地铁矿山法区间隧道结构设计指南

地铁矿山法区间隧道结构设计指南
地铁矿山法区间隧道结构设计指南

验收文件之三北京地铁矿山法区间隧道

结构设计计算指南

(试用)

北京市轨道交通建设管理有限公司

二○○六年十二月

前言

根据北京城市轨道交通矿山法修建区间隧道的地层、地面环境和埋深等实际条件,以及多年的设计施工经验,针对矿山法区间隧道设计检算中有关地层压力、计算模型、计算参数等不统一或不明确状况,在《地铁设计规范》(GB50157-2003)基础上,吸纳“北京地铁矿山法区间隧道结构设计方法”研究成果,编制了《北京地铁矿山法区间隧道设计计算指南》,供北京轨道交通建设设计参考。

本指南主要起草人:罗富荣、朱永全、陈曦、张成满、王占生、宋玉香、贾晓云、李宏建、徐凌等。

编者

2006年12月

目录

1 总则 (1)

2 设计计算技术指标 (2)

3 设计计算荷载 (4)

3.1 荷载分类和荷载组合 (4)

3.2 地层压力 (5)

3.3 地面车辆荷载引起的附加压力 (6)

3.4 地震荷载 (7)

3.5 水压力 (7)

3.6 邻近地面设施及建筑物压力荷载 (8)

3.7 人防荷载 (10)

3.8 其它荷载 (10)

4 初期支护设计计算 (10)

4.1 一般规定 (11)

4.2 初期支护结构检算模型 (11)

4.3 初期支护强度检算方法 (13)

5 二次衬砌设计计算 (146)

5.1 一般规定 (16)

5.2 计算方法 (16)

5.3 衬砌结构温度伸缩缝 (19)

条文说明 (24)

1 总则 (24)

2 设计计算技术指标 (25)

3 设计计算荷载 (25)

4 初期支护设计计算 (30)

5 二次衬砌设计计算 (32)

1 总则

1.0.1地下铁道区间主要构件设计使用年限为100年。根据承载能力和正常使用要求,采取有效措施,保证结构强度、刚度,满足结构耐久性要求。

1.0.2 结构设计计算应满足施工、运营、城市规划、环境保护、防水、防火、防迷流、防腐蚀和人民防空的要求。

1.0.3 矿山法区间隧道结构按结构“破损阶段”法,以材料极限强度进行设计。

1.0.4 设计中除参照本指南外,尚应符合《地铁设计规范》(GB50157-2003)等国家现行的有关强制性标准的规定。

1.0.5 本指南适用范围:第四纪地层中的矿山法标准单线区间隧道。

2设计计算技术指标

2.0.1地下铁道区间隧道为地铁的主体结构工程,防水等级为二级,耐火等级为一级。

2.0.2 隧道结构的抗震等级按三级考虑,根据《北京地区地震烈度区划图(50年超越概率10%)》,隧道结构抗震设防基本烈度为7度或8度。

2.0.3衬砌结构按上级批复的人防抗力标准进行验算。

2.0.4结构设计在满足强度、刚度和稳定性的基础上,应根据地下水水位和地下水腐蚀性等情况,满足防水和防腐蚀设计的要求。当结构处于有腐蚀性地下水时应采取抗侵蚀措施,混凝土抗侵蚀系数不低于0.8。

2.0.5在永久荷载和可变荷载作用下,二类环境中二次衬砌结构裂缝宽度(迎土面)应不大于0.2mm,一类环境(非迎土面及内部混凝土构件)衬砌结构的裂缝宽度均应不大于0.3mm。当计及地震、人防或其他偶然荷载作用时,可不验算结构的裂缝宽度。

2.0.6矿山法区间隧道施工地面沉降控制标准应根据环境条件认真分析确定。一般路面下宜控制在30mm以内,当穿越重要地面建筑物或地下管线时,上述数值应按照允许的条件确定。

2.0.7 混凝土和钢筋混凝土结构中所用混凝土的极限强度应按表2-1采用。区间隧道内层衬砌采用钢筋混凝土时其混凝土强度等级不应低于C30,抗渗等级不低于S8,同时应满足其抗冻、抗渗和抗侵蚀性等耐久性相关要求。

2.0.8混凝土的弹性模量应按表2-2采用。混凝土的剪切弹性模量可按表2-2数值乘以0.43采用。混凝土的泊松比可采用0.2。

2.0.9钢筋强度和弹性模量按表2-3采用。

2.0.10支护喷射混凝土的强度等级不得小于C20。C20喷射混凝土的极限强度可采用:轴心抗压15 MPa,弯曲抗压18 MPa,抗拉1.3 MPa,弹性模量为21GPa (注:喷射混凝土的强度等级指采用喷射大板切割法,制作成边长为10cm的立方体试块,在标准条件下养护28d,用标准试验方法所得的极限抗压强度乘以0.95的系数) 。

3 设计计算荷载

3.1荷载分类和荷载组合

3.1.1隧道结构设计荷载类型及名称应按表3-1采用。

(2)表中所列荷载未加说明者,可根据国家有关规范或根据实际情况确定;

(3)施工荷载包括:设备运输及吊装荷载,施工机具及人群荷载,施工堆载,相邻施工的影响等荷载。

3.1.2 确定荷载的数值时,应考虑施工和使用过程中发生的变化。

3.1.3结构设计时应按结构可能出现的最不利工况组合进行计算。可能出现的荷载组合有基本组合、长期效应组合、抗震偶然组合和人防偶然组合。荷载组合形式如表3-2所示。

3.2 地层压力

3.2.1 竖向均布压力

??

?

??

≥--+≤<--+≤=1211311213)1)(()1)((D h K D K K D D h D K h K K h D h h v γγγσ (3-1)

式中 γ——地层重度,为上覆地层重度加权平均值,i i

h

h

γγ=

∑;

i γ、i h ——第i 层地层重度和厚度。 h ——隧道上覆地层厚度;

D ——开挖断面宽度;

D 1——竖向土压力保持不变的起始深度,1

3

12121K K K K D --=

其中,1

212)245(tan tan a K ??-?=;γ?

?12)]

245tan(tan 21[a c K -?-=

; )2

45tan(21?

-?+=t H D a ; D K D K K D K K 212131--+=

; ?——上覆地层内摩擦角加权平均值,i i

h h

??=∑

i ?——第i 层地层内摩擦角。

c ——上覆地层内聚力加权平均值,i i

c h

c h

=

∑;

i c ——第i 层地层内聚力。

t H ——断面高度。

竖向荷载与隧道埋深的关系如图3-1曲线所示。 3.2.2 侧向均布压力

21()(45)22

v t e H tg ?

σγ=+?- (3-2)

式中 v σ——洞顶地层的垂直压力;

?——隧道开挖高度内各地层内摩擦角的层厚加权平均值;

其他符号同前。

3.3 地面车辆荷载引起的附加压力

3.3.1 竖向压力

在道路下方的地下结构,地面车辆及施工荷载可按20kPa 的均布荷载取值,并不计冲击压力的影响。

3.3.2 车辆荷载的侧向压力

地面车辆荷载传递到地下结构上的侧压力ox p ,可按下式计算:

oz a ox p p λ= (3-3)

20452

a tg ?λ?

?=- ??

?

