油气井用CO2缓蚀剂的研究进展

油气井用CO2缓蚀剂的研究进展
油气井用CO2缓蚀剂的研究进展

油气井用CO 2腐蚀缓蚀剂的研究现状及进展

中国石油天然气集团公司管材研究所

《天然气井中抗CO 2腐蚀缓蚀剂的开发》课

题技术报告之一

油气井用CO2腐蚀缓蚀剂的研究现状及进展

摘要:本文通过文献资料、专利等调研,对目前国内外用于油气田抗CO2腐蚀的缓蚀剂产品进行了综述,并对CO2的腐蚀机理及未来缓蚀剂的发展趋势进行了探讨。

关键词:缓蚀剂CO2腐蚀油气井

1.前言

CO2作为油田伴生气或天然气的组分之一存在于油气之中,此外,采用注入CO2的EOR原油增产技术,也使CO2带入原油的采集系统,因此,油气工业中广泛存在CO2的腐蚀问题。CO2可引起石油天然气管道和设备早期腐蚀失效并往往造成严重的后果[1] [2]。诸如北海油田挪威一侧的Ekofish油田Alpha平台的高温立管,使

驱矿场试验期间,没有采用仅两个月就发生爆炸。美国Little Creek油田实施CO

2

用任何抑制CO2腐蚀的措施,不到5个月的时间,采油井油管壁就被蚀穿,腐蚀速率高达12.7mm/a。四川威成管线越溪段,在红村脱硫厂的下方,16Mn钢输气管不止一次地发生爆炸、燃烧等事故。从1970年到1991年期间,四川气田南干线就发生事故90余起,每次事故平均中断输气45h,损失天然气40多万立方米,直接经济

S造成的应力腐蚀外,CO2引起的腐蚀也占损失达10余万元。在上述事故中,除H

2

了很大的比例。

CO2腐蚀不仅存在于天然气的输送过程中,也常发生在天然气井的开发生产过程中。川东地区一些气田的石炭系气藏中,CO2分压高达0.4~0.6MPa,南海崖13-1气田天然气中CO2含量约为10%,胜利油田的气田中CO2含量达12%,华北油田潜山构造中伴生气的CO2含量高达42%。在相同的pH值下二氧化碳的总酸度比盐酸高,对钢铁的腐蚀比盐酸严重。二氧化碳腐蚀可能使油气井的寿命大大低于设计寿命,低碳钢的腐蚀速率可高达7mm/a,有时甚至更高[1]。另外,由于油气井的产出水中往往含有钙、镁和钡等离子,易与CO2生成碳酸盐,与腐蚀产物FeCO

一起

3

沉积在井管和设备的表面(即结垢),缩小井管和设备的有效截面,甚至造成堵塞,影响生产的正常进行。如生产地热水的西藏羊八井就是由于此原因井管经常堵塞而不得不频繁地停产检修。由此可见,CO2腐蚀问题值得重视和研究。

2.主要防护对策

由于油气生产中CO2的腐蚀遍及从井下到井上的各种采集输送管道与设备,因此其腐蚀防护措施则涉及到油气系统的结构设计、材料选择、配套的表面保护技术(包括内防护涂层和缓蚀剂等)、施工工艺、腐蚀与防护状态的检测和维修保养等各个工程环节。目前世界各国都在这方面开展了大量的研究工作,研究的主要方向有:(1)选择及研制新的防腐材料[3] [4]

在含CO2的油气井中,国外目前已趋向采用含铬铁素体不锈钢(9%~13%Cr)油管和套管;在CO2和Cl-共存的严重腐蚀条件下,采用铬-锰-氮体系的不锈钢管(22%~25%Cr)油管和套管;在CO2和Cl-共存并且井温也较高的条件下,用镍-铬基合金(Supper alloy)或钛合金(Ti-15Mo-5Zr-3Al)做套管和油管等。

在工程研究方面,控制低合金材料严重的全面腐蚀仍将继续受到重视,同时,有效地控制局部腐蚀也是亟待解决的重要问题。事实上,几乎所有的合金在含CO2介质中都会发生点蚀。如钢在CO2–H2O体系中的局部腐蚀就是一个棘手的问题,其危害性比全面腐蚀的危害性还要大。所以,对局部腐蚀的研究工作还应加强。(2)选择适当的缓蚀剂[5]

对于含CO2油气生产装置的严重腐蚀,可以靠添加缓蚀剂加以控制。对于油管和高温立管,通常采用油溶性水分散性缓蚀剂(常用长链脂肪胺),而对输油管部分则采用水溶性的缓蚀剂。对于气井,所用的缓蚀剂还须兼有气相缓蚀效果。目前,用缓蚀剂控制CO2引起的全面腐蚀,已取得了一定的效果,但要达到理想的全面防腐效果及充分和有效地控制局部腐蚀,尚需作进一步的大量的研究工作。

(3)采用防腐蚀内涂层

为了有效地防止管道的内腐蚀,国外普遍采用防腐蚀的内涂层,它们大都是环氧型、改进环氧型、环氧酚醛型或尼龙等系列的涂层。这些涂料不仅具有优良的耐蚀性,而且还有相当好的耐磨性能。对非含硫油气,在压力不超过45MPa时,涂层的

最高使用温度可达218℃。对含硫油气则可达149℃。在预制过程中应采用严格的QC/QA,要求涂层厚度均匀,并达到整个涂敷表面100%无针孔。这些措施为它们在强腐蚀性环境条件下使用的可靠性提供了技术保障,但这些聚合物类型的涂料,普遍都有老化问题,其使用寿命随操作条件而异。

这三个方法中添加缓蚀剂的方法是一种投资少、见效快的方法,因此本文主要讨论有关方面的发展研究现状。

3. CO2缓蚀机理研究

60年代以来,随着高CO2油气田的相继开发 ,各国对由其产生的严重的腐蚀破坏、主要的影响因素及其破坏机理和腐蚀防护措施等进行了广泛地研究,这是继对含硫油气的腐蚀防护研究之后,形成的油气开发中腐蚀防护研究的一个新热点。CO2缓蚀剂的早期研究主要集中在腐蚀机理及如何防止CO2弱酸水溶液及盐溶液对于管材等金属材料的腐蚀。随研究的深入,缓蚀剂的作用功能和应用范围不断拓宽,除一般性地阻抑CO2均匀腐蚀外,又针对减缓局部CO2腐蚀开展了一定的工作。由于工程实践的需要,气相缓蚀剂的研究近几年也受到了普遍的关注。发展具有气液相、气/液/固多相体系的缓蚀剂对于某些工业领域来讲已迫在眉睫。目前CO2缓蚀剂研究也正向高效、多功能、无公害的技术目标发展。

CO2对碳钢的腐蚀是一不可低估的因素。钢铁在含CO2水溶液的溶解过程中有两种不同的还原过程[6],其一是HCO

3

-直接还原析出氢:

2HCO

3-+2e→H

2

↑+CO

3

2-

其二是在金属表面的HCO

3-离子浓度极低时,H

2

O的还原:

2H

2O+2e→2OH-+H

2

上述两个过程的腐蚀产物分别为FeCO

3和Fe(OH)

2

,后者可与HCO

3

-作

用生成FeCO

3。腐蚀开始时,金属表面早已形成的结合力强的Fe(HCO

3

)

2

可发生变化:

Fe(HCO

3)

2

+Fe→2FeCO

3

+H

2

从而形成结合力较差的FeCO

3膜。由于FeCO

3

的体积较Fe(HCO

3

)

2

小,转化过程中体积收缩,形成微孔的保护性较差的FeCO

3

膜,因而引发碳钢的

腐蚀(主要是点蚀),即碳钢在饱和CO

2

的盐溶液中和较宽的pH值范围内虽可在金

属表面形成一层牢固的Fe(HCO

3)

2

膜,该膜对碳钢有一定的保护作用,但随着

时间的延长,Fe(HCO

3)

2

会逐渐转化成与金属表面结合力较差的FeCO

3

而失

去保护作用。钢铁表面覆盖不同腐蚀产物的区域以及不同腐蚀产物的接界区都可能

由于电偶差而导致局部腐蚀。

另外,二氧化碳的腐蚀受钢材材质和环境因素的影响较大。钢材材质包括钢材的热处理状态(即钢材的显微组织)及其化学成分(主要是合金元素)。环境因素主要包括:温度、二氧化碳分压、溶液介质的化学性质、流速、单相或多相流体、几何因素、溶液的pH值、钢铁表面膜与结垢状况及外加载荷等[8]。例如,根据温度对腐蚀特性的影响,把铁的CO2腐蚀可划分为三类:(1)温度<60℃,腐蚀产物膜FeCO3,软而无附着力,金属表面光滑,均匀腐蚀;(2)100℃附近,高的腐蚀速率和严重的局部腐蚀(深孔),腐蚀产物层厚而松,粗结晶的FeCO3;(3)150℃以上,细致、紧密、附着力强的FeCO3和Fe3O4膜,腐蚀速率降低。CO2分压对碳钢、低合金钢腐蚀速率的影响,在温度<60℃时可用deWaard等的经验公式表达:

lgCR=0 . 6 7lgP

CO2

+C

式中,CR为腐蚀速率;P

CO2

为CO2分压;C为与温度有关的常数。该式表明钢的

腐蚀速率随CO2分压增加而增大。在P

CO2

<2bar,T<60℃,介质为层流状态下,该式与一些研究结果符合,而在T>60℃及在实际中,由于腐蚀产物的影响,该式计算结果往往高于实测值,因此只能用来估算没有膜的裸钢在最坏情况下的腐蚀速率。该式不能反映流动状态、合金元素等对腐蚀速率有重要影响的事实。张学元等人研究了高矿化度条件下CO2分压对钢的腐蚀规律,结果表明:CO2在腐蚀过程中起着催化作用,随着CO2分压增大,不仅腐蚀速度增大,而且不均匀腐蚀的程度增大,同时,在含CO2的高矿化度介质中有轻微的Ca CO3结垢现象[9]。另外,Cl-对于含CO2钢铁腐蚀电化学行为的影响一直是研究的热点和存在争议的问题。Cl-不是去极化剂,但在腐蚀中起着重要的作用。Cl-对钢铁腐蚀的阴阳极极化的影响,目前主要存在3种阳极机制,即Lorenz的卤素抑制机制、Chin、和曹楚南等提出的卤素促进机制和不参与阳极的溶解机制,对于阴极,主要有促进机制和不参与阴极过程两种机制[10]。

