对数函数运算公式

对数函数运算公式
对数函数运算公式

1

、b a b

a =log 2、

b b a

a =log

3、N a M a MN a log log log +=

4、N a M a N M a

log log log -= 5、M a

M a n n log log = 6、M a M a n

n log 1log = 1、a^(log(a)(b))=b

2、log(a)(a^b)=b

3、log(a)(MN)=log(a)(M)+log(a)(N);

4、log(a)(M÷N)=log(a)(M)-log(a)(N);

5、log(a)(M^n)=nlog(a)(M)

6、log(a^n)M=1/nlog(a)(M)

推导

1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。

2、因为a^b=a^b

令t=a^b

所以a^b=t ,b=log(a)(t)=log(a)(a^b)

3、MN=M×N

由基本性质1(换掉M 和N)

a^[log(a)(MN)] = a^[log (a)(M)]×a^[log(a)(N)] =(M)*(N)

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定

又因为指数函数是单调函数,所以

log(a)(MN) = log(a)(M) + log(a)(N)

4、与(3)类似处理

MN=M÷N

由基本性质1(换掉M和N)

a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

由指数的性质

a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

又因为指数函数是单调函数,所以

log(a)(M÷N) = log(a)(M) - log(a)(N)

5、与(3)类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

又因为指数函数是单调函数,所以

log(a)(M^n)=nlog(a)(M)

基本性质4推广

log(a^n)(b^m)=m/n*[log(a)(b)]

推导如下:

由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(b^m)÷ln(a^n)

换底公式的推导:

设e^x=b^m,e^y=a^n

则log(a^n)(b^m)=log(e^y)(e^x)=x/y

x=ln(b^m),y=ln(a^n)

得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

由基本性质4可得

log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}再由换底公式

log(a^n)(b^m)=m÷n×[log(a)(b)]

对数函数基础运算法则及例题_答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x = 4 9 时,不等式 log a (x 2–x – 2)>log a (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x = 49使原不等式成立. ∴log a [249)49(2--]>log a )349 2)49(1[2+?+? 即log a 1613>log a 1639. 而1613<16 39 . 所以y = log a x 为减函数,故0<a <1. ∴原不等式可化为??? ? ???++-<-->++->--322032022222x x x x x x x x ,解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5 ,2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2)–f (x 1) = 212221log log 11x x x x ---2 1221(1)log (1)x x x x -=-=.11log 2 1 122x x x x --? ∵0<x 1<x 2<1,∴ 12x x >1,2111x x -->1. 则2 1 12211log x x x x --?>0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = log a (a –a x ) (a >1). (1)求f (x )的定义域和值域;(2)判证并证明f (x )的单调性. 解:(1)由a >1,a –a x >0,而a >a x ,则x <1. 故f (x )的定义域为( -∞,1), 而a x <a ,可知0<a –a x <a ,又a >1. 则log a (a –a x )<lg a a = 1. 取f (x )<1,故函数f (x )的值域为(–∞, 1). (2)设x 1>x 2>1,又a >1,∴1x a >2x a ,∴1x a a -<a-2x a , ∴log a (a –1x a )<log a (a –2x a ), 即f (x 1)<f (x 2),故f (x )在(1, +∞)上为减函数.

指数函数对数函数计算题集及答案

精心整理 指数函数对数函数计算题1 1、计算:lg 5·lg 8000+06.0lg 6 1 lg )2 (lg 2 3++. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、 4、 5、6、 7、 8、 9、求函数1 21log 8.0--= x x y 的定义域. 10、已知log 1227=a,求log 616.