(3-4)

式中 a λ——侧压力系数

其它符号意义同前。

3.4 地震荷载

在衬砌结构横截面和沿结构纵轴方向的抗震设计和抗震稳定性检算中采用地震变形法,即以隧道所在位置的地层位移作为地震对结构作用的输入。在北京地区隧道结构抗震设防基本烈度为7度或8度条件下,地震偶然荷载值(或影响程度)小于按上级批复人防抗力标准的人防偶然荷载。因此,在计入人防偶然荷载时,可不验算地震偶然荷载。

等代的静地震荷载包括:结构本身和洞顶上方土柱的水平、垂直惯性力以及主动土压力增量。

水平地震荷载可分为垂直和沿着隧道纵轴两个方向进行计算。由于地震垂直加速度

埋深h

1图3-1 地层竖向压力计算图式

)2K

峰值一般为水平加速度的1/2~2/3,而且也缺乏足够的地震记录,因此对震级较小和对垂直地震振动不敏感的结构,可不考虑垂直地震荷载的作用。只有在验算结构的抗浮能力时才计及垂直惯性力。

3.5 水压力

一般静水压力可使隧道结构内力的轴向力加大,对抗弯性能差的混凝土结构来说,相当于改善了它的受力状态;但高水位时,对侧墙和底板的某些截面的受力也可能产生不利影响,因此,计算静水压力时应分别按可能出现的最高和最低水位考虑。而验算隧道结构的抗浮能力时,按可能出现的最高水位考虑。

计算静水压力时,两种方法可供选择,一种是和土压力分开计算;另一种是将其视为土压力的一部分和土压力一起计算。偏于安全,对于砂性土、粘土地层(含粉质粘土)采用水土分算。

水土分算时,地下水位以上的土采用天然重度γ,水位以下的土采用有效重度γ'计算土压力,另外再计算静水压力的作用。水土合算时,地下水位以上的土与水土分算时相同,水位以下的土采用饱和重度s γ计算土压力,不计算静水压力。其中土的有效重度

γ'为:

w s γγγ-=' (3-5)

式中,w γ——水的重度,一般3kN/m 10=w γ。 两种计算静水压力的方法的差异示于图3-2中。

3.6 邻近地面设施及建筑物压力荷载

隧道穿越或邻近地面高大建筑物时,应考虑邻近地面建筑物地基应力荷载所引起的附加荷载。按土力学理论,假定地基为各向同性半无限体,在不同地面荷载作用下,地

(b)水土合算

(a)水土分算

图3-2 两种计算静水压力方法

基中任一点所引起的附加应力,以布内斯克(Boussinesq)解为基础推导求解。

矩形面积均布荷载作用下,土中任一点N 的z σ已有解析解,但公式计算比较复杂,计算时常用图表来进行。

边长为a 、b 的矩形面积均布荷载作用时,矩形角点下深度Z 点(如图3-3(a)所示)的附加应力z σ为:

p k z ?=σ (3-6)

2(,)

a z k

f b b =

式中 a 、b ——面积荷载的长和宽;

Z ——待求点深度; p ——均布荷载值;

k ——矩形面积均布荷载角点下的应力系数,如表3-3所示。

矩形面积均布荷载下,土中任一点N (如图(3-3(b)、(c))所示)的附加应力可用叠加原理求得。如图3-3(b)所示,为求矩形(a ×b )面积荷载中心Z 点的z σ,可把矩形面积分成四等分,先由表3-3找四分之一面积角点下的应力系数)5.02,5.05.0(

b

z

b a f k =,则中心点下z σ为p b

z

b a f z ?=)5.02,5.05.0(

4σ。又如图3-3所示,为求矩形面积外任意点M 下的z σ,可按图上虚线过M 点分成若干面积,则M 点下的z σ可由几个矩形面积角点下的z σ相叠加而成,即

p k k k k M M M M z ?+--=)(584674523613σ (3-7)

式(3-7)中k 的脚标表示所代表的面积,如613M k 表示矩形面积13M 6的角点应力系

图3-3 矩形均布荷载角点下和任一点下的应力

(a) 角点下应力;(b) 中点下应力;(c)任一点下应力

(a)

(b)

(c)

数,按每个面积的长边和短边比及深度和短边之比,由表3-3中查得。用表时要注意表中之b永远代表短边。

3.7人防荷载

区间隧道结构人防荷载按《人民防空工程设计规范》(GB50225-95)中地道、坑道式人防工程结构荷载、结构动力计算等有关规定计算确定。

3.8其它荷载

正常施工条件下,区间隧道结构可忽略地铁车辆荷载及其制动力作用、温度变化及混凝土收缩徐变作用、人群荷载、施工荷载及设备重量作用。

4初期支护设计计算

4.1一般规定

4.1.1矿山法隧道初期支护设计参数可采用工程类比法确定,施工中通过监测进行修正,并应通过理论验算。

4.1.2矿山法隧道在预设计和施工阶段,应对初期支护的稳定性进行判别。初期支护施工阶段的稳定性,可按支护结构实际总位移U与极限位移U0比较,并结合位移发展趋势进行判别。

当U≤U0时,隧道稳定;当U>U0时,隧道不稳定。

极限位移U0应根据地层条件、断面特征及施工方法等因素分析确定。

4.1.3矿山法隧道初期支护应考虑能承受施工期间的全部荷载,并对控制地层变形起主要作用。

4.2初期支护结构检算模型

4.2.1矿山法地铁隧道埋深浅,水、土作用荷载较为明确,初期支护结构厚度较大,隧道初期支护后独立承受上覆地层压力作用时间较长,因此,常用的“荷载-结构”和“地层-结构”两种计算模式均可采用。

4.2.2检算初期支护强度时,宜采用相对简单的“荷载-结构”计算模式。

4.2.3 初期支护结构强度检算时,应考虑地层对初期支护结构变形的约束作用。按局部

σ为其向地层方向产生的位移δ与地层弹性抗力系数k的乘积,变形理论,约束作用力

p

即:

σk

δ

= (4-1)

p

式中k——地层的弹性抗力系数(MPa/m),可用地质勘察部门提供的基床系数代替。当无地质勘察基床系数时,可按表4-1所列基床系数平均值采用。

4.2.4 检算初期支护后地层变形及支护刚度时,宜采用“地层-结构”计算模式。在分析施工过程中的地层变形情况时,还应考虑超前支护和超前加固的作用。

4.3初期支护强度检算方法

4.3.1计算荷载

采用“荷载—结构”模型时,作用在初期支护上的荷载有永久荷载中的地层压力、结构自重,和可变荷载的地面车辆荷载及其动力作用,不计水压力、偶然荷载等其他荷载。

4.3.2计算图式

初期支护结构按弹性支承链杆图式计算,将计算断面划分为40~ 60个直梁等分单元,拱部90°~120°(自动试算确定)范围不设弹性链杆,侧边加水平链杆,底边加竖直

链杆。对于墙脚为圆角形支护,圆角处各节点同时采用水平链杆和竖直链杆,计算图式如图4-1所示。

4.3.3 截面强度检算方法

根据初期支护格栅钢架网喷混凝土或无钢架喷混凝土结构情况,参照《铁路隧道设计规范》(TB10003-2005),按破损阶段法进行检算。

4.3.4 当初期支护采用无钢架喷射混凝土、厚度在25cm 以上并按4.3.2节计算图式视为偏压构件计算初期支护内力时,喷混凝土矩形截面轴心及偏心受压构件的抗压强度应按下式计算:

a KN R bh ?α≤ (4-2)

式中 a R ——初期支护喷射混凝土的抗压极限强度,按2.9节规定采用; K ——安全系数; N ——轴向力(N); b ——截面的宽度(m); h ——截面的厚度(m);

?——构件的纵向弯曲系数,对于隧道支护可取1=

?; α——轴向力的偏心影响系数,按表4-2采用。

α

e 0/h 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 α 1.000 1.000 1.000 0.996 0.979 0.954 0.923 0.886 0.845 e 0/h 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 α 0.799 0.750 0.698 0.645 0.590 0.535 0.480 0.426 0.374 e 0/h 0.36 0.38 0.40 0.42 0.44 0.46 0.48 α 0.324 0.248 0.236 0.199

0.170

0.142

0.123

0(2)表中3

0200)/(44.15)/(569.12)/(648.0000.1h e h e h e +-+=α

图4-1 圆角型断面计算图式

从抗裂要求出发,混凝土矩形截面偏心构件的抗拉强度应按下式计算:

1.7561L R bh

KN e h

?