目前常用缓蚀剂的缓蚀机理是:缓蚀剂在钢铁表面以物理吸附或化学吸附作用形成一层致密的吸附膜,这层膜的形成将极大地减少腐蚀介质和钢铁的接触机会,并以某种方式提高了腐蚀介质中阳极反应或阴极反应的活化能,形成了腐蚀反应的能量阻碍,可大大降低阳极的腐蚀速率,抑制阳极腐蚀或阴极腐蚀。

4.CO 2缓蚀剂国内外研究现状

(1)研究发展概况

缓蚀剂的研究方面国内外作了大量的工作。但是总的看来有关缓蚀剂方面理论的研究仍比较薄弱。某种缓蚀剂在某一条件下有效,但使用环境稍有变化,其缓蚀效率可能较差。因此到目前为止,缓蚀剂的应用以经验为主,理论只能在一定程度上起到一定的指导作用。因此目前开发出的缓蚀剂的品种较多。

(2)挥发性低的二氧化碳缓蚀剂

综述有关资料及文献报导,目前国外开发的这类CO 2缓蚀剂主要有[11~14]:挥发性低的可在金属表面成膜的缓蚀剂如咪唑啉衍生物、硫脲衍生物、吡啶季胺盐、烷氧化硫醇的磷酸酯或其胺盐型及聚天冬氨酸盐类物质。使用时一般是将缓蚀剂溶解在一定的溶剂中,通过与管道金属表面接触发生作用而成膜(可先在井中加入较大量的缓蚀剂进行预膜处理并及时补加),从而有效防止CO 2腐蚀。这类缓蚀剂有一定的气相缓蚀效果,但保护率有限,目前主要还用于二氧化碳的液相缓蚀及同气相二氧化碳缓蚀剂的复配。

1)烷氧化硫醇的磷酸酯

烷氧化硫醇的磷酸酯非常适合于作深气井缓蚀剂,适用于钢、铁、及其他金属材料,尤其适合于高浓度二氧化碳存在下的金属的腐蚀防护。合成反应式如下:

其中的烷基最好是丁基、己基、辛基、异辛基等。适当的烷氧化程度可以给出较好的油/水分散性,其为2-3较好。缓蚀剂可以以纯样或溶液的形式加入到气井中。溶剂有醇及烃类,可向其中加入一定量的非离子型表面活性剂、二聚酸、破乳剂及氧扑捉剂等。加入浓度在20-2500ppm 之间。用转轮法评价其使用效果,在77℃,24小时使用效果见表Ⅲ

C

CH

2CH

2O H n P 2O S CH 2CH 2m

O P O

OH

从表中数据可以看出,最好的缓蚀效率已达95%。

2)硫脲衍生物和吡啶季胺盐的配合体系

硫脲衍生物和吡啶季胺盐的配合体系非常适用于在较高的二氧化碳分压下金属的腐蚀的防护。缓蚀剂可以直接加入到腐蚀环境中,使吡啶季氨盐的浓度在56-70ppm ,硫脲衍生物浓度在10-13ppm 。

这种缓蚀剂的特点是可在较高的酸性液体冲击下保持较好的缓蚀效果,使用温度范围为38-66℃。吡啶季氨盐的结构式如下

吡啶季胺盐结构式中的R 可以是H 或烷基,R1可以是H 及取代和未取代的烷基。硫脲衍生物的结构如下:

使用浓度取决于CO 2的分压、溶液的温度及压力等。一般温度稍高时缓蚀剂的量可以低一些,CO 2分压高时,需要缓蚀剂的量高。一般认为这两种缓蚀剂具有明

显的协同效应,其缓蚀机理是两种物质可以在金属表面形成较牢固的膜,不易被高

C 9Y X S R3

R2R

R1

速流带走。据报导,将溶有缓蚀剂的溶液撤走后一周内,膜的保护作用仍非常好。

使用时可以用少量的醇和水将缓蚀剂配成溶液,吡啶季胺盐和硫脲衍生物的比例为6:1,在250ppm 浓度的情况下,保护率可达95%。

3)聚天冬氨酸盐类

这类材料与金属表面具有较好的黏附力,尤其当分子量适当的条件下,在一定的PH 值范围内具有非常好的缓蚀效果。通常的聚天冬氨酸盐类含有α和β两种异构体,β型的效果好。这类材料同普通的二氧化碳缓蚀剂相比突出的特点是其在防止腐蚀的同时还具有明显的阻垢作用和分散作用,因此避免了一些缓蚀剂同阻垢剂复配时存在的相容性差的问题。在分子量为1000-10000,PH 为4-6.6范围内,其用量为25ppm 时50℃下用鼓泡法测定的缓蚀效果列于表Ⅱ。

从表中可以看出,加入这种缓蚀剂后,二氧化碳的腐蚀速率明显变慢。

4)胺基羰基酸类

这类二氧化碳缓蚀剂的特点是较常用的一些胺类化合物具有毒性低的特点,常用于油气井的二氧化碳防护。性能比较好的物质为丙烯酸同脂肪三胺和脂肪族四胺的混合物。

由于这类缓蚀剂毒性小,预计可在未来许多领域得到应用。

T N HOOC N COOH

HOOC

目前液相二氧化碳缓蚀剂的应用已取得了较好的效果,有些缓蚀剂可在金属表面形成附着力较强的缓蚀剂薄膜,且可耐一定的水/油/气相流冲刷。今后的研究侧重点在于:(1)如何使低浓度缓蚀剂在连续地或周期性地冲刷内表面时可在金属表面形成连续的保护膜以达到防腐的目的;(2)提高缓蚀剂与金属表面之间的附着力,使形成的膜不易被高速流冲走。

(3)气相缓蚀剂

有关气相CO2腐蚀缓蚀剂的研究相对较为落后。可气化缓蚀剂一般分子量都较小,或者有较高的饱和蒸汽压,在一定条件下容易挥发呈气态。这种缓蚀剂可自发的吸附在被保护管内表面,形成一种保护膜,或者能与酸性物质(CO2)发生反应。由于气相分子的自由度较高,因此这类缓蚀剂对具有复杂形状的管道及开有沟槽的管道尤其实用。这种缓蚀剂可随气流保护长距离管道。这使得只使用一个缓蚀剂注射孔成为可能,这对于海底管线、沼泽地或沙漠地区是非常有用的。

但气相缓蚀剂具有较佳缓释效果的前提是其必须有合适的饱和蒸汽压、与水膜的相容性好、与管道的亲和力强以及适宜的酸碱性等,同时气相缓蚀剂的挥发性大,在生产使用过程中容易被人吸入体内,造成更大的危害。这给气相缓蚀剂的研究增加了难度。目前国内外商品化的气相缓蚀剂品种较少,且对人体和环境的毒性较大,如亚硝酸二环己胺及其他具有较高挥发度的小分子胺及其复配产品,这些产品不但毒性大且在油中的溶解度较小,且可挥发扩散的距离短。因此这方面的研究显得尤为迫切。

近期文献报导的国外开发出的气相缓蚀剂的主要品种有以下几种:

1)吗啉衍生物类缓蚀剂

如吗啉苯基苯并三唑,据报导这类缓蚀剂具有优异的气相缓蚀效果[15]。

2)2,5-二氢噻唑类物质[16]

这类物质及辅助材料在一定条件下在井底容易挥发且易与金属表面成膜,可以有效的防止CO2与金属表面的直接接触从而达到防CO2腐蚀的目的。效果比较好的有2,5-二氢-5,5-二甲基-2-(1-甲乙基)噻唑,2,4,5-三甲基-2-乙基噻唑等。其合成反应式如下:

一般认为,缓蚀剂要同金属表面具有较好的亲和力才能有效地在金属表面成膜,起到缓蚀的作用。由此看来需要分子具有较大的尺寸,但分子变大,其可气化程度会明显减少,因此2,5-二氢噻唑类物质的分子量不能太大。上面所示的缓蚀剂在250ppm 时,在室温,24小时后其缓蚀效率可达90%以上,而同样条件下常用的胺类保护率却较低。如一而乙二胺、二乙基三胺,三乙基四胺同样条件下的保护率分别为40%、60%、75%,异丙胺为50%,二乙胺为50%,二环己胺为67%。

3)在油气井中发生可控制性分解反应的较高分子量胺或氨基有机硅化合物[17,18] 这类胺可在一定条件下分解释放出小分子量的胺,分散在气相中的挥发性胺对酸性气体有一定的中和作用,且可以吸附在金属表面达到防腐的目的。这类产品常作为气相高温缓蚀剂。使用时配成烷烃/非气化油/表面活性剂/水混合物,在较高压力下,相对高分子量的胺如二甲基丙胺分解成二甲胺和三甲胺。缓蚀机理仍为胺可以在金属表面成膜。

