快发展,并在工业上得到广泛应用。比如光敏涂料、光致抗蚀剂、光稳定剂、光可降解材料、光刻胶、感光性树脂、以及光致发光和光致变色高分子材料都已经工业化。近年来高分子非线性光学材料也取得了突破性的进展。

1.3功能高分子材料发展的背景

(1)经济发展的需要

自从1920年施道丁格(H.Staudinger)建立大分子概念以来,高分子材料以惊人的速度得到发展。至20世纪60年代,高分子材料工业化已基本完善,解决了人们的衣着、日用品和工业材料等需求。通用高分子和工程用高分子的世界总产量已超过几千万吨/年,特种高分子则为几十万吨/年1973年和1978年两次世界性的石油大危机,使原油价格猛涨。以石油为主要原料的高分子材料成本呈直线上升,商品市场陷入极为困难的处境。在这样的经济背景下,迫使人们试图用同样的原材料,去制备价值更高的产品。功能高分子在这种外部条件促使下迅速地发展了起来。

(2)科学技术发展的需求

80~90年代,科学技术有了迅速发展。能源、信息、电子和生命科学等领域的发展,对高分子材料提出了新的要求。即要求高分子材料具有迄今还不曾有过的高性能和高功能,甚至要求既具有高功能亦具有高性能的高分子材料新能源的要求。太阳能和氢将成为今后的主要能源。光电转换材料就成为太阳能利用的关键。硅材料已进入了实用阶段。然而,按现在的能量转换效率,对单晶硅的需要量实在太大。以日本为例,若利用太阳能达到当前日本电力的1%,就需100 μ的单晶硅至少2.7万吨。这相当于日本目前单晶硅总产量的90倍。为此,人们把注意力转向可高效转换太阳能的功能高分子材料。如换能型高分子分离膜的利用。(3)交通和宇航技术的要求

既高速又节约能源是交通运输和宇航事业迫切需要解决的课题。采用功能高分子材料,在一定程度上解决了该难题。就目前的成就来看,波音757,767飞机采用Kavlar增强材料(一种由高分子液晶纺丝而成的高强纤维增强的材料),可省油50%。汽车工业采用高分子材料而实现轻型化,从而达到省油和高速的目的微电子技术的要求。高度集成化是微电子工业发展的趋势。存储容量将从目前的16K发展到256K。此时相应的电路细度仅为1.5μm。因此,高功能的光致抗蚀材料(感光高分子)已成为微电子工业的关键材料之一。

(4)生命科学的要求

人类对生命奥秘的探索,对建立一个洁净、安全的世界的渴望,对征服癌症等疾病的努力,均对高分子材料提出了功能的要求。例如,生物分离介质的研制成功,使生命组成的各种组分能得以精细地分级,对生命科学的贡献将是十分重大的。可降解性高分子材料的问世,将大大减缓白色公害对人类的危害。

1.4 功能高分子材料分类

(1)功能高分子材料按照功能来分类

①化学功能

离子交换树脂、螯合树脂、感光性树脂、氧化还原树脂、高分子试剂、高分子催化剂、高分子增感剂、分解性高分子等.。

②物理功能

导电性高分子(包括电子型导电高分子、高分子固态离子导体、高分子半导体)、高介电性高分子(包括高分子驻极体、高分子压电体)、高分子光电导体、高分子光生伏打材料、高分子显示材料、高分子光致变色材料等。

③复合功能

高分子吸附剂、高分子絮凝剂、高分子表面活性剂、高分子染料、高

分子稳定剂、高分子相溶剂、高分子功能膜和高分子功能电极等.

④生物、医用功能

抗血栓、控制药物释放和生物活性等。

(2)功能高分子材料按照功能特性分类

①分离材料和化学功能材料

②电磁功能高分子材料

③光功能高分子材料

④生物医用高分子材料

第二章功能高分子材料的应用及发展趋势

2.1 功能高分子材料的应用

(1)高分子在工业上的应用

①作为结构材料广泛地应用于工业中的塑料,称为“工程塑料”。工程塑料质轻,仅为钢的 1/8,但强度却可以与钢材相媲美,它可代替金属制造各种齿轮、轴承等机械零件,如用酚醛塑料代替黄铜制成轧钢机的轴承,使用寿命大大提高,用玻璃钢作矿井支柱比金属和木材质轻且耐腐蚀。