11、已知f(x)=1322 +-x x a ,g(x)=522 -+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=3 21121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13 14 1516 17 18 19 20、解指数方程:014 332 14 1 1 1=+?---- --x x 21、解指数方程:042342 2 22=-?--+ -+ x x x x

22、解对数方程:log2(x-1)=log2(2x+1) 23、解对数方程:log2(x2-5x-2)=2 24、解对数方程:log16x+log4x+log2x=7 25 26 27 28 29 30 指数函数对数函数计算题1〈答案〉1、 1 2、

解:原方程为lg2(x+10)-3lg(x+10)-4=0, ∴[lg(x+10)-4][lg(x+10)+1]=0. 由lg(x+10)=4,得x+10=10000,∴x=9990. 由lg(x+10)=-1,得x+10=0.1,∴x=-9.9. 检验知:x=9990和-9.9都是原方程的解. 3、 4、 ∵3-x 5、 6、 解:方程两边取常用对数,得:(x+1)lg5=(x2-1)lg3,(x+1)[lg5-(x-1)lg3]=0. . ∴x+1=0或lg5-(x-1)lg3=0.故原方程的解为x1=-1或x2=1+5 log 3 7、 1

教案对数的运算法则

教案 对数的运算法则 【教学目标】 知识目标: ⑴ 理解对数的概念,了解常用对数的概念. ⑵ 掌握对数的运算法则. 能力目标: 会运用对数的运算法则进行计算. 【教学重点】 对数的概念和对数的运算法则. 【教学难点】 对数的运算法则. 【教学过程】 一、课程导入 以复习指数的相关知识导入新课.(板书,提问等.5分钟) 问题1:2的多少次幂等于8? 问题2:2的多少次幂等于9? 显然,这是同一类问题.就是已知底数和幂如何求指数的问题.为了解决这类问题,我们引进一个新数——对数. 二、新课教学 1.新概念 法则1 lg lg lg MN M N =+(M >0,N >0). 法则2 lg lg lg M M N N =-(M >0,N >0). 法则3 lg n M =n lg M (M >0,n 为整数). 上述三条运算法则,对以)1,0(≠>a a a 为底的对数,都成立. 2.概念的强化 例4 (讲授)用lg x ,lg y ,lg z 表示下列各式: (1)lg xyz ;(2)lg x yz ;(3)z .

解 (1) lg xyz =lg x +lg y +lg z ; (2) lg x yz =lg lg lg lg lg x yz x y z -=-+()=lg lg lg x y z --; (3) z 2lg x +3lg z -=2lg x +2 1lg y 3lg z -. 例5 (启发学生回答或提问)已知2ln =0.6931,3ln =1.0986.计算下列各式的值(精确到0.0001): (1))34ln(75?; (2)18ln . 分析 关键是利用对数的运算法则,将所求的对数用2ln 与3ln 来表示. 解 (1))34ln(75?=54ln +73ln =54ln +73ln =522ln +73ln (2)18ln =2118ln =2192ln ?=2 1(2ln +9ln )=21(2ln +23ln ) =0986.16931.02 1+?=1.44515≈1.4452. 例6 求下列各式的值: (1)lg2lg5+; (2)lg600lg2lg3--. 分析 逆向使用运算法则,再利用性质lg101=进行计算. 解 (1)lg2lg5lg(25)lg101+=?==; (2)2600lg600lg2lg3lg( )lg100lg102lg10223 --=====?. 3.巩固性练习 练习3.3.3 ( 12分钟) 1.用lg x ,lg y ,lg z 表示下列各式: (1) (2)lg xy z ; (3)2lg()y x ; (4) 2.已知2ln =0.6931,3ln =1.0986,计算下列各式的值(精确到0.0001): (1)ln 36; (2)ln 216; (3)ln12; (4)911ln(23)?. 答案:1.(1)1lg 2 x ;(2)lg lg lg x y z +-;(3)2lg 2lg y x -;(4)111lg lg lg 243x y z +-. 2.(1) 3.5834;(2)5.3751;(3)1.2424;(4)18.3225. 三、小结(讲授,5分钟) 1.本节内容