此外含胺有机硅可以在大气环境下水解释放出低分子量胺,从而起到保护作用。

4)二硝基苯甲酸二环己基胺及二硝基哌啶衍生物

据报导这类物质具有较好的气相缓蚀效果[19]。

虽然上述缓蚀剂都有一定的缓蚀效果,但在生产实际中,金属所处环境并不仅仅是单纯的液相或气相,而是一个复杂的多相共存环境,因此要考虑多相流对材料的腐蚀作用。因此目前最有效的缓蚀剂是汽液复合型缓蚀剂。如国外缓蚀剂多为气—液复合型,如俄罗斯的и-1-A 、HK В—4、HKAB-1和美国的Visco970等。

国内对高CO 2油气腐蚀防护的研究,是从80年代开始的[20~23]。由中国科学院金属腐蚀与防护研究所相继与华北油田、中原油田和四川石油设计院合作,研制出了一些缓蚀剂,用于油气井的防腐。

张大权等人通过Mannich 反应合成4-(N,N-二正丁基)-胺甲基吗啉(DBM),用红外光谱和氢核磁共振谱表征了结构,模拟缓蚀剂实际使用状况评价了其缓蚀性能,采用模拟大气腐蚀状态的电化学测试技术研究其缓蚀机理,结果表明它是一种性能优C H 3CH

CH 3C N CH 2CH C CH 3

CH

N S CH CH 3

C H 3C H 3CH 3

良的适用于钢铁的气相缓蚀剂。其合成反应如下:

测试结果如下两个表。

扬小平等人针对四川磨溪气田的腐蚀问题,研制了油溶性成膜缓蚀剂CZ3-1与水溶挥发性缓蚀剂CZ3—3,并将其复配使用。在室内采用常压、80℃静态试验和高压(高H 2S 气体分压、高CO 2气体分压)、80℃静态试验评价了CZ3—1和CZ3—3复合使用时于含H 2S 、CO 2、Cl-及高矿化度等腐蚀介质中的缓蚀作用;在现场试验中采用了加拿大卡普罗克(Ca Proco)腐蚀监测系统考察了CZ3—1和CZ3—3复合使用时对气井地下管串及井口设施的缓蚀效果。室内评价及现场监测均表明CZ3—1和CZ3—3复合使用时在含H 2S 、CO 2、Cl-及高矿化度等腐蚀介质中有良好的缓蚀效果。缓蚀率可达90%以上。

他们认为CZ3—3以气相缓蚀为主,用于改善气相中的点蚀和坑蚀,其主剂为有机胺盐、炔醇及杂环类物质,作用机理主要在于其中的挥发性物质,另两种物质的协同作用可有效抑制腐蚀介质在钢铁表面的吸附作用,大大提高气相缓蚀效果。具体测试的数据如下:

N

O H O

H N C 4H C 4H 9O N CH 2N C 4H 9

C 4H 9

王喜贵等人合成了改性的苯骈三氮唑,用做气相缓蚀剂。但其主要用于铜、银的缓蚀处理。对钢铁材料没做系统评价。

尽管如此,有关CO2的腐蚀问题目前解决的并不理想,原因是多方面的:一方面目前还没有开发出一种高效的缓蚀剂,另一方面,二氧化碳的腐蚀问题非常复杂,缓蚀剂的防护效果同温度、CO2的分压、气体及液体流速等多方面的因素有关,因此有关CO2缓蚀剂的研究仍有大量的工作要做。

5.二氧化碳气相腐蚀的评价方法

由于CO2腐蚀的复杂性,近几年来人们在开发新型缓蚀剂的同时也加强了对二氧化碳气相腐蚀的评价研究工作,以找到一种有效的科学的评价方法,评价缓蚀剂性能的优劣[25~27]。如Christoph Kraemer等人开发了一种测试方法,采用两种试件

(一层环和多层环)在一个实验体系中,一种反映无保护的腐蚀结果,另一种反映有保护的结果。据说这种方法可以避免传统测试方法的诸多缺陷。

另外S.Ramzchandran等人开发了一种CO2腐蚀的分子模型来从理论上计算CO2的腐蚀程度。Tian,Y.J等人对失重法、线形极化法、电化学阻抗分析及电化学噪音分析等方法进行了详细的对比,并对各种方法的影响因素进行了分析等等。但到目前为止,还没有一种十分权威的方法来评价CO2的腐蚀问题。有关这方面也急待做大量的工作。

6.CO2腐蚀缓蚀剂的研究发展趋势

由于我国大部分油气井在开发生产过程中不同程度地受到H2S、CO2等酸性气体的腐蚀,特别是在油气井进入生产开发后期,CO2及产水量增大,对生产井的液面以下部位和气液界面造成相当严重的腐蚀。容易使油管腐蚀断裂,严重影响油气生产,且维修费用较高。而我国国内目前还没有商业化生产的CO2缓蚀剂。因此,预计今后几年有关方面的研究会受到更广泛的关注。结合国际上有关方面的研究结果,未来几年中有关二氧化碳缓蚀剂的研究将集中在以下几个方面:(1)继续研制高效的气相缓蚀剂,提高缓蚀剂的保护率;

(2)加强缓蚀剂复配技术的研究,研制适用于多相腐蚀体系的缓蚀剂;

(3)寻找合适的载体,开发缓释长效型的固体缓蚀剂;

(4)加强环保意识,开发低毒、易生物降解的新型缓蚀剂;

(5)加强多相流的腐蚀机理研究,探询新的评价缓蚀剂缓蚀效率的方法。

参考文献

[1]姚晓,等.油气储运,1996,15(2):12

[2]陈卓元,王凤平等,二氧化碳腐蚀防护对策及发展趋势,材料开发与应用,1998

(13):6~40

[3]Ikeda A. Corrosion/ 86 ,Paper No. 333

[4]Ikeda A,etal. Corrosion,1 985,41 (4):1 85

[5]Dwaard C, Lotzu ,Predcction of CO 2 Corrosion of Carbon

Steel.Corrosion/ 93,Paper No 69

[6]杨小平、贺泽元、向伟,磨溪气田腐蚀及防腐,天然气工业,1998,18(5),67

[7]张学元、王凤平等,油田开发中二氧化碳腐蚀的研究现状与趋势,油田化学,

1997,14(2),190-196

[8]陈卓元、张学元等,二氧化碳腐蚀机理及影响因素,材料开发与应用,1998,

13(5),34-40

[9]张学元、王凤平等,高矿化度介质中CO2对APIN80钢腐蚀规律的研究,1998,

35(5),513-516

[10]张学元,余刚等,Cl-对APIP105钢在含CO2溶液中的电化学腐蚀行为的影响,

高等化学学报,1999,20(7),1115-1118

[11]Outlaw,Benjamin T,USP,4511480

[12] Bradley.G、Borgard、Jack.B、Harrell,USP,5368774[13]Benton et al,USP,

567623

[14]V Jovancicevic; S Ramachandran; P Prince; Inhibition of carbon dioxide

corrosion of mild steel by imidazolines and their precursors,,orrosion; Houston; May 1999;Volume: 55

[15] CA P38185

[16] Bernardus.A.M, Oude.Alink, USP, 5197545

[17] USP,5549848

[18] Guenther F,USP 4671933

[19] Zeheb,et al,USP,5549848

[20] CA 117,217370

[21] 张大全、俞路、陆柱,华东理工大学学报,1998,24(5),569

[22]扬小平、江开兰等,CZ3-1、CZ3-3复合缓蚀剂的研制与应用,西安石油学院

学报,1999,1,44

[23]黄红兵,扬仲熙,CT2-4水溶性油气井缓蚀剂的合成与应用研究,石油与

天然气化工,1996,4,231

[24]王喜贵等,内蒙古石油化工,1998,24,70

[25] Christoph.Kraemer,NACE International Corrosion,1997,178

[26]施岱艳、杨朔、杨诚、王裕康,腐蚀监测技术在四川含硫气田的应用,天然气

工业, 1 998年11月

[27]K. Sapre, S. Seal, , A. Kale,effect of multiphase flow on corrosion of C-steel in

presence of inhibitor: a surfacemorphological and chemical study Corrosion Science

42 (2000) 1623—1634

金属缓蚀剂及其研究进展

金属缓蚀剂及其研究进展 课程:腐蚀与材料保护 主讲老师: 陈存华 院系:化学学院 专业:应用化学 学号: 2010214131 姓名:张伟 华中师范大学化学学院 2012年12月

