一元二次方程的应用(分类讲解)

一元二次方程的应用(分类讲解)
一元二次方程的应用(分类讲解)

海豚教育个性化简案

学生姓名:年级:科目:

授课日期:月日上课时间:时分------ 时分合计:小时

教学目标1. 掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况;

2. 掌握韦达定理及其简单的应用;

3. 会在实数范围内把二次三项式分解因式。

重难点导航1. 一元二次方程根的判别式和韦达定理;

2. 灵活运用根的判别式和韦达定理解决问题.

教学简案:

一元二次方程的应用

题型一:送卡片、握手、比赛问题题型二:传播问题

题型三:平均增长(下降)率问题题型四:利润问题

题型五:面积问题

授课教师评价:□ 准时上课:无迟到和早退现象

(今日学生课堂表□ 今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握现符合共项)□ 上课态度认真:上课期间认真听讲,无任何不配合老师的情况

(大写)□ 海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象审核人签字:学生签字:教师签字:

1. 关于x 的方程10422

=-+kx x 的一个根是-2,则方程的另一根是 ;k = 。

一元二次方程的应用

【知识要点】

1.列方程解应用题的一般步骤:

(1)审题。了解问题的实际意义,分清已知条件和未知量之间的关系。

(2)设未知数。一般情况下求什么设什么为未知数。

(3)列方程。根据量与量之间的关系,找出相等关系,列出方程。

(4)解方程。灵活运用一元二次方程的四种解法。

(5)验根。检验一元二次方程的根是否满足题意。

(6)答。作答。

2. 一元二次方程应用题常见题类型:

(1)增长率问题。(2)利润问题。(3)面积问题。(4)行程为题。(5)工程问题。

题型一:送卡片、握手、比赛问题

例1:毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为。

例2:一次同学聚会,每两人都相互握了一次手,小芳统计一共握了28次手,这次聚会的人数是。例3:庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有队参加比赛.

题型二:传播问题

有一人患了流感,经过两轮传染后共有64人患了流感.

(1)求每轮传染中平均一个人传染了几个人?

(2)如果不及时控制,第三轮将又有多少人被传染?

题型三:平均增长(下降)率问题

例1:雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.

(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;

(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?

例2:为了绿化家乡,某中学在2003年植树400棵,计划到2005年底,使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数.

例3:恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率。

题型四:利润问题

例1:种新商品每件进价为120元,商场在试销阶段发现,当每件商品售价为130元时,每天可销售70件。当每件商品售价高于130元时,每涨价2元,日销售量就减少4件,据此规律,商场要想达到每日赚取1600元利润的目标,应涨价多少元?

例2:山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:

(1)每千克核桃应降价多少元?

(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?

例3:某商场试销一种成本为60元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数b kx y +=,且70=x 时,50=y ;80=x 时,

40=y ;(1)写出销售单价x 的取值范围;(2)求出一次函数b kx y +=的解析式;(3)销售单价定为多少

时,商场可获得利润500元?

例4:销售某种商品,根据经验,销售单价不少于30元∕件,但不超过50元∕件时,销售数量N(件)与商品单价M(元∕件)的函数关系的图象如图所示中的线段AB.

(1)求y关于x的函数关系式;

(2)若商品的成本为20元,要想获利1200元时,那么该商品的单价应该定多少元?

题型五:面积问题

例1:在一块长16m、宽12m的矩形荒地上,要建一个花园,并使花园所占面积为荒地面积的一半.

(1)如果如图①所示设计,并使花园四周小路宽度都相等,那么小路的宽是多少?

(2)如果如图②所示设计,并使小路宽度都相等,那么小路的宽是多少?

例2:如图,利用一面墙(墙EF最长可利用25米),围成一个矩形花园ABCD,与围墙平行的一边BC上要预留3米宽的入口(如图中MN所示,不用砌墙),用砌46米长的墙的材料,当矩形的长BC为多少米时,矩形花园的面积为299平方米.

例3:小林准备进行如下操作实验;把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.

(1)要使这两个正方形的面积之和等于58cm2,小林该怎么剪?

(2)小峰对小林说:“这两个正方形的面积之和不可能等于48cm2.”他的说法对吗?请说明理由.

【课堂训练】

1.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份的营业额的平均月增长率。

2. 如图,我区某中学计划用一块空地修建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的板材可使新建的板墙的总长为24米.为方便学生出行,学校决定在与墙平行的一面开一个2米宽的门.求这个车棚的长和宽分别是多少米?

3. 2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.

(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;

(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.