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47) a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数2()log )f x x =的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质 1.对数与对数运算 (1)对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化: log (0,1,0) x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式:log 10 a =, log 1 a a =, log b a a b =. (3)常用对数与自然对数 常用对数:lg N ,即 10log N ; 自然对数:ln N ,即 log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N -= ③数乘: log log () n a a n M M n R =∈ ④log a N a N = ⑤log log (0,)b n a a n M M b n R b = ≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a = >≠且 2.对数函数及其性质 定义:函数log (0 a y x a =>且1)a ≠叫做对数函数 图象: 定义域:(0,)+∞ 值域:R 过定点:图象过定点(1,0),即当1x =时,0y =. 1 x y O 1 x y O

奇偶性:非奇非偶 单调性:在(0,)+∞上是增函数1a >;在(0,)+∞上是减函数01a <<; 函数值的变化情况: log 0(1)log 0(1)log 0(01) a a a x x x x x x >>==<<< log 0(1)log 0(1)log 0(01) a a a x x x x x x <>==><< 变化对图象的影响:在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. 判断技巧:指数函数令1=x 得到第一象限内底大图上;对数函数令1=y 得到第一象限底大图下。 3.反函数的概念 (1)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ?=.如果对于y 在 C 中的任何一个值,通过式子()x y ?=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ?=表示x 是y 的函数,函数()x y ?=叫做函数()y f x =的反函数,记作1 ()x f y -=,习惯上改写成1()y f x -=. (2)反函数的性质 ①原函数()y f x =与反函数1 ()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1 ()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则' (,)P b a 在反函数1 ()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数. 例题与解析: 例题1:将下列指数式与对数式进行互化. (1)64)4 1 (=x (2)5 15 2 1= - (3)327log 3 1-= (4)664log -=x 解析:(1)∵64)41(=x ,∴x =41log 64 (2)∵51521 =-,∴21 51log 5 -= (3)∵327log 3 1-=,∴27)31(3=- (4)∵log x 64 = –6,∴x - 6 = 64. 例题2:比较下列各组数的大小: (1)log 0.7 1.3和log 0.71.8; (2)log 35和log 64. (3)(lg n )1.7和(lg n )2 (n >1);

对数

对数 导读:本文是关于对数,希望能帮助到您! 教学目标 1.理解对数的概念,掌握对数的运算性质. (1) 了解对数式的由来和含义,清楚对数式中各字母的取值范围及与指数式之间的关系.能认识到指数与对数运算之间的互逆关系. (2) 会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简单的对数运算. (3) 能根据概念进行指数与对数之间的互化. 2.通过对数概念的学习和对数运算法则的探究及证明,培养学生从特殊到一般的概括思维能力,渗透化归的思想,培养学生的逻辑思维能力. 3.通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使学生善于发现问题,揭示数学规律从而调动学生思维的积极参与,培养学生分析问题,解决问题的能力及大胆探索,实事求是的科学精神. 教学建议 教材分析 (1) 对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念紧密相连的.它们是对同一关系从不同角度的刻

画,表示为当时,.所以指数式中的底数,指数,幂与对数式中的底数,对数,真数的关系可以表示如下: (2) 本节的教学重点是对数的定义和运算性质,难点是对数的概念. 对数首先作为一种运算,由引出的,在这个式子中已知一个数和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算(而已知指数和幂求这个数的运算就是开方运算),所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对的全面认识.此外对数作为一种运算除了认识运算符号“”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,脱到过程又加深了指对关系的认识,自然应成为本节的重点,特别予以关注.对数运算的符号的认识与理解是学生认识对数的一个障碍,其实与+,等符号一样表示一种运算,不过对数运算的符号写在前面,学生不习惯,所以在认识上感到有些困难. 教法建议 (1)对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数和真数的要求,其次对于对数的性质及零和负数没有对数的理解也可以通过指数式来证明,验证.同时在关系的指导下完成指数式和对数式的互化.