≤- (4-3)

式中 L R ——喷射混凝土抗拉极限强度,按2.9节规定采用;

0e ——截面偏心距;

其它符号意义同前。

注:计算表明,对混凝土矩形截面构件,当00.20e h ≤时,系抗压强度控制承载力。

4.3.5 格栅钢架喷射混凝土初期支护每延米支护结构的钢筋量换算成钢筋混凝土矩形截面,按

5.2.5节钢筋混凝土结构检算方法计算。

4.3.6 初期支护截面安全系数。初期支护作为独立承载结构的作用时间相对较短,重要性程度也相对较低。根据《铁路隧道设计规范》(TB10003- 2005)素混凝土或钢筋混凝土结构强度安全系数规定,如表4-3和表4-4所示,采用施工阶段强度安全系数。

5 二次衬砌设计计算

5.1 一般规定

5.1.1 复合式衬砌的二次衬砌应按主要承载结构设计,应承受使用期的全部荷载,其设计参数可采用工程类比法确定,并应通过理论验算。 5.1.2 作用在复合式结构上的水压力由二次衬砌承担。

5.2 计算方法

5.2.1 矿山法区间隧道复合式结构

在第四纪土层中的浅埋复合式结构,二次衬砌与初期支护共同承担着外荷载。考虑到支护与二次衬砌复合结构计算模型较为复杂,为使计算工作简单,按二次衬砌承担全部外荷载(永久荷载、可变荷载和偶然荷载)计算,并满足相应截面最小安全系数及裂缝宽度检算要求。

5.2.2 衬砌结构按“荷载-结构”模式计算,破损阶段法检算结构截面强度,并验算钢筋混凝土结构裂缝宽度。

5.2.3 根据结构特性按表3-1所示荷载,按不同荷载组合情况计算。

5.2.4 考虑地层对衬砌结构变形的约束作用,按局部变形理论式(4-1)计算地层被动压力。

5.2.5 截面强度检算方法

钢筋混凝土矩形截面偏心受压构件的计算公式(图5-1、图5-2): 大偏心受压 (055.0h x ≤)时,其截面强度按下式计算(图5-1):

)()2/(00a h A R x h bx R KNe g

g w '-'+-≤ (5-1) 小偏心受压 (055.0h x >)时,其截面强度按下式计算(图5-2):

)(5.002

0a h A R bh R KNe g

g a '-'+≤ (5-2) 当轴向力作用于钢筋的重心之间,尚应符合下列要求:

)(5.0020

a h A R h

b R e KN g g a -'+'≤' (5-3)

式中 K ——安全系数;

N ——轴向力; b ——截面的宽度; h ——截面的厚度;

0h ——截面的有效高度,a h h -=0; 0

h '——截面的有效高度,a h h '-='0; e 、e '——轴向力作用点到钢筋g A 、g

A '重心的距离; a 、a '——自g A 和g

A '钢筋的重心分别至截面最近边缘的距离; w R ——混凝土的弯曲抗压极限强度; a R ——混凝土的抗压极限强度; g R ——钢筋的计算强度;

g A 、g

A '——受拉、受压钢筋面积。 5.2.6 隧道衬砌按破损阶段检算构件截面强度时,根据所受的不同荷载组合,在计算中应分别选用不同的安全系数,并不应小于表5-1所列数值。

A

k N

A g ’

A g ’

图5-1 钢筋混凝土大偏心受压构件强度计算图

g ’

图5-2 钢筋混凝土小偏心受压构件强度计算图

A g ’

5.2.7 裂缝宽度验算

永久荷载和可变荷载作用下,二次衬砌结构最大计算裂缝宽度max

f δ应满足 2.5条的

要求。

考虑裂缝宽度分布不均匀性及荷载长期作用影响后的最大裂缝宽度m ax f δ(cm),可按下列公式计算:

f g

g

f l E σψ

δ0.2max = (5-4)

νμ???

?

??+=d l f 06.06 (5-5) 式中 E g ——钢筋的弹性模量;

ψ——裂缝间纵向受拉钢筋应变不均匀系数;

???

?

??-

=M bh R f 2235.012.1ψ,当4.0<ψ时,取Ψ=0.4;0.1>ψ时,取0.1=ψ; M ——永久荷载和可变荷载作用下的弯矩; b ——矩形截面宽度;

R f ——混凝土的极限抗拉强度;

h ——截面高度;

g σ——纵向受拉钢筋应力,可取0

87.0h A M

g g =

σ;

g A ——纵向受拉钢筋的截面面积;

h 0——截面的有效高度,h 0=截面高度h -保护层厚度a ; l f ——平均裂缝间距(以厘米计);

d ——纵向受拉钢筋的直径(以厘米计),当用不同直径的钢筋时,公式(5-5)中d 改

为换算直径s A g /4(s 为纵向受拉钢筋总周长);

μ——纵向受拉钢筋配筋率,0

bh A g =μ;

ν——与纵向受拉钢筋表面形状有关的系数,对螺纹钢筋,取0.7ν=;对光面钢

筋,取 1.0ν=;对冷拔低碳钢丝,取 1.25ν=。

当采用Ⅲ级钢筋作纵向受拉钢筋时,应将计算求得的最大裂缝宽度乘以系数1.1(注:如有可靠的设计经验或构造措施时,式(5-4)中的系数2.0可适当减小)。

5.3 衬砌结构温度伸缩缝

(1) 温度应力基本方程

取如图5-3所示的一维线形结构,左端固定,右端受弹性约束,在温差T 的作用下,其一端产生的变位

为其自由变位与弹性约束变位之代数和,即:

E

L

TL u z

σα+=? (5-6) E

T z

σαε+

= (5-7)

式(5-7)为温度变化状态下一维弹性约束结构的应力—应变方程。

式中 u ?——结构端部变位;

α——材料线膨胀系数,C30混凝土线膨胀系数取1×10-5/℃;

z σ——结构温度应力; ε——结构应变; T ——温差;

E ——材料弹性模量(C30混凝土取31GPa)。

由于受隧道内热环境的影响,衬砌壁面温度处于不断变化状态,温差主要体现在:长期运营洞内温度逐年递增;昼夜洞内环境温差和季节变化引起的洞内空气温差。图5-4、5-5分别为冬季和夏季测试期间,北京市轨道交通建设管理有限公司对北京地铁1、2号线地铁区间隧道内各测试断面的平均空气温度t a 、平均壁面温度t w ,以及平均壁面热流Q w 的实测结果(佟丽华,北京地铁1、2号线热环境节能控制研究[J],暖通空调,2005(35))。

图5-4、5-5可以看出,实测区段壁面的季节平均温差约4℃。考虑长期运营洞内温度积累递增,季节平均温差可取4~10℃。

(2)外部约束应力方程

当两种面接触的物体产生相对位移时,在接触面上必然产生剪切应力,此时剪切应力可表示为:

L

图5-3 一维结构模型

地铁隧道矿山法施工事故风险分析与评价

地铁隧道矿山法施工事故风险分析与评价 发表时间:2018-11-15T09:38:32.460Z 来源:《基层建设》2018年第30期作者:韩燕[导读] 摘要:新时期地铁施工技术水平的提升,为现代城市发展注入了活力。 中国铁路设计集团有限公司天津 300142摘要:新时期地铁施工技术水平的提升,为现代城市发展注入了活力。城市地铁属于万众瞩目的工程,在网络日益普及的今天,一旦出现安全事故,极可能造成不可估量的社会影响和极大的舆论压力。因此,准确分析城市地铁施工期间风险事故原因,研究其结构的可靠度是一个非常重要的课题。 关键词:地铁隧道矿山法;施工事故风险;评价引言 随着城市地铁建设的大规模开展,城市地铁隧道施工风险管理日益受到各方面重视。隧道工程作为一项高风险建设工程,具有建设规模大、风险高、风险因素众多以及客观条件复杂等特点。 1安全事故统计自我国1965年第一条地铁一北京地铁1号线开工建设以来,截至2016年末,共有30个城市开通城市轨道交通运营,其中地铁里程3168.7km,获得批复的城市共有58个,规划线路总长为7345.3km,总投资超过37000亿元。相比于英国、法国、美国、日本等发达国家近百年的轨道交通发展历史,我国轨道交通建设经验还很不足,虽然我国60年代就开始了地铁建设,但是大规模建设也就是2000年以后至今十几年的时间。加之城市地铁建设多位于城区密集区,施工环境复杂,施工难度大,与之相应的施工及管理人员素质偏低,因此,在我国地铁高速发展的近一段时期内施工事故频频发生。 我国在煤矿事故、交通事故、危险化学品事故等统计方面的研究比较多,但是在隧道施工尤其是地铁施工事故方面统计较少,有关隧道事故统计大部分仅限于运营阶段和火灾事故等。针对地铁隧道施工事故的事故类型、风险源指向、发展趋势等数据分析不系统,事故发生的原因、类型、条件等对相似地质条件下的新建隧道施工有极大的参考意义,通过对历史事故资料的分析,可以揭示事故发生特征和规律,同时可以为避免事故和提高隧道与地下工程施工管理水平提供指导。 通过分析我国近10年来100起地铁隧道矿山法建设施工期所发生的安全事故样本发现,该样本包含坍塌事故55起,由各种机械伤害引起的事故11起,火灾与水灾诱发事故各7起,坠物击打引起事故6起,模板坍塌造成事故5起,爆炸引发事故4起,由其他方面原因导致事故5起,如图1所示。对于各类事故造成的人员伤亡方面,坍塌占总伤亡人数的55.9%,通过对上述各类事故数据统计分析可知,坍塌是地铁隧道工程建设期的多发多害事故,是重点防备的事故类型。 图1安全事故统计 2工程实例分析 2.1事故概况 2012?04?25凌晨突降大雨,某市地铁3号线某区间由于雨水渗入掌子面前方的土体,引起掌子面涌水、涌砂、突泥,进而发生隧道坍塌冒顶事故。此事故诱发地面坍塌范围约15m×15m,坍塌深度约为8m,并且造成4条高压电缆受损,部分砂土、各种杂物涌入隧道,造成大面积浸水。 由于工作人员发现较早,抢险及时,未引起人员伤亡情况,但坍塌段位于某市交通干道,人流量较大,引起较多市民围观,产生极坏的社会负面影响。 事故原因如下:坍塌区隧道围岩为富水砂层,在其开挖前已经布设降水井进行降水,并且降水后地下水位已降至隧道底部以下,确保隧道开挖在无水环境下进行,但由于突降大雨,排放雨水的暗渠无法大量排水,导致暗渠转折处(即塌方位置)产生破裂,暗渠中的大量雨水涌入隧道上方土层,在雨水浸泡下,原来无水的隧道周围砂层内黏聚力下降、内摩擦角变小,整体强度变弱,自稳能力下降,掌子面发生涌水、涌砂现象,并导致地面发生冒顶事故。 2.2坍塌事故可靠度分析 塌方处隧道埋深约8m,穿越地层岩性以砂土为主,采用上下台阶预留核心土方法开挖,数值计算模型分为回填土、砂土、上台阶、下台阶、核心土、上下台阶衬砌、强风化花岗岩、中风化花岗岩等9种模型单元,模型范围为52m(横向)×10m(纵向)×31m(竖向),对其四周进行水平约束,底面竖直方向约束,上边界为自由边界,模型采用Mohr-Coulomb弹塑性模型,即τ=c+σtanφ,f=tanφ,其模型如图2所示。

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

地铁区间隧道结构设计计算书

地下工程课程设计 《地铁区间隧道结构设计计算书》

目录 一、设计任务 (3) 1、1工程地质条件 (3) 1、2其他条件 (3) 二、设计过程 (5) 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; (5) 2.2 计算作用在结构上的荷载; (5) 2.3 进行荷载组合 (8) 2.4 绘出结构受力图 (10) 2.5 利用midas gts程序计算结构内力 (10) 附录: (15)

地铁区间隧道结构设计计算书 一、设计任务 对某区间隧道进行结构检算,求出荷载大小及分布,画出荷载分布图,同时利用软内力。具体设计基本资料如下: 1、1工程地质条件 工程地质条件 线路垂直于永定河冲、洪积扇的轴部,第四纪地层沉积韵律明显,地层由上到下依次为:杂填土、粉土、细砂、圆砾土、粉质粘土、卵石土。其主要物理力学指标如表1。 1、2其他条件 其他条件 地下水位在地面以下5m处;隧道顶部埋深6m;采用暗挖法施工。隧道段面为圆形盾构断面。断面图如下:

二、设计过程 2.1 根据给定的隧道或车站埋深判断结构深、浅埋; 可以采用《铁路隧道设计规范》推荐的方法,即有 上式中s为围岩的级别;B为洞室的跨度;i为B每增加1m时的围岩压力增减率。 由于隧道拱顶埋深6m,位于杂填土、粉土层、细砂层中,根据《地铁设计规范》10.1.2可知 “暗挖结构的围岩分级按现行《铁路隧道设计规范》确定”。 围岩为Ⅵ级围岩。则有 因为埋深,可知该隧道为极浅埋。 2.2 计算作用在结构上的荷载;

1 永久荷载 A 顶板上永久荷载 a. 顶板(盾构上部管片)自重 b. 地层竖向土压力 由于拱顶埋深6 m,则顶上土层有杂填土、粉土,且地下水埋深5m,应考虑土层压力和地下水压力的影响。(粉土使用水土合算) B 底板上永久荷载 a. 底板自重 b. 水压力(向上): C 侧墙上永久荷载 地层侧向压力按主动土压力的方法计算,由于埋深在地下水位以下,需考虑地下水的影响。(分图层水土合算,砂土层按水土分算) a. 侧墙自重 b. 对于隧道侧墙上部土压力: 用朗肯主动土压力方法计算