②电气工业是最先使用高分子材料的,至今电气电子工业中大量采用高分子作绝缘材科、壳体零部件等,如电源开关、插头等电器零件是由酚醛模塑粉制成的,电线的覆盖层是用橡胶或聚氯乙烯制造的,用硅树脂作电机中的绝缘材料则可大大提高其工作温度(180℃)和使用功率,并且能延长使用寿命。

③化学工业中采用高分子作稳定材料和防腐蚀材料,可涂于管道、反应器的表面,也可直接制成储槽、管道、罐、反应器等化工设备。

④在轻工业方面,塑料引起了包装革命。塑料除直接用于包装外,还可与纸、纸板、玻璃纸、铝箔等材料复合使用,应用很广。合成纤维(涤纶、尼龙、腈纶等)和人造纤维等的出现为纺织工业提供了大量原料,使纺织品的花色品种大大增加,产品更加美观耐用。此外,塑料鞋、塑料雨衣、薄膜、人造革以及各种塑料日用品,都以其美观、耐用、轻便而深受人们的欢迎。

(2)高分子在农业上的应用

采用塑料薄膜育苗,塑料大棚种菜,能大大提高农田利用率和产量;用黑色薄膜覆盖田垄,可以抑制杂草生长并且保温,有利农作物生长;化肥用塑料袋包装利于运输和储存;农业机械的轮胎要使用橡胶,水利排灌管道、农用机械零部件等都大量使用塑料,可见高分子合成材料的发展对实现农业现代化起着重要作

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

金属基纳米复合材料制备工艺

金属基纳米复合材料制备工艺 材料研1203 石南起Z1205020金属基纳米复合材料是以金属及合金为基体,以高性能的第二相为增强体,与一种或几种金属或非金属纳米级增强体结合的复合材料,因兼有金属和纳米相而具有独特的结构特征和物理、化学及力学性能,成为一种新兴的纳米复合材料和新型金属功能材料。 1.金属基纳米复合材料的种类和基本性能 (1)相对于传统的金属材料来说,具有较高的比强度与比刚度; (2)与聚合物基复合材料相比,它又具有优良的导电性与耐热性; (3)与陶瓷基材料相比,它又具有高韧性和高冲击性能。 2.金属基纳米复合材料的种类 金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。因此,对这种材料的分类既可按基体来进行、也可按增强体来进行。 按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料。 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料。 按用途分为:1.结构复合材料;2.功能复合材料。 3.金属基纳米复合材料性能特征 金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性 E.良好的断裂韧性和抗疲劳性能 F.不吸潮、不老化、气密性好 4.金属基纳米复合材料制备工艺的分类: (1)固态法:粉末冶金法、真空热压扩散结合、热等静压、超塑性成型 / 扩散结合、模压。(2)液态法:液态浸渗、真空压铸、反压铸造、半固态铸造。 (3)喷射成型法:等离子喷涂成型、喷射成型。 (4)原位生长法。 制备金属基纳米复合材料的具体方法有机械合金化法、熔融纺丝法、粉末冶金法、机械诱发自蔓延高温合成反应法、真空蒸发惰性气体凝聚及真空原位加压法等。 A.机械合金化法 将按合金粉末金属元素配比配制的试料放入立滚、行星或转子高能球磨机中进行高能球磨,制得纳米晶的预合金混合粉末,为防止粉末氧化,球磨过程中采用惰性气体保护;球磨制得的纳米晶混合粉经烧结致密化形成金属基纳米复合材料。在球磨过程中,大量的碰撞现象发生在球粉末与磨球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末反复的焊合和断裂。经过“微型锻造”作用,元素粉末混合均匀,晶粒尺度达到纳米级,层状结构达到1um下,比表面积大大增加。由于增加了反应的接触面积,缩短了扩散距离,元素粉末间能充分进行扩散,扩散速率对反应动力的限制减小,而且晶粒产生高密度缺陷,储备了大量的畸变能,使反应驱动力大大增加。 B.高能球磨法 20世纪60年代末,美国首先用高能球磨法制备出氧化物弥散强化合金,高能球磨法是利