对数的运算及对数函数

§2.2.1 对数与对数运算(一) ¤知识要点: 1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数 2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在 科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N 3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =?=. 4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲: 【例1】将下列指数式化为对数式,对数式化为指数式: (1)71 2128 -= ; (2)327a =; (3)1100.1-=; (4)12 log 325=-; (5)lg0.0013=-; (6)ln100=4.606. 【例2】计算下列各式的值:(1)lg0.001; (2)4log 8; (3). 第14练 §2.2.1 对数与对数运算(一) ※基础达标 1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 0 1ln10e ==与 B. 1()3 81118 log 223 -==-与 C. 12 3log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ). A. 10 B. 0.01 C. 100 D. 1000 4.设13 log 82 x =,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 1 4 5.已知432log [log (log )]0x =,那么1 2 x -等于( ). A. 1 3 B. C. D. 6.若21 log 3 x =,则x = ; 若log 32x =-,则x = . 7.计算: = ; 6lg 0.1= . ※能力提高 8.求下列各式的值:(1) 8; (2)9log

对 数 运 算 法 则

二进制数的运算方法---【转载】 二进制数的运算方法 ? 电子计算机具有强大的运算能力,它可以进行两种运算:算术运算和逻辑运算。 1.二进制数的算术运算 二进制数的算术运算包括:加、减、乘、除四则运算,下面分别予以介绍。 (1)二进制数的加法 根据“逢二进一”规则,二进制数加法的法则为: 0+1=1+0=1 1+1=0 (进位为1)? 1+1+1=1 (进位为1) 例如:1110和1011相加过程如下: (2)二进制数的减法 根据“借一有二”的规则,二进制数减法的法则为: 0-1=1 (借位为1) 例如:1101减去1011的过程如下: (3)二进制数的乘法 二进制数乘法过程可仿照十进制数乘法进行。但由于二进制数只有0或1两种可能的乘数位,导致二进制乘法更为简单。二进制数乘法的法则为:

0×1=1×0=0 例如:1001和1010相乘的过程如下: 由低位到高位,用乘数的每一位去乘被乘数,若乘数的某一位为1,则该次部分积为被乘数;若乘数的某一位为0,则该次部分积为0。某次部分积的最低位必须和本位乘数对齐,所有部分积相加的结果则为相乘得到的乘积。 (4)二进制数的除法 二进制数除法与十进制数除法很类似。可先从被除数的最高位开始,将被除数(或中间余数)与除数相比较,若被除数(或中间余数)大于除数,则用被除数(或中间余数)减去除数,商为1,并得相减之后的中间余数,否则商为0。再将被除数的下一位移下补充到中间余数的末位,重复以上过程,就可得到所要求的各位商数和最终的余数。 例如:100110÷110的过程如下: 所以,100110÷110=110余10。 2.二进制数的逻辑运算 二进制数的逻辑运算包括逻辑加法(“或”运算)、逻辑乘法(“与”运算)、逻辑否定(“非”运算)和逻辑“异或”运算。 (1)逻辑“或”运算 又称为逻辑加,可用符号“+”或“∨”来表示。逻辑“或”运算的规则如下: 0+0=0或0∨0=0 0+1=1或0∨1=1

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

对数与对数函数 知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数 (a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27 注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的

对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log a m M n =n m log a M . (2)对数的性质 ①a log aN =N ;②log a a N =N (a >0,且a ≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =log a d . 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质

必修1第三章对数函数的运算法则(全)

【本讲教育信息】 一. 教学内容: 对数运算、对数函数 二. 重点、难点: 1. 对数运算 0,0,1,1,0,0>>≠≠>>N M b a b a (1)x N a =log N a x =? (2)01log =a (3)1log =a a (4)N a N a =log (5)N M N M a a a log log )(log +=? (6)N M N M a a a log log log -= (7)M x M a x a log log ?= (8)a M M b b a log /log log = (9)b x y b a y a x log log = (10)1log log =?a b b a 2. 对数函数x y a log =,0>a 且1≠a 定义域 (+∞,0) 值域 R 单调性 ↓∈)1,0(a ↑+∞∈),1(a 奇偶性 非奇非偶 过定点 (1,0) 图象 x y a log =与x y a 1log =关于x 轴对称