(完整word版)2014年土木工程专业(地铁车站)毕业设计任务书

土木工程专业 城市地下空间工程方向毕业设计任务书 中南林业科技大学土木工程与力学学院 二0一四年三月

××地铁车站初步设计 一、毕业设计目的 毕业设计是按教学计划完成理论教学和相关实践教学之后的综合性教学,是对专业方向教学的继续深化和拓宽,是培养学生工程实践能力的重要教学阶段,其目的在于全面培养、训练学生运用已学的专业基本理论、基本知识、基本技能,进行本专业工程设计或科学研究的综合素质。 二、毕业设计基本要求 1、按设计课题的要求,独立完成设计任务,做出不同的设计方案,交出各自的成果。 2、认真设计、准确计算、细致绘图、文字表达确切流畅。 3、树立科学态度,注重钻研精神、独立工作能力的培养。 4、严格按照有关文件要求进行毕业设计管理,努力提高毕业设计质量。 5、图纸绘制要求:全部采用A3图纸(可加长);计算机出图必须有3张;图纸布局要协调,要紧凑而不拥挤;线条粗细要正确,位置要准确; 6、注重资料的收集、分析和整理工作,设计完成后,设计成果应按如下要求装订成册:(1)《毕业设计计算书》A4一份;(2)《毕业设计图纸》A4一份。 7、图纸装订顺序:封面,目录,设计总说明,设计图纸、表格。 8、设计计算书装订顺序:封面、目录、中英文摘要、设计总说明、设计计算的全部内容、致谢(300字左右)。 三、设计任务与要求 (一)、设计资料 1、车站地质勘察报告 2、预测客流(见附表) 3、车辆外形尺寸:A型车或B型车。 4、车辆编组:设计时采用远期列车6辆编组。 5、防水等级:一级;二次衬砌混凝土抗渗等级不小于S6。 6、主要技术标准:执行《地铁设计规范》(GB50157-2003)的有关技术标

城市地铁隧道常用施工方法概述

城市地铁隧道常用施工方法概述 目前国内外修建地铁车站的施工方法有明挖法、盖挖法、暗挖法、盾构法等。主要阐述了修建地铁车站施工方法的原理、施工流程、优缺点,为我国各大城市修建地铁车站时选择合理的施工方法提供有益的参考。 伴随着我国社会主义经济建设的迅猛发展与综合国力的增强,城市的规模也不断的增大,城市人口流量还在增加、再加上机动车辆呈现逐年上涨的趋势,交通状况不断恶化。为了改善交通环境,采取了各种措施,其中兴建地下铁道得到了普遍的认可,如最近几年在北京、广州、深圳等城市便兴建了大量的地下铁道。由于在城市中修建地下铁道,其施工方法受到地面建筑物、道路、城市交通、水文地质、环境保护、施工机具以及资金条件等因素的影响较大,因此各自所采用的施工方法也不尽相同。下面将就城市地下铁道施工方法分别加以介绍。施工方法的选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。 1明挖法 明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。 明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地

方通常采用明挖法施工。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。 明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土,如图1。 上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。该车站为地下2层岛式车站,长166.6m,标准段宽17.2m,南、北端头井宽21.4m。标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m。车站出人口、风井采用SMW桩作为基坑的维护结构。2盖挖法 盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工.主体结构可以顺作,也可以逆作。 在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。 2.1盖挖顺作法

地铁区间隧道结构设计

地铁区间隧道结构设计 前言 一. 地下铁道的基本功能及特点 地下铁道(metro subway)是指,在大城市下的地下修筑隧道、铺设轨道,以电动快速列车运送大量乘客的公共交通体系,简称地铁。在城市郊区,地铁线路可延伸至地面或高架桥上。地铁运输几乎不占街道面积,不干扰地面交通,有些国家称它为“街外运输”,或称为“有轨公共交通线”(mass transit railway)。它是解决城市交通拥挤问题,并能大量快速、安全运送旅客的一种现代化交通工具。 随着国民经济的发展,城市人口的大量增加,机动车和非机动车数量迅速增长,市区的客运交通流量猛增,城市规模随之不断扩大,这样就使城市中空气污染、噪音、交通拥挤等影响城市居民生活的因素逐渐突出,于是居民区就需要向城市郊区扩展。在上下班时和节假日,城市交通更显得拥挤混乱。原有的城市道路面积和城市面积的比例(道路率)是受城市发展历史制约等,一般不容易改变,想通过拆迁改造城市交通状况是极其困难的,甚至是不可实现的。如上海市人均道路面积仅为2.2m2,要增加道路面积非常困难。因此,许多干道的交通堵塞状况日益严重。目前很多城市道路交通的平均车速已下降至10km/h以下,很多路口交通负荷度已经很饱和。根据国内、外的经验,建设大容量快速轨道交通包括地铁和轻轨运输是缓解交通紧张状况的有效途径。尤其是在市内,建设地铁,向地下发展是今后城市发展的一种趋势。 地下铁道在城市客运交通中的主要作用有以下几个方面: 1.能满足大客运量的需要。一条低铁道单方向每小时的运送能力可达4~6万人次,为公共汽车的6倍至8倍,为轻轨交通的2倍多。完善的地下铁道系统会成为城市公共交通系统的骨干,可担负起城市客客运量的一般左右(实例见下表)

地铁隧道施工方法全解

地铁隧道施工方法全解 明挖法 在地面条件允许的情况下,地铁区间隧道采用明挖法。明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状土的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,但其缺点也是明显的,如阻断交通时间较长、噪声等会对环境产生影响。 盖挖法 01 顺作法 盖挖顺作法是在地表作业完成挡土结构后,以纵、横梁和路面板置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高。依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路。最后拆除挡上结构外露部分并恢复道路。 02 逆作法 盖挖逆作法是先在地表面向下做基坑的维护结构和中间桩柱,和顺作法一样,基坑维护结构多采用地下连续墙或帷幕桩,中间支撑多用主体结构本身的中间立柱。随后开挖表层土体至主体结构顶板地面标高,利用未开挖的土体作为土模浇筑顶板。待回填土后将道路复原,恢复交通。之后的工作都是在顶板覆盖下进行,自上而下逐层开挖并建造主体结构直至底板。 盾构法 盾构法施工是以盾构施工机械在地面以下暗挖隧道的一种施工方法。盾构是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。钢筒的前端设置支撑和开挖土体的装置,中段安装顶进所需的千斤顶,尾部可以拼装预制或现浇隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装或现浇一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆。盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面。 盾构按断面形状不同可分为圆形、拱形、矩形、马蹄形4种。盾构法的主要优点是除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;土方量少;盾构推进、出土、拼装衬砌等主要工序循环进行,易于管理;施工不受风雨等气候条件的影响。 浅埋暗挖法 浅埋暗挖法即松散地层的新奥法施工,新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土作为主要支护手段,对围岩进行加固,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。浅埋暗挖法是针对埋置深度较浅、松散不稳定的上层和软弱破碎岩层施工而提出

深圳地铁矿山法隧道二衬施工方案

第1章编制依据及原则 1.1 编制依据 1 xx地铁2号线工程土建2202标段的施工及设计图纸。 2 xx地铁2号线工程土建2202标段工程岩土工程勘察报告。 3 相关行业的施工规范和标准、xx市相关规程规范及标准。 4 工程现场调查资料及周边建筑物基础资料。 5 现行有关法规、标准、技术规范、定额,以及环境保护、水土保持方面的政策和法规。 6 根据我局现有施工水平、技术、设备、施工经验、科技进步、施工能力和资源配置等施工要素。 1.2 编制原则 确保工期目标的原则 在施工方案的编制中充分考虑了实现关键工期及总工期目标所必须预留的“抢工”条件;从施工顺序安排上也充分考虑了各工期目标的需要。 技术进步原则 施工方案及各分部分项工程施工方法的选择体现了技术进步原则。 成本最优化原则 在保证工程安全、质量、工期的前提下通过科学管理、精细组织、技术创新使得成本最优。进而使得工程自始至终保持质量、成本、安全良性循环的有序状态。