金属缓蚀剂及其研究进展 摘要:金属的缓蚀一直是人们极为关注的重要课题,本文综合近十年来文献简述了缓蚀剂的机理,常见的分类,重点叙述了金属缓蚀剂的前沿发展和技术缓蚀剂的应用,总结了缓蚀剂的研究意义,并对未来缓蚀剂的发展方向做展望。 关键词:金属缓蚀剂分类前沿应用意义 一、前言: 金属腐蚀,就是指金属在外界环境的作用下引起的破坏或变质。它不仅影响了原有金属的光泽,而且带来了很大的经济损失。据报道2000年美国由于金属腐蚀造成的直接经济损失约为1300 多亿美元,在2005年我国由于腐蚀所造成的直接经济损失约占国民经济总产值的2%-4%,而间接损失几乎无法估量。金属腐蚀不但限制了科学技术的发展,破坏了工艺过程和生产节奏,而且污染环境,影响人类的身体健康。所以,怎样防止金属腐蚀已成为世界性的问题。 缓蚀剂(Corrosion Inhibitor)是一种无机物或有机物,加到腐蚀介质中,借助于这种物质在金属和腐蚀介质的界面上的物理和化学作用,可以防止或降低金属的腐蚀速度,减少金属在所在介质中的腐蚀。缓蚀剂在金属防护中的应用,是腐蚀科学与表面工程学科发展的一项重要成就。百余年来,缓蚀剂的开发、应用在化工、石油、电力、机械、金属加工、交通运输、核能及航天等领域中,起着极其重要的作用。近半个世纪以来,缓蚀剂的品种、质量得到了进一步扩大和提高。30年代以前,缓蚀剂的品种只有百余种。到80年代中期,仅酸性介质缓蚀剂的品种就已超过5000 余种。这种发展速度是其他化学助剂、添加剂类无以伦比的。当前,世界各国相关的科技界、企业界对它的开发和应用前景极为关注。 二、缓蚀剂的机理研究简述 金属的缓蚀有多种机理,其中主要的作用有:(1) 屏蔽效应。这主要是由于缓蚀剂的存在阻碍了金属颜料与腐蚀介质的接触,降低了腐蚀速度,同时也可能因为缓蚀剂分子上的基团与腐蚀介质的分子基团形成了螯合作用,减低了腐蚀介质对金属颜料的侵害。(2) 电化学防护:当缓蚀剂、金属颜料与腐蚀介质之间由于电化学反应形成了一层保护膜,这层膜的形成减少了介质对颜料的腐蚀,从而保护了金属颜料。大多数的有效保护作用都是这些效应相互结合得到的。 三、金属缓蚀剂的分类 1.按化学组成分类 (1)无机缓蚀剂—无机化合物。多用于氧作为腐蚀物质的中性水介质体系中,也叫中性缓蚀剂。如铬酸盐,磷酸盐,硝酸盐,硅酸盐等。无机缓蚀剂的特征是能是金属表面氧化,并是金属的腐蚀电位向高电位方向移动,即具有是金属钝化的作用。 (2)有机缓蚀剂—有机化合物。多用于酸性腐蚀介质中,化合物种类很多。有机缓蚀剂对腐蚀电位几乎无影响,主要是以分子状态在金属表面进行吸附,从

二氧化碳腐蚀与防护综述

二氧化碳腐蚀与防护综述 李妍 (中海石油海洋工程股份有限公司设计分公司)提要:在油气田开发中,尤其是在石油天然气工业中,二氧化碳腐蚀是一个由来已久的问题,也是一个不容忽视的严重问题。如英国北海的ALPHA平台,因油气中含1.5~3.0%的二氧化碳,其由碳锰钢X52制成的管线仅用了两个多月就发生了爆炸。因此,关于二氧化碳的腐蚀问题,国内外的防腐工作者已进行了多年的研究工作,取得了一定的成果,也得到了一些防护方法。鉴于蓬莱19-3项目也面临着二氧化碳腐蚀的问题,本文就二氧化碳腐蚀的机理、影响因素及防护措施等几方面进行了综述。 关于二氧化碳的腐蚀机理,本文从阴阳两极的电化学反应出发,进行了详细阐述;影响因素主要讨论了温度、二氧化碳分压、流速、阳离子以及气、水产量等几方面;最后给出几种可行的防护措施。 Summary:C O2corrosion is a very important problem in the development of oil & gas field, especially in petrolic natural gas industry since many years ago. The ALPHA platform in North Sea of Britain exploded only two months after in use because its X52 steel cannot tolerant 1.5-3.0% C O2in its gas. Corrosion control workers have gained some outcome and protective methods after many years studies about C O2corrosion.

缓蚀剂原理

缓蚀剂原理 -------冀衡药业酸洗缓蚀剂产品部 在电解质溶液中,金属的腐蚀过程服从电化学过程,因此腐蚀的发生存在着阴极反应和阳极反应。阴极反应对应的是去极化剂接受电子的过程,最常见的两种去极化剂为氢质子和氧气,而阳极反应对应的是金属的溶解过程。从腐蚀电化学原理分析,缓蚀剂加入后使得腐蚀反应的阳极过程或者阴极过程受到抑制,有些缓蚀剂可以同时抑制腐蚀反应的阴极和阳极过程。 大多数无机型缓蚀剂主要使用在中性或偏碱性的介质环境中,它们通常对电极的阳极过程有显著的抑制 作用,通过使金属表面钝化或者在金属表面形成沉积膜进而起到缓蚀作用。随着缓蚀剂使用的发展,无机缓蚀剂的使用并未局限在中性或碱性介质中,如在酸性介质中添加碘化物、亚铜、亚锑盐后,能显著增强有机缓蚀剂的作用效果。有机缓蚀剂在酸性介质中的使用非常广泛,它们通过物理或化学作用力吸附在金属表面,通过改变双电层结构,提高腐蚀反应活化能以及将腐蚀介质和金属基体隔离,进而抑制腐蚀速率,有机缓蚀剂在中性介质中也取得了成功的使用,如有机磷酸盐、苯钾酸盐、咪唑啉在工业水和油田污水处理的使用。 1.无机缓蚀剂作用机理 根据腐蚀电化学原理,通过考察无机缓蚀剂对电极阴阳极的抑制效果,无机缓蚀剂的作用机理可以归纳为阴极型、阳极型、混合型。 (1)阳极抑制机理 图1.2阳极抑制型缓蚀剂作用曲线图

图1.2为阳极抑制型钝化剂作用原理图,当介质中存在阳极抑制型缓蚀剂时,极化曲线阳极部分从活化区转为钝化区,使得腐蚀电流密度显著降低,而极化曲线的阴极部分并没有显著的改变。 (2)阴极型缓蚀剂 图l-1(a)所示的极化曲线阐明了阴极型缓蚀剂的作用机理,从图中可以发现,介质中有阴极型缓蚀剂存在时,极化曲线的阴极部分塔菲尔斜率明显增加,而阳极部分塔菲尔斜率却没有改变,这说明阴极型缓蚀剂主要增加了电极的阴极极化过程,这使得金属的开路电位以及腐蚀电流密度均下降。阴极型缓蚀剂可以通过在金属表面的阴极区成膜来增加阴极极化过程,也可以通过提高阴极反应的过电位从而抑制阴极反应,而在中性介质中,阴极过程主要为氧去极化过程为,因此也可以通过吸收体系中的氧来增加阴极反应的极化,根据阴极型缓蚀剂的不同作用原理,其可以进一步细分为以下几种: A.成膜类阴极型缓蚀剂。这类阴极缓蚀剂通过和介质中的物质反应或者自身吸附,在金属的阴极区间成膜,形成的膜能有效地抑制阴极去极化剂如O2、H+等向界面扩散,使得阴极去极化作用受到有效抑制,进而减缓了腐蚀速率。 B.提高阴极反应过电位缓蚀剂。腐蚀反应的阴极过程大多为氢质子或氧的还原反应,这些阴极反应发生的电位均高于其理论的平衡电位,即存在过电位。特别是在酸性介质中,氢质子的还原反应在不同金属上存在显著的差异,而当介质中存在铋、汞、锑等重金属离子时,将会显著提高氢质子的还原过电位,从而使阴极过程受到抑制,降低腐蚀反应速度。 C.耗氧型阴极缓蚀剂。在中性介质中,腐蚀反应的阴极过程多为氧去极化过程,因此在介质中加入可以和氧发生反应的物质,则可降低介质中的氧含量,使阴极反应受到抑制,进而抑制腐蚀速率。 (3)混合型缓蚀剂 混合型缓蚀剂作用示意图见图1.1(c),该类型缓蚀剂对腐蚀的阴阳极反应均有明显的抑制作用,由于加入混合型缓蚀剂后电极的阴阳极塔菲尔斜率同时增加,因此自腐蚀电位没有显著改变,但是腐蚀电流密度显著降低,使得金属腐蚀速度受到抑制。 2.有机缓蚀剂作用机理 有机缓蚀剂分子中通常同时具有极性基团和非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排列在介质中,这样一方面有效地隔离了金属和腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于

高耐腐VCI气相缓蚀简介

高耐腐VCI(气相缓蚀)简介 VCI定义:挥发性锈蚀抑制剂 正确、合理使用缓蚀剂是防止金属及其合金产生腐蚀的有效方法,同时,不改变金属原来的物理机械性能。其中气相缓蚀剂因在常温下能迅速挥发并充满包装空间,吸附在金属表面上,起到阻滞金属腐蚀的作用。具有节约资源减轻劳动量,拆封即可使用及美化包装等优点因此在工业上得到了广泛应用。 高温、高湿的空气是造成钢铁构件腐蚀的主要原因。当然,长期保证钢铁构件库温湿度在最佳范围实际操作上是困难的,也是极不经济的。从非工业大气腐蚀的作用机理和经济角度上讲钢铁构件库的相对湿度应小于75% ,温度在10-35℃昼夜温差不大于10℃钢铁构件防腐包装环境:相对湿度应小于45%-70% ,温度10-30℃。昼夜温差不大于7℃。实践表明,将钢铁构件防腐包装环境与钢铁构件贮存环境分开,是一种经济、有效、实用的防腐蚀措施因为在防腐包装过程中潮湿的大气极易在金属表面重新附着,形成腐蚀隐患。许多处理剂都对操作使用环境作出明确的规定,只有正确使用才能达到技术指标。 有关部门曾花费大量的人力、财力,对一批钢铁构件采用十层防锈包装材料对其进行真空包装。一年后,就发现腐蚀现象,且发生腐蚀的钢铁构件占20%之多。在研究分析后发现有的是因前处理不彻底或根本没有进行前处理,有的是因在包装过程中。操作人员的手汗沾污造成的。因此,在产品使用过程中必须加强人员的技术管理,加强工序间检验,严格按照工艺技术流程进行操作,防止未经前道工序处理或处理不合格的钢铁构件直接转入下道工序否则,腐蚀与防护工作是难以奏效的。 高耐腐VCI(气相缓蚀)双金属复合涂层具有高效、长效耐腐蚀和对环境无污染、具有国际先进水平的高性能表面处理新技术,其优点如下: 1. VCI涂层与钢板具有良好的结合力,使涂镀层结合力达到零级; 2. 在焊点处采用VCI防锈底漆,再覆涂VCI面漆,使焊接处具有超过热镀锌底板的防锈性能,保证了整个产品抗腐蚀性能的一致性; 3. 具有超越的耐腐蚀性能,通过国家机械工业电工产品环境适应性检测中心3528h的耐盐雾腐蚀、1000h化学性气体(二氧化硫)、12周期交变湿热试验、12周期紫外线照射试验、240h周期耐酸碱介质浸泡试验检测,无腐蚀现象。我公司还通过15000h的耐盐雾试验,涂层表面颜色呈灰色,基体钢板未出现任何腐蚀(热镀锌盐雾试验96h出现腐蚀现象); 4. VCI涂层是无毒无味环境友好型金属表面层,涂层光泽好,金属质感强,具有良好的装饰外观; 5. VCI涂层与任何有机涂层可紧密结合,在VCI涂层表面可覆涂各种有机涂层,可形成抗酸碱重腐蚀介质的表面防腐层; 6. VCI涂层属于金属涂层,由于高性能气相缓蚀剂对涂层起缓蚀作用,耐候性强,抗紫外线,无老化; 7. 涂层具有阴极保护作用,对表面轻微损伤有自修补作用。 VCI涂层属于金属涂层,由于创新地应用了高性能气相缓蚀剂(VCI)技术,对涂层和基材提供持久的抗蚀、阻蚀作用,因而涂层具有长效防护作用。其基本抗蚀原理如下:

缓蚀剂研究进展

缓蚀剂的研究、开发与应用经历了不同阶段。最初, 由于冶金工业的发展, 为钢铁材料酸洗除锈和设备的除垢, 研制了酸洗缓蚀剂。随后, 因石油工业油井酸化技术的需要, 研究开发了油井酸化缓蚀剂和油气田缓蚀剂。此后, 随着石油化工、电力、交通运输工业的发展, 海水、工业用水等冷却系统用的中性介质无机缓蚀剂迅速发展。二次世界大战期间和战后, 由于武器军械的防锈, 促进了气相和油溶性缓蚀剂的迅猛发展。19 43 年美国S hel lDev el o pmen t C o . 研制生产了亚硝酸二环己胺, 次年又推出亚硝酸二异丙胺产品, 用于军事工业, 取得很好的防锈效果。5 0 年代初, 苯三唑( BT A ) 对铜及其合金的优异防锈性能, 引起科技界和企业人员广泛重视, 缓蚀剂研究引起人们极大兴趣和关心。随着工业技术和高新技术的迅猛发展, 缓蚀剂得到较快发展。 6 0 年代是腐蚀科学技术发展最活跃的时期, 重要的腐蚀与防护方面的国际学术会议( 世界金属腐蚀会议、欧洲缓蚀剂会议等) 均在6 0 年代初举行首届会议; 一批腐蚀专业刊物( M at er i alPer f or man ce ( 美) , C or r os i o n S ci en ce ( 英) , Br i t i s h C o rr os i o nJ ou rn al ( 英) , !? # ?? % %& ?( 俄) , 材料保护( 中) , C o rr os i o nA bs t r act s ( 美) , ! ?# ?% & ?() ! % ?+ . ! ?# . 66 . ! ?# ! ? # ??# % % # & !! ( 俄) ) 亦均于60 年代创刊发行。这些学术活动及专业刊物的出版发行, 对促进缓蚀剂学科的学术交流和发展起着重要的作用。 Hacker man . N 在第一届欧洲缓蚀剂会议( 1 96 1) 上宣读了关于“软硬酸碱( HS A B ) 原则”的论文, 对缓蚀剂分子设计、筛选和应用有重要意义, 引起参会各国代表的重视和兴趣。日本荒牧国次等人对软硬酸碱理论在缓蚀剂研究中的应用做了系统的工作, 取得了卓有成效的成绩, 推动了缓蚀剂理论发展。 Br oo k M于19 62 年, 收集整理了3 0 ~5 0 年代期间, 海外期刊、专利上发表的约15 0 种缓蚀剂的名称、组成及应用范围( 金属及腐蚀介质) 等资料, 其中大部分为单一组分。 同年, M err i ck . R . D 等人在美国国家腐蚀工程师协会( N A C E ) 主办的学术年会上, 详尽地介绍了美国投放市场的一批商品缓蚀剂( 如: Ro di n e- 93 、Ro di n e- 1 15、Ro di ne- 21 3、Ar mo hi t -25 、Ar moh i b - 28 、DoW el l - A 1 2、DoW el l - A 73 、……) 的牌号、组成、物化性质及在几种酸溶液( H2S O 4、HC l 、HN O 3、H3PO 4、……) 中的缓蚀剂效果。 吉野努于1 96 3 年采用有机化合物与无机化合物复配, 有效地解决了盐酸、硫酸、氨基磺酸等对低碳钢的腐蚀问题。这种复合型缓蚀剂由硫脲- 乌洛托品- C u2+三组分组成。 加藤正义于196 4 年研究了阿拉伯胶、可溶性淀粉、琼脂等高分子多糖类化合物作为碱液中铝用缓蚀剂的问题, 试验结果表明, 大多数试样的缓蚀效率在80 % 以上。但多糖类一旦水解为单糖类时, 则会促进铝的腐蚀。 60 ~70 年代, 印度的Des ai . M . N 教授等先后在A nt i c o r ro si on 及其他专业刊物上, 连续发表数十篇论文, 阐述有关铜、铝及其合金在工业冷却水、盐酸、硫酸、硝酸、碱液及盐类溶液中, 各种有机缓蚀剂的缓蚀性能的研究结果。缓蚀剂的品种涉及广泛, 有硫脲、苯胺、苯甲酸、苯酚、醛类及其各种衍生物。此外,还有天然高分子化合物等。 Wal k er . R指出苯三唑( BT A ) 在一定条件下, 可以作为铜在盐酸、硝酸、硫酸、磷酸及盐类溶液中的缓蚀剂。J . V os t a对氢氟酸用缓蚀剂进行了试验研究, 提出苄基亚砜、二苯基硫脲、二苯胍等 1 0 余种有机化合物可以作为氢氟酸用缓蚀剂的有效成分。中国科学院长春应用化学研究所为引进的大型电厂锅炉氢氟酸酸洗缓蚀剂提

油田中的二氧化碳腐蚀

油田中的二氧化碳腐蚀 CO2是油田生产中常见的腐蚀介质,油田单井、流程、海管中介质含有CO2均可能产生CO2腐蚀,尤其是流体含水量超过30%的情况下。 CO2通常状况下是一种无色、无臭、无味无毒的气体,能溶于水,在25℃溶解度为0.144g (100g水)。密度约为空气的1.5倍。干燥的CO2气体本身是没有腐蚀性的,但CO2溶于水后对钢铁材料具有比较强的腐蚀性。CO2较容易溶解在水中,而在碳氢化合物(如原油)中的溶解度则更高,气体CO2与碳氢化合物的体积比可以达到3:1。当CO2溶解在水中时,会促进钢铁发生电化学腐蚀。 CO2腐蚀除产生均匀腐蚀外,在大多数情况下产生局部腐蚀损伤。根据CO2腐蚀的不同腐蚀破坏形态,能提出不同的腐蚀机理。以CO2对钢铁和含铬钢的腐蚀为例,有全面腐蚀,也有局部腐蚀。根据介质温度的不同,腐蚀的发生可以分为三类:在温度较低时,主要发生金属的活泼溶解,对碳钢主要发生金属的溶解,为全面腐蚀,而对于含铬钢可以形成腐蚀产物膜;在中间温度区间,两种金属由于腐蚀产物在金属表面的不均匀分布,主要发生局部腐蚀,如点蚀等;在高温时,无论碳钢和含铬钢,腐蚀产物可以较好地沉淀在金属表面,从而抑制金属的腐蚀。 1.二氧化碳全面腐蚀机理 二氧化碳腐蚀是气体二氧化碳溶解于水中所产生的电化学腐蚀。首先环境中的二氧化碳溶解于水中并形成碳酸。然后碳酸经过两步电离,使溶液呈现酸性。 CO2+H2O?H2CO3 H2CO3?H++HCO3? HCO3??H++CO32? 在含有二氧化碳的腐蚀溶液中,钢铁材料的阳极反应为: F e→F e2++2e? 阴极反应为: 2H++2e?→H2↑ 总的腐蚀反应为: CO2+H2O+F e→F e CO3+H2 由总反应式可知,阳极溶解的铁离子和溶液中碳酸根离子形成F e CO3,F e CO3为规则的块状附着在金属表面。当金属表面形成F e CO3腐蚀膜后,这种腐蚀膜没有明显的保护性。在

环境友好型缓蚀剂的研究现状及展望

环境友好型缓蚀剂的研究现状及展望 摘要:综述了国内外高效环境友好型缓蚀剂的研究进展, 展望了新型高效环境友好型缓蚀剂的发展趋势。从对环境友好型缓性剂制备方法的改进和开发该类缓蚀, 存在的问题等方面进行综合评价, 指出运用绿色化学的思想研究和制备环况友好型缓饮是未来缓性剂的发展方向。 关键词:腐蚀环境友好缓蚀剂 Environmental Friendly Corrosion Inhibitors Research Present Situation And Prospect Abstract :At Home And Abroad Were Summarized Efficient Environment Friendly Corrosion Inhibitors Research Progress,The Prospect Of New And High Efficient Environmental Friendly Corrosion Inhibitors Trend Of Development.Corrosion Inhibition From The Improvement And Development Of Environment-Friendly Sexual Relief Agent Preparation Method Such, The Existing Problems Of The Comprehensive Evaluation, Pointed Out That The Idea Of Using Green Chemical Research And Preparation Ring In Friendly Slow Drink Is The Future Of Slow The Development Direction Of The Agent. Key Words: Corrsosion Environment Friendly Corrosion Inhibitors