【典型例题】 [例1] 求值 (1)=7 log 3) 9 1( ; (2)=-++4log 20log 2 3 log 2log 151515 15 ; (3)=+?+18log 3log 2log )2(log 66626 ; (4)=?81log 16log 329 ; (5)=+?++)2log 2(log )5log 5)(log 3log 3(log 2559384 ; (6)=+?+2)2(lg 50lg 2lg 25lg 。 解: (1)原式49 173 3) 3(27log 7 log 27 log 22 333= ====---- (2)原式115log 15== (3)原式18log )3log 2(log 2log 6666++?= 236 log 18 log 2log 666==+= (4)原式58 )3log 54()2log 24(23=?= (5)原式8 15 )2log 23()5log 23()3log 65(532=??= (6)原式)2lg 50(lg 2lg 25lg ++= 2 100lg 2 lg 225lg ==+= [例2] 若z y x ,,满足)](log [log log )](log [log log 33 1322 12y x =)]z (log [log log 55 15= 0=,试比较z y x 、、的大小关系。 解:log 2〔log 21 (log 2x)〕=0?log 2 1(log 2x)=1?log 2x =21?x =2=(215 )1. 同理可得 y =33=(310) 30 1 ,z =5 5=(56) 30 1 . ∵310 >215 >56 ,由幂函数y =x 30 1 在(0,+∞)上递增知,y>x>z. [例3] 若==2121log log b b a a ……λ==n a b n log ,则=?)(log 21)(21n a a a b b b n 。 解:由已知λ 11a b =,λ λn n a b a b == 22 ∴ λ)()(11n n a a b b = ∴ λ=)(log 21)(1n a a b b b n

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

(完整版)对数公式及对数函数的总结

对数运算和对数函数 对数的定义 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数. ②负数和零没有对数。③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>。 常用对数与自然对数 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 对数函数及其性质 类型一、对数公式的应用

1计算下列对数 =-3log 6log 22 =?3 1log 12 log 2 22 2 =+2lg 5lg =61000lg =+64log 128log 22 =?)24(log 432 =++)2log 2)(log 3log 3(log 9384 =++3log 23log 2242 =?16log 27log 32 =+-2log 90log 5log 333 =++c b a 842log log log =+++200 199lg 43lg 32lg Λ =++32log 8log 8log 842 =+25.0log 10log 255 =-64log 325log 225 =)))65536(log (log (log log 2222 2 解对数的值: 18lg 7lg 37lg 214lg -+- 0 =-+-1)21 (2lg 225lg -1 1 3 341log 2log 8?? -? ??? 的值0 提示:对数公式的运算 如果0,1,0,0a a M N >≠>>,那么 (1)加法:log log log ()a a a M N MN += (2)减法:log log log a a a M M N N -= (3)数乘:log log ()n a a n M M n R =∈ (4)log a N a N = (5)log log (0,)b n a a n M M b n R b =≠∈ (6)换底公式:log log (0,1)log b a b N N b b a = >≠且 (7)1log log =?a b b a (8)a b b a log 1log = 类型二、求下列函数的定义域问题 1函数)13lg(13)(2 ++-= x x x x f 的定义域是)1,31 (- 2设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为 ()()4,11,4Y -- 3 函数()f x = ]1,0()0,1(Y - ) 提示:(1)分式函数,分母不为0,如0,1 ≠= x x y 。 (2) 二次根式函数,被开方数大于等于0,0,≥= x x y 。 (3)对数函数,真数大于0,0,log >=x x y a 。 类型三、对数函数中的单调性问题

相关文档
最新文档