纳米复合材料的研究及应用-推荐下载

纳米复合材料的研究及应用 纳米复合材料的定义: 纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸 的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料,纳米钨铜复合材料。 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土/PA6复合材料中,纳米蒙脱土的层间距为 1.96nm ,处于国内同类材料的领先水平(中国科学院为 1.5~1.7nm ),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm 的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm 以下,此项技术正在申报发明专利。 由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。 常见的几种纳米复合材料:1,天然硅酸盐蒙脱土 简介: 纳米蒙脱土系蒙皂石粘土(包括钙基、钠基、钠-钙基、镁基蒙粘土)经剥片分散、提纯改型、超细分级、特殊有机复合而成,平均晶片厚度小于25nm ,蒙脱石含量大于95%。具有良好的分散性能,可以广泛应用高分子材料行业作为纳米聚合物高分子材料的添加剂,提高抗冲击、抗疲劳、尺寸稳定性及气体阻隔性能等,从而起到增强聚合物综合物理性能的作用,同时改善物料加工性能。在聚合物中的应用可以在聚合物时添加,也可以在熔融时共混添加(通常采用螺杆共混)。  蒙脱土主要成分蒙脱石,是由两层Si—O 四面体和一层Al-O 八面体,组成的层状硅酸盐晶体,层内含有阳离子主要是钠离子,镁离子,钙离子,其次有钾离子,锂离子等。蒙脱土的纳米有机改性目的是为了:将层内亲水层转变为疏水层,从而使高聚物与蒙脱土有更好的界面相容性。 化学成分: Ex(H2O)4{(Al2-x,Mgx)2[(Si,Al)4O10](OH)2}又称微晶高岭石。上式中E 为层间可交换阳离子,主要为Na+、Ca2+,其次有K+、Li+等。x 为E 作为一价阳离子时 、管路敷设技术通过管线不仅可以解决曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

纳米复合材料制备

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。)原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PV A[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合物,则将其预聚物溶解在含有剥离层状硅酸盐的溶液中,使预聚物吸附在层状硅酸盐上,然后采用物理或化学方法将预聚物转化为目标聚合物,如聚酞亚胺。 1.3.2原位插层聚合法 将层状硅酸盐在液体单体(或单体溶液)中溶胀,然后单体在层间引发聚合,引发可以采

纳米复合材料发展与现状

纳米复合材料发展与现状 201041505118 李少军10材料一班 1 纳米复合材料 超细粒子(或纳米粒子)是指尺度介于原子、分子、离子与块状材料之间,粒径在1~100nm范围以内的微小固体颗粒。随着物质的超细化,产生了块状材料不具有的表面效应、小尺寸效应、量子效应,从而使超细粒子与常规颗粒材料相比具有一系列优异的物理、化学性质。纳米粒子经压制、烧结或溅射组合而成的具有某些特定功能的结构即纳米材料。它断裂强度高、韧性好、耐高温,纳米复合同时也提高材料的硬度、弹性模量、Weibull模数,并对热膨胀系数、热导率、抗热震性产生影响。[1] 纳米复合主要指在微米级结构的基体中引入纳米级分散相。纳米复合材料(复合超微细颗粒)表现出许多与模板核本质不同的性质,如不同的表面组成、磁性、光学性能、稳定性及表面积等。纳米复合材料涉及的范围广泛,它包括纳米陶瓷材料、纳米金属材料、纳米磁性材料、纳米催化材料、纳米半导体材料、纳米聚合材料等。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料也被人们誉为21 世纪最有前途的材料。由于纳米材料本身所具有的特殊性能。作为一种全新性能的先进复合材料,在微电子、信息、汽车、宇航、国防、冶金、机械、生物、医药、光学等诸多领域有极广泛的应用前景。 2 纳米复合材料的分类 研究纳米复合材料的一个重要目的是改进并提高块体材料的性能,或通过结构复合来发现块材料中并不存在的性能或效应。和块体材料相比,纳米复合材料的物理和化学性质将更多地依赖于材料的表面缺陷和量子尺寸效应。目前.纳米复合材料的种类繁多,可分为:固态纳米复合材料和液态纳米复合材料。基质材料对于纳米粒子的结构具有稳定作用;而基质材料的不同,又可将纳米复合材料区分为:无机基纳米复合材料和聚合物基纳米复合材料。聚合物基包括单聚合物、共聚合物和聚合物的混合;无机基则包括玻璃,如多孔玻璃、分子筛、溶胶一凝胶玻璃和陶瓷等。[2]还可根据纳米粒子的物理性质可将纳米复合材料区分为:半导体纳米复合材料、铁电体微晶复合材料、染料分子纳米复合材料、稀土纳米复合材料、金属(合金)纳米复合材料、光学纳米复合材料(非线性、发光、光折变等)、磁性纳米复合材料等。 3 纳米复合材料的制备 3.1 溶胶- 悬浮液混合法