缓蚀剂及其发展现状

缓蚀剂及其发展现状 在很久以前,人们就发现往腐蚀介质中添加少到不至于改变介质性质的某化学物质能够明显抑制腐蚀的发生。这就是缓蚀剂(英文:Corrosioninhibitor)。按照其应用的环境,缓蚀剂可分为酸性介质缓蚀剂、中性介质缓蚀剂。本论文主要研究中性盐水介质中的缓蚀剂,故仅对中性介质用缓蚀剂的发展作以回顾和展望。中性介质中使用的缓蚀剂又分为无机缓蚀剂、有机缓蚀剂、聚合物缓蚀剂等。 1.3.1无机缓蚀剂 较早应用的无机缓蚀剂有铬酸盐、重铬酸盐、硅酸盐、亚硝酸盐、钼酸盐、锌盐、磷酸盐。这些无机缓蚀剂在应用中被证明是有效的,而今有的仍被广泛的应用,后来又发展应用了聚磷酸盐。但是,无机缓蚀剂的应用有很多缺点。例如,无机缓蚀剂的用量一般较大,这就增加了应用的成本。并且,多数无机缓蚀剂对环境是不友好的,其应用从而受到制约。目前,无机缓蚀剂的使用多数是与有机缓蚀剂复配。这样,不但大大减少了其用量,而且由于两者之间的协同效应也提高了其缓蚀效果。 1.3.2有机缓蚀剂 有机缓蚀剂是含N 、P 、S 等杂原子的有机化合物。根据所含杂原子的不同有机缓蚀剂又可分为以下几类。 (1)含氮类有机缓蚀剂 这类缓蚀剂应用最早,最广。盐水体系中常用的是有机胺类吸附型缓蚀剂,该类缓蚀剂是通过氮原子吸附到钢铁表面而疏水基团伸展于水相形成一种致密的物理膜,阻挡介质与钢铁表面的接触,从而降低腐蚀速度。正是由于起作用的是物理膜,其应用有很大的局限性。如高温会发生物理膜脱附而失去缓蚀效果,它也阻挡不了氯离子的穿透。这类缓蚀剂的代表是季 铵盐、胺类、酰胺类。包括直链及环状化合物。 (2)含硫类缓蚀剂 作为盐水体系用的含硫类缓蚀剂的发展是近十几年的事情。这类缓蚀剂的代表是硫氰酸盐及硫脲类化合物。据资料介绍,该类缓蚀剂主要应用在高温环境中,而在低温(低于120"C)盐水中,其缓蚀效果不超过50%。该类缓蚀剂的作用机理尚不清楚。一般认为,硫原子在一定的温度下与金属发生化学反应(是腐蚀过程)。形成一层致密的保护膜。这层保护膜较致密,在高温条件下稳定性很好,所以,在高温下才能显示其优良的缓蚀效果。但是,硫的化合物对环境的影响也是不用忽视的问题。例如,含硫的化合物排放到土壤中,能使土壤酸化结块影响植物的生长。

气相缓蚀剂及其特点

?相缓蚀剂及其特点 目前,防止金属腐蚀的方法多种多样,包括使用涂料、电镀、电化 学保护、使用缓蚀剂等。缓蚀剂是一种防腐蚀化学品,将其少量物质加 入到腐蚀介质中,借助其该物质在金属表面上发生物理、化学作用,能 够显著降低金属材料的腐蚀速度。许多无机和有机化合物均可以用来作 为缓蚀剂。缓蚀剂按其作用机理,可分为阳极型缓蚀剂、阴极型缓蚀剂、 吸附型缓蚀剂和沉淀膜型缓蚀剂。缓蚀剂按其作用的物理状态可分为非 挥发性和挥发性缓蚀剂两种。前者主要用于液体介质中,与金属表面直 接接触而发挥作用,包括油溶性缓蚀剂和水溶性缓蚀剂;后者又称气相 缓蚀剂,具有良好的挥发性,使用时不用接触金属表面,其有效的缓蚀 成分在常温下自动挥发至金属表面而起到保护作用。气相缓蚀剂 (vaporphase inhibitor,VPI),又叫挥发性缓蚀剂(volatile corrosion inhibitor,VCI),或气相缓蚀剂。在金属储运过程的一定时间

和空间里,只需加量的这种物质,依靠它所挥发的缓蚀分子或缓蚀基团在金属表面的作用,就能使金属免受大气腐蚀或降低腐蚀速度。 气相缓蚀剂及气相防锈包装材料的成功应用,对于金属制品、器械、工序间半成品的储存、包装、运输和保管是一项重大的技术进行步,它具有下列一些技术特性: 1:在被气相缓蚀剂挥发的气体充满了的整个 包装空间,对裸露的金属表面均有良好的防锈作 用,因而无须考虑金属的形状和结构,有着广泛的 适用性; 2:采用气相缓蚀剂保护的金属构件,其表面 无需其它防锈处理,且包装工艺简单、可靠、使用 方便; 3:气相缓蚀剂的使用无需特殊设备,生产占 地面积小,包装成本较低;

绿色缓蚀剂的研究现状及举例

绿色缓蚀剂的研究现状及举例 总结国内外缓蚀剂的发展不难发现,虽然各种介质中缓蚀剂的研究成果层出不穷,但其在实际运用中却不够完善和成熟。尤其是绿色环保型缓蚀剂研究仍处于实验探索阶段,在该领域仍需要在提高缓蚀作用效果、机理研究和低成本低污染等方面做得更深入的研究。 我国近10年对各类缓蚀剂的研究和应用发展很快,部分产品性能达到国际领先水平, 但总体水平与国外还有很大差距。研究人员认为今后应着重从以下几个方面探索绿色缓蚀剂的发展: 1从天然植物、海产植物中,提取、分离、加工新型绿色缓蚀剂有效成分的方法。 2利用医药、食品、工农业副产品提取有效缓蚀剂组成,并进行复配或改性处理,开发新型绿色缓蚀剂。 3运用量子化学理论、灰色关联分析、人工神经网络方法等科学技术合成高效低毒多功能新工艺型绿色缓蚀剂和低聚体新型绿色缓蚀剂。 4对钼酸盐、钨酸盐、稀土元素金属等无机缓蚀剂深入进行研究,研制出新型高效绿色缓蚀剂。 5利用先进的分析测试仪器和新的研究方法,研究缓蚀剂的作用机理及协同作用机理,指导新型绿色缓蚀剂的开发。 以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料的化学物质或复合物. (1)根据产品化学成分,可分为无机缓蚀剂、有机缓蚀剂、聚合物类缓蚀剂。 ①无机缓蚀剂无机缓蚀剂主要包括铬酸盐、亚硝酸盐、硅酸盐、钼酸盐、钨酸盐、聚磷酸盐、锌盐等。 ②有机缓蚀剂有机缓蚀剂主要包括膦酸(盐)、膦羧酸、琉基苯并噻唑、苯并三唑、磺化木质素等一些含氮氧化合物的杂环化合物。 ③聚合物类缓蚀剂聚合物类缓蚀剂只要包括聚乙烯类,POCA,聚天冬氨酸等一些低聚物的高分子化学物。 (2)根据缓蚀剂对电化学腐蚀的控制部位分类,分为阳极型缓蚀剂,阴极型缓蚀剂和混合型缓蚀剂。 ①阳极型缓蚀剂阳极型缓蚀剂多为无机强氧化剂,如铬酸盐、钼酸盐、钨酸盐、钒酸盐、亚硝酸盐、硼酸盐等。它们的作用是在金属表面阳极区与金属离子作用,生成氧化物或氢氧化物氧化膜覆盖在阳极上形成保护膜。这样就抑制了金属向水中溶解。阳极反应被控制,阳极被钝化。硅酸盐也可归到此类,它也是通过抑制腐蚀反应的阳极过程来达到缓蚀目的的。阳极型缓蚀剂要求有较高的浓度,以使全部阳极都被钝化,一旦剂量不足,将在未被钝化的

缓蚀剂的作用原理、研究现状及发展方向_7942.docx

缓蚀剂的作用原理、研究现状及发展方向 1缓蚀剂概述 在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂 是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的 化学物质或几种化学物质的混合物” 。 缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。某些有 机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降 低。 缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。如用 在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。总之,在同时发 生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀 溶解。缓蚀剂都起着重要的作用。另外,电镀中的整平剂,从其本来的定义备不 属于缓蚀剂的畴;但是,其作用机理( 吸附 ) 和缓蚀剂的机理类似。具有整平作 用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。下图给出了有无缓 蚀剂的不同效果:

图 1 缓蚀剂的效果 2不同类型的缓蚀剂及其作用原理 2.1阳极型缓蚀剂及其作用原理 阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能 增加阳极极化,从而使腐蚀电位正移。通常是缓蚀剂的阴离子移向金属阳极使金属钝化。该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。 作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在 酸性溶液中也属于此类。) 图 2 阳极型缓蚀剂作用原理 2.2阴极型缓蚀剂及其作用原理 阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸

二氧化碳的影响及综合利用

二氧化碳的影响及综合利用 引言:近十多年来,在涉及地球环境保护的诸多问题中,最令人关注的当属大气环境逐渐变暖,即所谓的温室效应。近年来所发生的许多危害,都或多或少被打上了温室效应的烙印,如:严酷的天气类型,变化的生态系统,物种灭绝及生物多样性的丧失,饮用水的减少,海平面上升造成的陆地减少和平均气温上升等。尽管产生全球气候变化的原因是多方面的,但大量研究表明,产生温室效应的主要原因与温室气体(CHG)的大量排放有直接关系。 当前所谓的温室气体主要有6种,除二氧化碳外,还包括甲烷,氧化氮,氢氟烃,全氟碳和六氟化硫。这些气体能大量吸收地球表面辐射的热量,从而使地表温度升高而产生温室效应。而现在摆在人们面前的不仅仅是如何减少二氧化碳的排放量,更应该去思考如何利用这部分温室气体进行工业生产,来为世界创造更多的价值。 一、概述: 碳循环是碳通过大气圈,生物圈,土壤圈,岩石圈和水圈的变化和传递的总过程。 碳在生物圈的存在形式主要为有机碳;碳在水圈中的存在形式为溶解的有机碳,溶解的无机碳,沉淀的有机碳,沉淀的无机碳和有机碳;碳在岩石圈中的存在形式为有机碳(包括化石燃料)和碳酸盐;碳在土壤圈的存在形式为有机碳;碳在大气圈中的主要存在形式为二氧化碳和甲烷气体。

现在大气中的二氧化碳的浓度为0。000370%。而近年来,人类每年排入大气的二氧化碳为280*10^8t,是植被和土壤呼吸及海表交换排入大气的CO2平均自然流通量(总量约为5500*10^8t)的5%。大气中CO2总量的变化由排放和吸收量之间的净平均差额决定,而不是各流量本身。有数据表明:在过去的42万年中,二氧化碳的含量在过去的250年增长了31%,其中最近几十年更是以指数形式在增长。而化石燃料的使用对CO2排放的贡献占人类活动总排量的70%~90%。 Rising carbon dioxide concentrations in air in the past decades 二、温室效应: 目前,公认的二氧化碳所引起的温室效应对人类生活环境的几大影响主要包括:一是极端气象和气候现象频繁发生;二是冰川融化,海平面上升;三是对动植物种群数目和分布产生影响;四是全球气候变暖导致越来越严重的缺水问题;五是全球全球变暖带来的种种后果将使人类健康问题越来越突出。 1.温室效应的起因

缓蚀剂研究新进展

缓蚀剂研究新进展 摘要:近年来缓蚀剂的发展做了概况,并对缓蚀剂未来的发展方向做出了阐述,提出发展环境友好型缓蚀剂及完善缓蚀剂快速、准确、原位评价的方法和技术。 国际上缓蚀剂的研究主要集中在美国、中国、印度等国家。其中,中国是在国际学术期刊上发表缓蚀剂论文最多的国家,研究水平与世界基本保持同步。欧洲对缓蚀剂的研究也非常重视,但其重点在混凝土缓蚀剂和铝合金缓蚀剂的研究。目前,绿色天然缓蚀剂、多功能缓蚀剂以及基于分子设计的缓蚀剂开发是研究发展的趋势。 关键词:缓蚀剂硬和软酸和碱吸附型缓蚀剂抑制效率 正文: 最新进展 环境友好型缓蚀剃的开发 年来,国内外环境友好型缓蚀剂的开发主要通过合成有机化合物和从天然植物中提取两种方式。合成的有机化合物作为环境友好型缓蚀剂的种类包括:咪唑啉系列、氨基酸系列、曼尼烯碱和硫代磷酸酯类等。咪唑啉系列环境友好型缓蚀剂仍然是目前的开发热点之一。氨基酸系列环境友好型缓蚀剂的研究已开发出了全有机多元复合水处理缓蚀剂、高效的酸洗缓蚀剂。曼尼烯碱系列和硫代磷酸酯类缓蚀也剂逐步引起了国内外研究者的兴趣。 从植物中提取缓蚀剂是近年来缓蚀剂领域研究的热点之一。国内开展了对白酒糟、滇润楠叶、麻竹叶、木薯、云南甜龙竹叶等的提取物对金属的缓蚀行为研究。国外一些学者研究了特定树叶提取物在硫酸介质中对低碳钢的缓蚀行为。研究结果表明,这些植物提取物对低碳钢具有良好的缓蚀作用。另外,米糠、无花果树叶、酒耶树汁等提取物也对金属有较好的缓蚀效果。 钢筋混凝土缓蚀剂 引起混凝土内钢筋腐蚀的主要原因是碳化作用和氯离子渗透。钢筋缓蚀剂的主要功能是抑制、阻止、延缓钢筋腐蚀的电化学过程。缓蚀剂通常可作为外加剂掺加到混凝土中或涂敷在钢筋表面,优先参与并阻止腐蚀反应的阴阳极过程,从而有效地阻止钢筋的腐蚀。早期使用的钢筋混凝土缓蚀剂有亚硝酸盐、铬酸盐、苯甲酸盐等,但由于它们存在有毒或者对混凝土性能有负面影响等缺点,逐渐被淘汰。近年来新提出的迁移性缓蚀剂是含有各种胺和醇胺以及它们的盐与其它有机和无机物的复合型阻锈剂,能对钢筋表面的阴极和阳极同时产生保

CO2腐蚀

CO2腐蚀的机理及介绍

1.1 CO2的腐蚀特点: 从CO2的腐蚀情况来看,腐蚀的形状各异,但从各种情况分析,除了外观和介质油差别外,所有的气田用钢材的CO2腐蚀都非常集中以蚀坑、沟槽或大小不同的腐蚀区的型式出现,所以腐蚀穿透率很高,一般都达数毫米/年,一般来说,底面平整边缘锐利,是典型的CO2腐蚀特征。 2.3CO2的腐蚀机理: 钢铁在除O2水中CO2腐蚀机理,其阳极反应主要是Fe的溶解,可简写为: Fe →Fe2+ + 2e (1) 对阴极过程观点不一,较占主导的观点认为,在环境温度下,裸钢在除O2水中的腐蚀是受氢析出动力学控制,而阴极析氢机制除了一般的电化学还原H3O+离子放电反应析氢外,既在低pH除了非催化的析氢机制: H3O+ + e →H + H2O (2) 反应外,还可以通过下述表面吸附催化作用H+还原反应析氢机制进行:CO2 + H2O = H2CO3 (3) H2CO3 + e =H+ + HCO3- (4) HCO3- + H3O+ = H2CO3 + H2O (5) 上述析氢机制得到的一些试验的支持,并由此可以得出 (1)不同金属材料具有不同的催化活性,而影响腐蚀速率。 (2)在一定pH范围(4~6),pH对阴极反应速度没有明显影响。

然而实际中,钢铁表面总是被某些物质覆盖着,如扎皮、氧化膜或在含介质中的腐蚀产物膜等,这些覆盖物使析氢可能不是在裸钢表面而是在膜或覆盖物上进行,因此影响到腐蚀特性,而这些问题不是上述简单机制所能解决的,所以CO2腐蚀机理仍在研究中。 2.4影响CO2腐蚀的因素: 由于介质中的成分比较复杂,各种成分的含量也各不同,因此在各种条件下,影响CO2腐蚀特性的因素很多,归纳起来可以分为以下几个因素:(1)温度的影响(2)CO2分压(Pco2)影响(3)腐蚀产物膜的影响(4)流速的影响(5)pH、Fe2+及介质组成的影响等,这些因素可能导致钢的多种腐蚀破坏,比如可能产生高的腐蚀速率、严重的局部腐蚀穿孔,甚至可能发生应力腐蚀开裂等。 2.4.1温度的影响: 大量的研究结果显示温度是CO2腐蚀的重要影响参数,较多的结果表明在60℃附近CO2腐蚀在动力学上有质的变化。由于碳酸亚铁的溶解度具有负的温度系数,随着温度的升高而降低,因此在60℃~110℃之间,钢表面可生成具有一定保护性的腐蚀产物膜层,是腐蚀腐蚀速率出现过渡区,该温区内局部腐蚀较突出。而低于60℃时不能形成保护性膜层,钢的腐蚀速率在此区出现极大值(含Mn钢在40℃附近、含Cr钢在60℃附近)。在110℃或更高的温度范围内,由于可能发生下列反应: 3Fe + 4H2O = Fe3O4 + 4H2 因而在110℃附近显示出钢的第二个腐蚀速率极大值,表面产物膜层也由FeCO3变成杂有Fe3O4和FeCO3膜并随温度升高,Fe3O4量增加,达到

有机缓蚀剂的作用机理(最新整理)