第2章工程概况 2.1工程范围 xx隧道处于xx地铁2号线工程土建2202标段沙世区间,位于xx市南山区世界之窗景区下。 2.2设计概况 沙世区间xx隧道分左、右线,左线ZDK14+245.857~ZDK14+759.000,长513.143m,右线YDK14+252.15~YDK14+759.000,长506.850m,单线总长1019.993m。 全隧道按浅埋暗挖法及喷锚构筑法进行设计,采用复合式衬砌结构。隧道埋深13~28m左右,围岩为Ⅲ~Ⅵ级,Ⅲ级长70.7m,Ⅳ级长208.2m,Ⅴ级长397.8m、Ⅵ级长343.293m (处于砂质粘性土),暗挖隧道断面单线A、单线B、单线C、单线D型及小间距隧道5种。单线隧道直线及曲线段内净空均为5200mm。 2.3二衬施工主要工程数量表 ]

ansys课程设计-地铁车站主体结构设计

目录 课程设计任务书 ................................................................................................................ - 1 - GUI方式 ............................................................................................................................... - 3 - 一、打开ANSYS........................................................................................................... - 3 - 二、建立模型.............................................................................................................. - 3 - 1、定义单元类型.................................................................................................. - 3 - 2、定义单元实常数.............................................................................................. - 3 - 3、定义材料特性.................................................................................................. - 3 - 4、定义截面.......................................................................................................... - 3 - 5、建立几何模型.................................................................................................. - 3 - 6、划分网格.......................................................................................................... - 4 - 7、建立弹簧单元.................................................................................................. - 4 - 三、加载求解.............................................................................................................. - 5 - 1、施加位移约束.................................................................................................. - 5 - 2、施加荷载.......................................................................................................... - 6 - (1)计算结构所受荷载................................................................................ - 6 - (2)施加结构所受荷载................................................................................ - 6 - (3)施加重力场............................................................................................ - 7 - 3、求解.................................................................................................................. - 8 - 四、查看计算结果...................................................................................................... - 8 - 1、添加单元表...................................................................................................... - 8 - 2、查看变形图...................................................................................................... - 8 - 3、查看各内力图.................................................................................................. - 9 - 4、查看内力列表.................................................................................................. - 9 - 单元内力表........................................................................................................................ - 11 - APDL方式......................................................................................................................... - 17 -

地铁隧道矿山法施工的安全与质量控制原理及要点(正式)

编订:__________________ 单位:__________________ 时间:__________________ 地铁隧道矿山法施工的安全与质量控制原理及要点 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5314-99 地铁隧道矿山法施工的安全与质量控制原理及要点(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、地铁隧道矿山法施工的安全与质量控制原理 地铁隧道矿山法施工即新奥法施工。新奥法即新奥地利隧道施工方法的简称,原文是New Austrian Tunnelling Method,简称为NATM。新奥法概念是奥地利学者拉布西维兹教授于二十世纪50年代提出的。我国近40年来,铁路、交通、水利与市政等部门通过科研、设计、施工实践,在许多隧道修建中,根据自己的特点成功地应用了新奥法,取得了较多的经验,积累了大量的数据。新奥法在市政地铁建设中起步较晚,但是近年来在许多省市地铁建设的应用正日益广泛,目前新奥法几乎成为在软弱破碎围岩地段修建隧道的一种基本方法,其技术经济效益是明显的。下面结合新奥法施工的原理和要点,介绍地铁隧道矿山法

地铁盾构区间隧道的矿山法施工

地铁盾构区间隧道的矿山法施工 【摘要】盾构法隧道施工经常会遇到上软下硬不均匀地层,此时倘若隧道下穿既有线或建筑物不具备开舱换刀条件,将会导致盾构机无法正常掘进。在深圳地铁5号线盾构区间上软下硬地层中,局部改用矿山法开挖、初期支护后由盾构机拼装管片通过的施工方法,其经验可供地铁隧道施工参考。 【关键词】矿山法;台阶法;盾构区间隧道;上软下硬地层;长管棚;超前小导管; 1、引言 矿山法是传统的地下巷道施工方法,其主要特点是以钻眼爆破方式开挖土石。20世纪50年代,奥地利学者拉布西维兹提出了岩体自身具有承载能力的理论,给传统矿山法赋予了新的理念,逐步形成了以保护和发挥围岩的自承能力为原则,以控制爆破或机械开挖为主要掘进手段,以锚喷支护为主要支护措施,通过监控量测手段实现信息化动态施工的一种现代隧道施工技术。现代矿山法[1],即新奥法具有施工技术简单、工程造价低等特点,被广泛应用于山岭隧道工程[2~4]。 21世纪以来,随着城市轨道交通的发展,我国进入了地下铁道建设的高峰期。地铁工程一般覆盖层较浅,大多处于淤泥质、粉质粘土地层或砂卵石地层中(尤其是在上海、广州、深圳等地),地下水位通常较高,地层自稳能力差,周边环境复杂。为了确保施工安全、减少地表沉降、加快施工速度,地铁工程大多采用盾构法施工。但在复杂的地层环境中,盾构施工经常会遇到上软下硬等不均匀地层,在这样的地层中掘进会引起刀具严重磨损不能正常使用,假如此时地铁下穿既有线或其他建筑物、不具备开舱换刀条件,将会导致盾构机无法正常掘进。如何解决盾构区间隧道上软下硬地层中下穿既有线或其他建筑物的掘进问题,深圳地铁5号线所采用的矿山法为工程界提供了一个先例。 2、工程概况 2.1工程概况 深圳地铁5号线民治—五和区间线路整体呈东西走向,区间起点位于民治大道东侧、平南铁路南侧的既有道路下方,出民治站后与平南铁路平行前进,经坂田火车站后向北偏转,四次下穿平南铁路后进入五和站,终点位于五和南路。左右两线总长4 061.59 m,线间距11.9~15.5 m。 隧道顶部覆土厚11.5~33.0 m。隧道主要穿越砾质粘土、砾砂、全风化花岗岩及少量强风化与中风化花岗岩。地下水主要为松散岩类孔隙水及基岩裂隙水。孔隙水主要赋存于冲洪积砂层、圆砾层、坡积层、残积层、全风化花岗岩中。基岩裂隙水主要赋存于花岗岩强—中风化层中,略具承压性。地下水埋深1.22~17.8 m。区间隧道采用土压平衡式盾构施工,盾构机外径6.28 m。隧道衬砌采用6块管片错缝拼装而成,管片环宽1.5 m,外径6.0 m,厚度0.3 m,隧道内径5.4 m。 2.2工程难点 线路条件复杂,隧道上覆地层薄,最小仅11.5 m,同时下穿运营铁路,地表沉降要求高,施工难度大。 隧道断面范围内地质复杂,存在上软下硬地层,尤其是在右线DK23+241.5~+292.4(50.9 m)段,有微风化岩层侵入隧道断面内2.8 m,岩石单轴饱和抗压强度达到160 MPa,盾构机难以掘进,故区间隧道施工的难点是盾构机如何穿越硬岩侵入段。 3、施工方案 在饱和软土地区开挖隧道,采用盾构法施工具有安全、快速、对环境影响小等优点[4]。但是,对于硬岩及软硬差异大的上软下硬地层,采用盾构法施工会造成刀具严重磨损、需要多次更换刀具的现象[6]。该段隧道硬岩侵入断面2.8 m,侵入长度达50余米,若采用盾构法掘进,需要多次更换刀具,但由于隧道下穿运营中的平南铁路,不具备开舱换刀条件,因此采用盾构法无法掘进。 现代矿山法是以保护和发挥围岩的自承能力为原则,以控制爆破或机械开挖为主要掘进手段,以锚喷支护为主要支护措施,通过监控量测手段实现信息化动态施工的一种现代隧道施工技术,该法与相应的地层预支护手段相结合可以灵活地应用于各种地层。综合考虑隧道穿越硬岩侵入段的环境条件、施工安全及技术经济因素,拟采用矿山法开挖,初期支护后盾构机拼装管片通过。