纳米复合材料的探讨

纳米复合材料的探讨 摘要:综述了纳米复合材料的性能、特点、制备技术以及应用领域的现状,指出了纳米复合材料作为一种新型的纳米材料进行研究和开发的重要意义。 关键词:纳米复合材料;特性;制备技术;应用 1 引言 “纳米复合材料”的提出是在20 世纪80 年代末期,由于纳米复合材料种类繁多以及纳米相复合粒子具有独特的性能,使其一出现即为世界各国科研工作者所关注,并看好它的应用前景。根据国际标准化组织的定义,复合材料就是由2种或2种以上物理和化学性质不同的物质组合而成的一种多相固态材料。在复合材料中,通常有一种为连续相的基体和分散相的增强材料。由于纳米复合材料各组分间性能“取长补短”,充分弥补了单一材料的缺点和不足,产生了单一材料所不具备的新性能,开创了材料设计方面的新局面,因此研究纳米复合粒子的制备技术有着重要的意义。 纳米复合材料由2种或2种以上的固相[其中至少有一维为纳米级大小(1 nm~100 nm) ]复合而成。纳米复合材料也可以是指分散相尺寸有一维小于100 nm的复合材料,分散相的组成可以是有机化合物,也可以是无机化合物。本文在文献的基础上,针对纳米复合材料的主要性能与特点、制备技术、主要应用及应用前景等作了比较详细的介绍和展望。 2纳米复合材料的性能与特点 2. 1纳米复合材料的基本性能 纳米复合材料在基本性能上具有普通复合材料所具有的共同特点: 1) 可综合发挥各组分间协同效能。这是其中任何一种材料都不具备的功能,是复合材料的协同效应所赋予的。纳米材料的协同效应更加明显。 2) 性能的可设计性。当强调紫外线光屏蔽时,可选用TiO2 纳米材料进行复合;当强调经济效益时,可选用CaCO3 纳米材料进行复合。 2. 2纳米复合材料的特殊性质 由无机纳米材料与有机聚合物复合而成的纳米复合材料具有独特的性能: 1) 同步增韧、增强效应。纳米材料对有机聚合物的复合改性则可在发挥无机材料增强效果的同时起到增韧的效果,这是纳米材料对有机聚合物复合改性最

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

纳米复合材料

SHANGHAI UNIVERSITY 课程论文 COURSE PAPER 简述纳米复合材料 学院:材料科学与工程学院 专业: 电子科学与技术 学号: 1 2 1 2 1 7 6 5 姓名: 陆 申 阳 课程: 材料科学导论C 日期: 2014年5月10日

简述纳米复合材料 12121765 陆申阳 摘要:纳米复合材料日新月异的发展为我们的生活带来了诸多方法便。本文简要的介绍了纳米复合材料的名称来源、种类、结构组成、功能特点及其在现代生活中的应用情况。纳米复合材料作为新兴材料,在材料中占有较大的比例,在各方面的应用也十分广泛。 1引言 由于复合材料的力学性能比较突出,综合性能优良,使得复合材料广泛应用于航空航天、国防、交通、体育、工业设备等领域。其中纳米复合材料是最具有吸引力的部分,世界发达国家的新材料发展战略都把纳米复合材料放在重要位置。纳米复合材料作为一类新材料,它拥有自己引人注目的一系列特点。而现代生活与纳米复合材料的练习也越来越紧密。 2总论 2.1复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。 复合材料各组分之间“取长补短”、“协同作用”,极大地弥补了单一材料的缺点,产生单一材料不具备的新性能。复合材料具有较强的可设计性。可以根据对产品形状的需求,将复合材料设计成不同的形状,避免多次加工,减少工序;也可以根据需要的产品性能对其性能进行设计,通过改变基体的性能、含量,增强材料的性能、含量、分布情况,以及他们之间的界面结合情况,来实现对复合材料性能的设计。