有机缓蚀剂的作用机理 ----冀衡酸洗缓蚀剂产品部 有机缓蚀剂分子中通常同时具有极性基团与非极性基团,极性基团中存在氮、氧、磷、硫等元素,这些元 素均含有孤对电子,而且电负性大,有机缓蚀剂通过极性基团牢固地吸附在金属表面上,而非极性基团排 列在介质中,这样一方面有效地隔离了金属与腐蚀介质的接触,阻碍了腐蚀反应产物的扩散,同时还改变 了双电层结构,提高了腐蚀反应的活化能,最终抑制了腐蚀反应的进行。有机缓蚀剂的缓蚀性能有赖于其 极性基团在金属表面吸附的强度,而极性基团的吸附可以是物理吸附也可以是化学吸附,或者两种吸附共 同存在。 (1)有机缓蚀剂极性基团的物理吸附 关于有机缓蚀剂的物理吸附行为,Mann最早做了深入的研究,他指出在酸性溶液中,吡啶(C5H5N)、烷基胺(RNH2)、硫醇(RSH)及三烷基磷等的中心原子(N、S、P等)含有孤对电子,这些中心原子与酸性 溶液中的氢质子结合,最终形成阳离子: RNH2+H+=(RNH3)+ 形成的缓蚀剂与金属之间存在的范德华力使缓蚀剂吸附在金属表面,这就是物理吸附。物理吸附速度很快,是可逆过程,容易脱附,吸附过程产生的热小,受温度影响小,而且金属和缓蚀剂间没有特定组合。 物理吸附会受到金属表面过剩电荷的显著影响,如上所述,大多有机缓蚀剂在酸性介质中都以阳离子形式存在,如果金属表面带有过剩负电荷,那么金属表面与缓蚀剂之间就会存在强烈的静电引力作用,使 得缓蚀剂更容易吸附在金属表面,而且吸附作用力也更强;相反,金属表面如果存在过剩的正电荷,则会 一定程度上抑制缓蚀剂向金属表面的吸附。金属表面究竟携带何种过剩电荷,可以通过零电荷电位(即金 属表面没有电荷存在时的电位)测量进行考察,零电荷电位可以通过微分电容曲线测试进行确定,即为金 属电极双电层电容最小时的电位。当金属开路电位大于零电荷电位时,金属表面带有过剩的正电荷,相反,金属表面则带有过剩的负电荷。在缓蚀剂的实际应用中可以通过改变金属表面携带的过剩电荷量来促进缓 蚀剂的物理吸附,如在酸性介质中,添加少量碘化物后,有机胺的缓蚀性能将为显著提高,这主要是碘化 物吸附在金属表面后,使得金属表面带有更多的过剩负电荷,促进了有机胺类缓蚀剂在金属表面的吸附; 同样有机胺类缓蚀剂之所以在盐酸介质中有着卓越的缓蚀性能,也部分归因于氯离子使得金属表面带有更 多的过剩电荷。 (2)有机缓蚀剂极性基团的化学吸附——供电子型缓蚀剂 相比物理吸附来说,化学吸附作用力更强,吸附更稳定,因此大多数有机缓蚀剂与金属表面的作用力主要是通过化学吸附实现的,而化学吸附实质就是缓蚀剂分子或离子与金属表面原子之间形成了配位键。 与物理吸附不同,化学吸附与金属原子类别、缓蚀剂中心原子附近基团的推电子能力等均有密切关系。以

气相防锈法包装技术和应用

气相防锈法包装技术及其应用 一、防锈包装技术 机电设备在储运过程中不允许发生锈蚀,否则就会影响到其使用功能。通用的防锈包装方法包括涂层法、干燥剂法、气相防锈法。 1、涂层法是将防锈油脂刷涂或喷涂在金属制品表面。因为涂层法事后要进行专门处理,不利于环境保护,所以这种方法现在在国外已经很少使用。而气相防锈法在机电设备的出口运输包装中没有干燥剂法使用得多。 2、干燥剂一般选用硅胶,是将适量的干燥剂装入纸袋或布袋中,然后悬挂在密封的包装容器或热封起来的塑料薄膜内的适当部位,保证能对整个密封空间吸湿,降低空气相对湿度,防止在整个储运过程中机电设备表面形成凝固水膜而锈蚀。干燥剂必须自由悬挂在包装内窨并均匀分布,不得直接放置在内装物上。同时要保证密封空间仙的空气相够循环流动,即整个薄膜表面不允许贴在内装物上。封闭起来的薄膜不能有裂缝或小孔。 3、气相防锈法的原理是将一种特殊的固体材料混入载体中,这种材料在储运过程中会释放出一种气体分子覆盖在金属表面,形成一种保护层,从而阻止氧气和水分与金属发生化学反应,保证机电设备不会锈蚀。机电产品出口运输包装中最常用的是气相防锈薄膜。它即含有气相防锈材料,又可以作为普通的塑料膜来使用。该防锈材料可用于汽车零件、大小型机电产品等的运输包装中。这种方法有其优点,它的密封通常不象干燥剂法要求那么高。有时为了防止底座上的薄膜积水,甚至可以在气相防锈薄膜的最低处划几道小缝。 二、气相防锈包装的方法 (一)气相缓蚀剂的使用方法. 气相缓蚀剂的使用方法目前主要有以下几种: 1、粉末法。这种方法包括: 1将气相防锈剂粉末直接散布在金属的表面上密封包装;2将气相防锈剂粉末盛于具有透气性的纸袋或布袋中;或其粉末压成片剂,放在包装容器内金属制品的周围等。缓蚀剂距离金属制品不得超过其作用有效半径(一般不超过30㎝)。其用量主要根据缓蚀剂的种类、性质(如蒸汽压大小)和包装条件及封存期的长短来确定。 使用时为了使缓蚀剂能迅速发挥作用,以防金属制品锈蚀,单独使用蒸汽压较低的缓蚀剂时,包装金属制品后应在40-60℃的条件下保持几个小时,或者将几种不同蒸汽压的缓蚀剂混合使用。 2、气相防锈纸法。应用较普遍,很有发展前途。这种方法是将气相防锈剂溶解于水或有机溶剂中,然后浸涂在纸上凉干后就得“气相防锈包装纸”。用这种气相防锈包装纸包装金属制品可长期封存。但用于制造气相防锈包装纸的原纸应是中性,Cl-或SO4-的含量不得超过

气相缓蚀剂的研究与发展(精)

气相缓蚀剂的研究与发展 肖怀斌 摘要:介绍了国内外的气相缓蚀剂技术发展概况,阐述了气相缓蚀剂技术的应用形式,展望了该技术领域内的研究方向。 关键词:气相缓蚀剂;防锈技术;展望 分类号:TG174.42+6文献标识码:A 文章编号:1001-1560(200001-0026-02 Research and Development of Vapor Phase Inhibitor XIAO Huai-bing Abstract:Comprehensive survey of vapor phase inhibitors both at home and abroad is given. The application of VPI and the research trend are discussed.▲气相缓蚀剂作为一种挥发性缓蚀剂,在常温下自动挥发出的气体能起到抑制 金属大气腐蚀的作用。因此,在使用气相缓蚀剂时,可在不必直接接触金属表面的情况下使金属制品的表面、内腔、管道、沟槽甚至缝隙部位都能得到保护。由于其防锈期长、操作简便、成本较低等特点,近年来气相缓蚀剂和气相缓蚀技术的研究和应用都有较快的发展。 1 多效能通用气相缓蚀剂 气相缓蚀剂在近20年时间中,几乎都是用于钢铁类金属材料和制品的保护。但对多种非铁金属则有不同程度的腐蚀或不相容,以至于对多种金属组合件机械制品中的铜、锌、镉等有色金属部件,往往需采取隔离保护措施或放弃使用气相缓蚀剂技术。对黑色金属和有色金属同时具有缓蚀作用的多效能气相缓蚀剂的研究和应用,一直是气相缓蚀剂的重点发展方向之一[1]。

60年代初,苯骈三氮唑对黄铜防变色作用得到证实,从而打开了气相缓蚀剂保护铜基材料的大门。各种实验结果表明,苯三唑除了对铜及铜合金具有优良的缓蚀性能外,对银、镀银层、锌、镀锌层、镀镉层等金属也有较好的缓蚀效果。此外,近年来国内外还对苯三唑的多种衍生物如甲基苯三唑、3氨基-1.2.4苯三唑、双苯三唑、四氮唑进行了研究。结果表明,以上缓蚀剂均对锌、镉、铅、镍、锡、铜有良好的保护作用,并对钢铁、镁、铝也有一定缓蚀效果[2]。湖南大学研制的1-羟基苯三唑(一种新型的水溶性高效气相缓蚀剂,在中性或碱性水溶液中不仅对黄铜、紫铜有良好的缓蚀性能,对钢、铸铁也有较好的缓蚀作用。该缓蚀剂毒性低、污染少,其水溶液浓度在0.05%以上即有很好的缓蚀和抑制细菌生长的效果,当其与磷酸盐等其他缓蚀剂配合使用时,防锈性能还可进一步提高。除了苯三唑及其衍生物以外,铬酸盐类化合物(如铬酸环已胺、铬酸二环已胺、铬酸叔丁酯、邻硝基化合物如邻硝基酚二环已胺、邻硝基酚三乙醇胺、邻硝基酚四乙烯五胺、邻硝基苯甲酸的有机胺盐、肉桂酸盐、硼酸盐、硫脲类、噻唑、味唑类化合物对多种有色金属和镀层均有一定的缓蚀作用[3]。 目前在美日等国报道的气相缓蚀剂材料中,约有1/3以上为通用型多效能的气相缓蚀剂材料。 2 高效低毒气相缓蚀剂 在气相缓蚀剂的研究和发展过程中,亚硝酸盐曾占据着主导的位置,以致于世界各国在介绍气相缓蚀剂的文献中,仍常常以亚硝酸二环已胺为代表。由于它对钢铁制品的有效长期防锈能力和优良的抗盐雾性,使之在军械器材和外贸出口机电产品的防锈包装材料中必不可少。1990年8月我国对1964年采用亚硝酸二环已胺封存的枪械产品进行了开箱检查,长达26年仍然光亮无锈,封存地点包括温度、湿度和盐雾气氛相对较高的四川地区。 但是,对亚硝酸盐的毒性问题,也越来越引起了重视。进入21世纪,在可持续发展战略的推动下,开发低公害,无污染的气相缓蚀剂将是当务之急。国际环境系列标准ISO 14000于1996年起陆续颁布实施,现在许多国家规定在采购气相缓蚀剂材料

相关文档
最新文档