(整理)地铁车站和区间隧道的设计和选型

一、地铁车站的建筑设计 1地铁车站的分类 1.1 按照车站埋深分:浅埋车站、深埋车站 1.2 按照车站运营性质分:中间站、区域站、换乘站、枢纽站、联运站、终点站 1.3 按照车站结构断面形式分:矩形断面、拱形断面、圆形断面、其他 1.4 按车站站台形式分:岛式、侧式、岛侧混合式 2 地铁车站建筑及平面布局 2.1 地铁车站的组成 地铁车站由车站主体(站台、站厅、生产、生活用房)、出入口及通道、通风道及地面通风厅等三大部分组成。 车站建筑又可概括为以下部分组成:乘客使用空间、运营管理用房、技术设备用房、辅助用房。 2.2车站总体平面布置 按照以下流程确定:前期工作(设计资料的收集、现场调查、构思),确定车站中心位置及方向,选定车站类型,合理布置车站出入口、通道、通风道与地面通风厅。 3 车站建筑设计 3.1 车站设计 3.1.1 设计原则 (1)根据车站规模、类型及平面布置,合理组织人流路线,划分功能分区。 (2)车站一般宜设在直线上。 (3)车站公用区间划分为付费区和非付费区。 (4)隔、吸声措施。 (5)无障碍通行。 3.1.2 平剖面设计 (1)车站规模确定。确定车站外形尺寸大小、层数和站房面积,确定车站规模大小。 (2)车站功能分析。确定车站乘客流线、工作人员流线、设备工艺流线等,以便于合理进行车站平剖面布置。

(3)站厅设计。主要解决客流出入的通道口、售票、进出站检票、付费区与非付费区的分隔、站厅与站台的上下楼梯与自动楼梯的位置等。 (4)站台设计。确定站台形式、站台层的有效长度、宽度和站台高度,然后进行站台层公共区(上、下车与候车区及疏散通路)的设计。 (5)主要房间布置。包括变电所、环控用房、主副值班室、车站控制室、站长室等,一般设置在站厅和站台层的两端。 (6)车站主要设施布置。包括楼梯、自动扶梯、电梯、售检票设施等的布置和各部位通过能力的设计,按照有关规范执行。 3.1.3 消防、安全与疏散 主要考虑建筑防火与防水淹问题。 3.2 车站出入口及出入口通道 3.2.1 普通出入口的设计 (1)出入口数量的确定。一般情况,浅埋地下车站的出入口不少于4个,深埋车站不少于2个。 (2)主要尺寸的确定。出入口的宽度总和应大于该站远期预测超高峰小时客流量所需的总和,可按照公式计算。 3.2.2 出入口通道 包括出入口通道宽度的设计、埋深、楼梯踏步和自动扶梯的设置等,出入口通道地面坡度等。 3.3 车站通风道 3.3.1 车站通风道 确定地铁车站内的通风方式、环控设备的布置等来确定车站内通风道的布置。 3.3.2 地面通风亭 根据风量及风口数量确定通风亭的大小,根据实际环境和设备的条件确定通风亭的位置。 3.4 残废人设施 考虑残废人专用电梯和站内盲道的设置。

地铁隧道矿山法施工的安全与质量控制原理及要点

地铁隧道矿山法施工的安全与质量控制原理及 要点 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

地铁隧道矿山法施工的安全与质量控制原理及要点一、地铁隧道矿山法施工的安全与质量控制原理 地铁隧道矿山法施工即新奥法施工。新奥法即新奥地利隧道施工方法的简称,原文是NewAustrianTunnellingMethod,简称为NATM。新奥法概念是奥地利学者拉布西维兹教授于二十世纪50年代提出的。我国近40 年来,铁路、交通、水利与市政等部门通过科研、设计、施工实践,在许多隧道修建中,根据自己的特点成功地应用了新奥法,取得了较多的经验,积累了大量的数据。新奥法在市政地铁建设中起步较晚,但是近年来在许多省市地铁建设的应用正日益广泛,目前新奥法几乎成为在软弱破碎围岩地段修建隧道的一种基本方法,其技术经济效益是明显的。下面结合新奥法施工的原理和要点,介绍地铁隧道矿山法施工的安全与质量控制原理及要点。 新奥法是以隧道工程经验和岩体力学理论为基础,将锚杆和喷射混凝土组合在一起作为主要支护手段的施工方法,已成为现代隧道工程新技术的标志之一。新奥法技术摒弃了以整体式混凝土衬砌被动地支撑洞室围岩的传统做法,改由柔性、薄壁、能与围岩紧密帖合的锚喷网支护保

护、加固围岩,从而发挥围岩的自承与自稳能力形成天然承载结构,从而达到省工、省料和降低造价的目的。 新奥法的基本要点可归纳如下: 1.岩体是隧道结构体系中的主要承载单元,在施工中必须充分保护岩体,尽量减少对它的扰动,避免过度破坏岩体的强度。为此,施工中断面分块不宜过多,开挖应当采用光面爆破、预裂爆破或机械掘进。 2.为了充分发挥岩体的承载能力,应允许并控制岩体的变形。一方面允许变形,使围岩中能形成承载环;另一方面又必须限制它,使岩体不致过度松弛而丧失或大大降低承载能力。在施工中应采用能与围岩密帖、及时筑砌又能随时加强的柔性支护结构,例如,锚喷支护等。这样,就能通过调整支护结构的强度、刚度和它参加工作的时间(包括闭合时间)来控制岩体的变形。 3.为了改善支护结构的受力性能,施工中应尽快闭合,而成为封闭的筒形结构。另外,隧道断面形状应尽可能圆顺,以避免拐角处的应力集中。 4.通过施工中对围岩和支护的动态观察、量测,合理安排施工程序、进行设计变更及日常的施工管理。

明挖地铁车站结构设计

关于明挖地铁车站结构设计中若干问题的探讨摘要:随着中国经济持续快速发展和城市化水平的提高,我国城市地铁的建设正大规模地开展。本文以明挖法地铁车站框架结构为研究对象,简述地铁车站结构设计及构造中存在的一些值得商榷的地方,以供同行参考,进行设计优化。 引言 为解决城市交通拥堵问题,修建具有超强运力的地铁与轻轨已逐渐成为大城市的首选手段。目前国内绝大多数直辖市及省会城市已经部分建成或正在修建地铁。地铁在城市中的经济效益与社会效益也是有目共睹的。但是对于以地下工程为主的地铁结构,在结构设计中由于岩土性质的复杂性、设计理论的局限性,使地铁结构设计及构造中存在的一些值得商榷的地方,需要我们在实践中不断的探索、求解,不断优化地铁设计。 一、地震作用对地铁整体现浇框架结构的影响 1.侧墙大开洞对抗震设计的影响 标准的两层地下车站结构型式一般为单柱双跨或双轴三跨两层整体现浇砼框架结构,结构刚度分布均匀、对称。但在车站主体结构与出入口、风亭以及大外挂物业用房相接处,侧墙必须大开洞。大开洞严重削弱了结构侧向刚度,且造成结构两侧刚度不对称,对结构抗震产生不利影响,结构设计时此影响应予以考虑。 2.结构中柱设计对抗震设计的影响 车站结构中的中柱在抗震设计中基本是一种脆性破坏,是框架结