纳米复合材料研究进展

第20卷第1期2014年2月 (自然科学版) JOURNAL OF SHANGHAI UNIVERSITY(NATURAL SCIENCE) Vol.20No.1 Feb.2014 DOI:10.3969/j.issn.1007-2861.2013.07.054 纳米复合材料研究进展 杜善义 (哈尔滨工业大学复合材料与结构研究所,哈尔滨150080) 摘要:针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能为主的纳米功能复合材料的研究动态. 关键词:复合材料;纳米材料;聚合物;功能材料 中图分类号:N19文献标志码:A文章编号:1007-2861(2014)01-0001-14 Advances and Prospects of Nanocomposites DU Shan-yi (Center for Composite Materials and Structures,Harbin Institute of Technology, Harbin150080,China) Abstract:This work provides an overview of recent advances in the polymer nanocompos-ites research.The key research opportunities and challenges in the development of carbon nanotube graphene,interfacial bonding strength in structural and functional nanocom-posites are addressed in the context of?ber reinforced polymer composites.The state of knowledge in mechanical and physical properties of polymer nanocomposite is presented with a particular emphasis on buckypaper enabled polymer nanocomposites,electrically and optically functional nanocomposites,smart and intelligent nanocomposites,and func-tional and multifunctional nanocomposites.Critical issues in the nanocomposites research and applications are discussed. Key words:composite;nano-material;polymer;functional material 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献.复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就. 20世纪50年代以玻璃纤维增强树脂的复合材料(玻璃钢)和20世纪70年代以碳纤维增强树脂的复合材料(先进复合材料)是两代具有代表性的复合材料.这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展.随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一 收稿日期:2014-01-01 通信作者:杜善义(1938—),男,教授,博士生导师,中国工程院院士,研究方向为飞行器结构力学和复合材料. E-mail:sydu@https://www.360docs.net/doc/db3161090.html,

纳米复合材料的探索及应用

纳米复合材料的探索及应用 摘要:纳米颗粒在塑料中的应用潜力很大,因为只要添 加很少量纳米填料就可起到添加大量的其它助剂更好的作 用。最近的数百篇有关纳米材料的论文表明,在改善塑料的 机械性能、阻隔性能、阻燃性能和导电性能方面,纳米材料 的研究和应用取得了令人兴奋的进展。 关键词:纳米复合材料;纳米粘土;碳纳米管;纳米石墨片;阻隔性;阻燃性 [中图分类号]TQ323.6 [文献识别码]A [文章编号] 纳米复合材料的发展还处于成长期,据预测,在未来几十年内,它们将被证明是改变塑料工业面貌的最强有力的事物。只要通过熔融共混或原位聚合在聚合物中添加2%?5%的纳米颗粒,复合材料的热-机械性能、阻隔性能和阻燃性能将会得到戏剧性的提高。在提高耐热性、尺寸稳定性、 导电性方面,它们也能超越普通填料和纤维填料。 纳米尺度的增强塑料在汽车和包装业已经市场化,尽管利润不是太高,发展速度也比预期的慢。但是就像热心的研究人员和商业界人土在最近发表的多篇论文所指出的,纳米复合材料的发展步伐将大大加快[1-3]。 美国商业通讯有限公司的市场调查报告指出,在200 3年,世

界市场上的聚合物纳米复合材料的总产量为二千四 百五十万镑,价值九千余万美元°BCC还指出,纳米复合材料的市场年增长率将会达到18 . 4%,到2 0 0 8年产 值将会达到两亿多美元。 在研究开发和实际应用中处于领先地位的纳米填料是 纳米粘土、纳米滑石、碳纳米管和石墨片。但是其它如合成粘土、多面体低聚硅倍半氧烷(POSS)、以及像亚麻和苎麻之类的天然纤维也在被积极地开发。 1.最常用的纳米填料 目前最受人们关注并率先投入商业应用的两类纳米填 料是纳米粘土和碳纳米管。这两种纳米填料必须进行化学处理来改变其表面性质,以促进填料在树脂中的均匀分散,改善填料和树脂的相容性,这样才有可能达到最佳的改性效果。这两种纳米填料能显著地改善塑料的结构、热性能、阻隔性和阻燃性。碳纳米管还能提高塑料的导电性。 到目前为止,由于价格低,纳米粘土显示出了最强的商 业竞争能力,它的价格为 2.25-3.25 美元/镑,可以被广泛 地用于热塑性聚烯烃、绦纶、聚苯乙烯和尼龙等。 研发和应用最多的是蒙脱土,它的单个片层直径约1微 米,厚度约1纳米。美国国内两家主要的生产商是Nanomer 公司和南方粘土产品公司。这两家公司和树脂与改性剂供应商、复

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

金属基纳米复合材料的研究现状与发展前景

金属基纳米复合材料的研究现状与发展前景 摘要:本文综述了金属基纳米复合材料的制备方法和金属基纳米复合材料的特性,分析了金属基纳米复合材料的微观结构,介绍了国内外相关研究现状及应用的最新进展。文中指出了金属基纳米复合材料现阶段研究中存在的几个重要问题,展望了金属基纳米复合材料的未来发展趋势。 关键词:纳米材料;金属基纳米复合材料;机械合金化;微观结构;塑性流动;断裂行为;碳纳米管 1.发展历史 1.1概述 纳米材料是由纳米量级(1-100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数之比随粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。 []3-1。 由于纳米材料的特异性能,纳米材料有着广泛的应用 金属基纳米复合材料用颗粒、晶须、纤维增强金属基体,具有原组分不具有的特殊性能或功能,为设计和制备高性能的功能材料提供了新的机遇[]4。所以,金属基纳米复合材料已成为纳米材料工程的重要分支,世界上各发达国家已经把纳米复合材料的研究放在重要地位。 1.2分类