构中受力最薄弱的部位,和首先遭到破坏的构件。因此,提高地下框架抗震性能的最有效的方法是改善中柱的受力性能和受力特征。目前,中柱基本采用的是普通钢筋砼柱,砼强度较高,轴压比偏大,对抗震不利。故中柱应尽量采用塑性性能良好的钢管砼柱。 二、侧向水土压力的不确定性对结构设计的影响问题 1.对中板配筋设计的影响 各层板在侧向水土压力和竖向荷载的共同作用下,实际上处于偏压受力的状态。但是,由于侧向水土压力计算理论上的缺陷以及水压力的多变性,目前各层板的配筋大多按纯弯构件计算,按偏压进行验算,所得结果是偏于安全的。笔者参与的多条地铁线路设计总体技术要求,均有此规定。一般情况下,按上述方法设计时,偏压验算都能满足,因此,设计人员往往不进行偏压验算。但是,在板的轴向压力很大的时候,属小偏压构件,如仍按纯弯构件进行配筋计算,受力上偏于不安全。在这种情况下,应按偏压构件设计,按纯弯构件验算,以保证结构安全。 2.对车站侧墙设计的影响 水位的变化对侧墙剪力的大小影响很大,当水位取至抗浮设计水位时,由于底板所受水浮力很大,向上凸起,侧墙向外侧鼓出,导致侧墙外侧土体产生被动土压力,侧墙剪力最大。以一般两层站为例,侧墙在与底板的节点处,剪力可以达到800kN以上,大于不配箍墙(板)构件抗剪承载力。可见,侧向水土压力的取值,对侧墙的剪力设计值影响很大。

地铁区间隧道常见结构的设计

地铁区间隧道常见结构的设计 【摘要】结合深圳地铁2号线工程实例,介绍地铁区间隧道常见结构型式的设计,以用于指导建设实践。 【关键词】地铁;区间隧道;结构设计 地铁区间隧道目前主要的设计方案有暗挖马蹄形断面隧道、圆形盾构断面隧道、明挖矩形断面隧道。每种型式各有优缺点,在设计中需根据不同的地质条件、线路埋深和周边环境加以选择。 1、设计结构型式的选择 1.1 明挖矩形结构经过多年的发展,明挖法施工工艺成熟,方法简单、可靠,施工风险小,容易控制;工程进度快,根据需要可以分段同时作业;浅埋时造价及运营费用低;对地质条件要求不高;防水处理容易。但施工对城市地面交通和居民的正常生活也有一定影响,在施工期间对周边环境有一定的破坏;在明挖影响范围的地下管线需拆迁;需较大的施工场地。对于跨度大、埋深浅、地质条件差且地面环境允许,有施工场地的区间段,应优先考虑使用,以减少施工的风险和减少工程造价。 1.2矿山法马蹄形结构 1.2.1矿山法优缺点分析地铁区间隧道采用矿山法施工,是为适应城市浅埋隧道的需要而发展起来的施工方法,也称浅埋暗挖法。在我国地铁区间隧道建设中已广泛采用。它是采用信息化设计和施工,可以根据施工监测的信息反馈来验证或修改设计和施工工艺,具有适应城市地下工程周围环境复杂、地质条件较差、埋深浅、地面沉降控制严格及结构防水要求高等特点。矿山法施工除在施工竖井或洞口位置需占有一定的施工场地外,对地面交通、管线等干扰较少,对周边环境影响较小;废弃土石方量少;对不同的地质情况及周边环境采用不同的工程措施及施工方法,针对性强;对软硬不均地层,可以采用不同的开挖方式进行处理,处理方便容易。矿山法也有自身的弱点:在施工中容易引起地下水流失,从而引起地面沉降或隆起,在重要管线和房屋周边需采取切实可行的保护措施;在施工中处理不当,容易引起地面坍塌,从而造成对周边环境的影响和引发事故。在施工过程中需严格按施工工艺和要求进行施工,并加强施工中的监控量测工作。跨度大时,需分多步进行开挖施工,工序之间干扰大,施工组织麻烦,施工中存在一定的风险。在设计及施工过程中,需要充分论证和考虑隧道周边的环境和工程及水文地质条件,采用合理的工程措施和施工工艺之后,以上弱点才可以弱化并避免的。因此采用矿山法设计和施工时,必须从隧道施工方法、施工程序、辅助工法的采用等方面进行认真研究。 1.2.2计算简图采用荷载-结构模型平面杆系有限单元法。选取地质条件最差、最不利典型横断面进行承载能力极限状态和正常使用极限状态的计算。计算简图和计算结果见图1~图3。 1.3盾构法圆形结构 1.3.1盾构法优缺点盾构法施工不仅施工进度快,而且无噪音,无振动,对地面交通及沿线建筑物、地下管线和居民生活等影响较少。由于管片采用高精度预制构件,机械化拼装,因而质量易于控制。地铁工程建设经验表明,由于采用高精度管片及复合防水封垫,单层钢筋混凝土管片组成的隧道衬砌可取得良好的防水效果,不需要修筑内衬结构。盾构技术的发展,尤其是泥水式、复合式土压平衡式盾构的开发,使之在含水砂层以及砂质黏性土层等地层中进行开挖成为可能,所以当工程地质和水文地质条件以及周围环境情况等难以用矿山法和明挖法施工时,盾构法是较好的选择。而且采用盾构法施工下穿房屋筏板基础时,能较有效控制地面沉降,减少对房屋的破坏。因此,地铁区间隧道采用盾构技术已成为发展的必然趋势。采用盾构法较矿山法施工有施工风险相对较小、对环境的影响较小、工程投资较省等优点。盾构法施工也有一定的弱点。盾构机在匀质地层中施工是顺利的,但是地层软硬不均,尤其是在软

矿山法施工方法

隧道台阶法施工方法
施工方法示意
施工工艺流程
1、断面测量放样 2、上部台阶钻爆开挖 3、初喷砼、打设锚杆 4、上部台阶挂钢筋网、立格栅钢 架、打锁脚锚杆和喷射砼
1、断面测量放样 2、中部台阶钻爆开挖 3、初喷砼 4、锚杆、钢筋网、格栅钢架、锁 脚锚杆 5、喷射砼
1、断面测量放样 2、下部台阶钻爆开挖 3、初喷砼、打设锚杆 4、挂钢筋网、立格栅钢架 5、喷射砼

隧道 CRD 法施工方法
序 号 施工工序图示 施工工序说明
1
1、隧道左上断面 1 号洞 室开挖支护: ①开挖 1 号洞室, 施作系 统锚杆; ②挂钢筋网、初喷; ③架立格栅钢架及临时 支撑、锁脚锚杆施工、喷 射混凝土。
2
2、隧道左下断面号 2 号 洞室开挖支护: ①2 号洞室土石方开挖, 施作系统锚杆; ②挂钢筋网、初喷; ③架立格栅钢架、 锁脚锚 杆施工、喷射混凝土。
3
3、隧道右上断面 3 号洞 室开挖支护: ①3 号洞室土石方开挖, 施作系统锚杆; ②挂钢筋网、初喷; ③架立格栅钢架及临时 支撑、锁脚锚杆施工、喷 射混凝土。

4
4、隧道左下断面号 4 洞 室开挖支护: ①开挖 4 号洞室, 施作系 统锚杆; ②挂钢筋网、初喷; ③架立格栅钢架、 锁脚锚 杆施工、喷射混凝土。
隧道 CD 法施工方法
序 号 施工工序图示 施工工序说明
1
1、隧道左上断面 1 号洞 室开挖支护: ①开挖 1 号洞室, 施作系 统锚杆; ②挂钢筋网、初喷; ③架立格栅钢架及临时 支撑、锁脚锚杆施工、喷 射混凝土。

相关文档
最新文档