纳米复合材料按基体材料类型可以分为金属基纳米复合材料、陶瓷基纳米复合材料、聚合物基纳米复合材料。金属基复合材料兼具金属与非金属的综合性能,在韧性、耐磨性、热膨胀、导电性等多种机械物理性能方面比同性材料优异得多。金属基纳米复合材料是由纳米级的金属或非金属粒子均匀地弥散在金属及合金基体中而成,较之传统的金属基复合材料,其比强度、比模量、耐磨性、导电、导热性能等均有大幅度的提高。因此,金属基纳米复合材料在航空航天、汽车,电子等高科技领域有极大的应用前景。如碳化硅纤维与颗粒增强钛合金用于大推力飞机压气机部件,颗粒增强铝基复合材料广泛用于航空、航天及汽车、电子领域。 2.制备工艺 2.1机械合金化法 制备金属基纳米材料的MA 法:将按合金粉末金属元素配比配制的试料放入立滚、行星或转子高能球磨机中进行高能球磨,制得纳米晶的预合金混合粉末,为防止粉末氧化,球磨过程中采用惰性气体保护;球磨制得的纳米晶混合粉经烧结致密化形成金属基纳米复合材料。在球磨过程中,大量的碰撞现象发生在球粉末与磨球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末反复的焊合和断裂。经过“微型锻造”作用,元素粉末混合均匀,晶粒尺度达到纳米级,层状结构达到 m 1μ 以下,比表面积大大增加。由于增加了反应的接触面积,缩短了扩散距离,元素粉末间能充分进行扩散,扩散速率对反应动力的限制减小[]5 ,而且晶粒产生高密度缺陷,储备了大量的畸变能,使反应驱动力大大增加。实验研究表明,在球磨阶段元素粉末晶粒度达到20-50nm 左右,甚至几个纳米,球磨温升在30-40K 左右[]6 可使互不相溶的W ,Cu 等合金元素、或溶解度较低的合金粉末如W ,Ni ,Fe 等发生互扩散,形成具有一定溶解度或较大溶解度的 W-Cu ,E-Ni-Fe 超饱和固溶体和Ni 非晶相。 最近,黄等[]7用行星式高能球磨机制备了)(30-20Fe Cu Al 20-80=χχχ三元非晶纳米合金粉末,发现成分为204040Fe Cu Al 的粉末球磨时逐步非晶化,球磨33h 后,非晶化程度最大,最小颗粒尺寸达到5.6进一步球磨,非晶晶化,颗粒尺寸

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

纳米复合材料

纳米复合材料 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土/PA6复合材料中,纳米蒙脱土的层间距为1.96nm,处于国内同类材料的领先水平(中国科学院为1.5~1.7nm),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm以下,此项技术正在申报发明专利。由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。碳纳米管是上个世纪九十年代初发现的一种新型的碳团簇类纤维材料,具有许多特别优秀的性能。我们在碳纳米管取得的研究成果主要包括:1)大规模生产多壁碳纳米管的技术,生产出的碳纳米管的质量处于世界先进水平,生产成本也很低,为碳纳米管的工业应用创造了条件。2)开发了制造碳纳米管为电极材料的双电层大容量电容器的技术。3)开发了制造具有软基底定向碳纳米管膜的技术。钨铜复合材料具有良好的导电导热性、低的热膨胀系数而被广泛地用作电接触材料、电子封装和热沉材料。采用纳米粉末制备的纳米钨铜复合材料具有非常优越的物理力学性能,我们采用国际前沿的金属复合盐溶液雾化干燥还原技术成功制备了纳米钨铜复合粉体和纳米氮化钨-铜复合粉体,目前正在加紧其产业化应用研究。 功能复合材料 功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。 塑木复合材料 塑木是以锯末、木屑、竹屑、稻壳、麦秸、大豆皮、花生壳、甘蔗渣、棉秸秆等低值生物质纤维为主原料,与塑料合成的一种复合材料。它

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

相关文档
最新文档