4. 某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P(个)与每个书包销售价x(元)满足一次函数关系式.当定价为35元时,每天销售30个;定价为37元时,每天销售26个.问:如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?

5. 某商店以每件16元的价格购进一批商品,物价局限定每件商品的利润不得超过30%.

(1)根据物价局规定,此商品每件售价最高可定为多少元?

(2)若每件商品售价定为x元,则可卖出(170-5x)件,商店预期要盈利280元,那么每件商品的售价应定为多少元?

6. 为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)

海豚教育个性化教案(真题演练)

1.(2015?连云港)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;

(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.

海豚教育1对1出门考(_______年______月______日周_____)

学生姓名_____________ 学校_____________ 年级______________ 等第______________ 1.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万

评语:元.从2006年到2008年,如果该企业每年盈利的年增长率相同,

求:(1)该企业2007年盈利多少万元?

(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?

2. 如图,某农户打算建造一个花圃,种植两种不同的花卉供应城镇市场,这是需要用长为24

米的篱笆,靠着一面墙(墙的最大可用长度a是10米),围成中间隔有一道篱笆的长方形花圃.

设花圃的宽AB为xm,面积为S2

m.

(1)求x与S的函数关系式;

(2)若要围成面积为452

m的花圃,AB的长是多少米?

(3)花圃的面积能达到482

m吗?如果能,请求出此时AB的长;如果不能,请说明理由.

3. 某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。为了扩大销售,增加赢

利,尽快减少库存,商场决定采取社党降价措施。经调查发现,如果每件衬衫煤降价1元,商

场平均每天可多售出2件。求若商场平均每天要赢利1200元,每件衬衫应降价多少元?

3A作业:

周一:周二:

周三:周四:

周五:

一元二次方程的解法详细解析

一元二次方程的解法详细解析 【一元二次方程要点综述】:【要点综述】:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。在没讲一元二次方程的解法之前,先说明一下它与一元一次方程区别。根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法≥0时有解,<0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法≥0时,方程有解;<0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。【举例解析】例1:已知,解关于的方程。分析:注意满足的的值将使原方程成为哪一类方程。解:由得:或,当时,原方程为,即,解得.当时,原方程为,即,解得,.说明:由本题可见,只有项系数不为0,且为最高次项时,方程才

是一元二次方程,才能使用一元二次方程的解法,题中对一元二次方程的描述是不完整的,应该说明最高次项系数不为0。通常用一般形式描述的一元二次方程更为简明,即形如的方程叫作关于的一元二次方程。若本题不给出条件,就必须在整理后对项的字母系数分情况进行讨论。例2:用开平方法解下面的一元二次方程。(1);(2)(3);(4)分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,其解为。通过观察不难发现第(1)、(2)两小题中的方程显然用直接开平方法好做;第(3)题因方程左边可变为完全平方式,右边的121>0,所以此方程也可用直接开平方法解;第(4)小题,方程左边可利用平方差公式,然后把常数移到右边,即可利用直接开平方法进行解答了。解:(1)∴(注意不要丢解)由得,由得,∴原方程的解为:,(2)由得,由得∴原方程的解为:,(3)∴∴∴,∴原方程的解为:,(4)∴,即∴,∴,∴原方程的解为:,说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式,像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时,只需在一边取正负号,还应注意不要丢解。例3:用配方法解下列一元二次方程。(1);(2)分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边同时加上一次项系数的一半的平方。解:(1)二

一元二次方程及解法经典习题及解析

┃知识归纳┃ 1.一元二次方程的概念 只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.[注意] 一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数. 2.一元二次方程的解法 一元二次方程有四种解法:法、法、法和法. [注意] 公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0. 3.一元二次方程根的判别式Δ=b2-4ac (1)Δ>0?ax2+bx+c=0(a≠0)有的实数根; (2)Δ=0?ax2+bx+c=0(a≠0)有的实数根; (3)Δ<0?ax2+bx+c=0(a≠0) 实数根. 4.一元二次方程根与系数的关系 一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=,x1·x2=. [注意] 它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0. 四大解法 一、开平方法 方程的左边是完全平方式,右边是非负数;即形如x2=a(a≥0)

二、配方法 “配方法”的基本步骤:一化、二移、三配、四化、五解 1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边; 3.配方:方程两边同加一次项系数一半的平方; 4.变形:化成 5.开平方,求解 三、公式法 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0. 四、因式分解法 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,至少有一个因式等于零. 因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 解题技巧: 先考虑开平方法,

一元二次方程分类练习题

一元二次方程题型分类总结 知识梳理 一、知识结构: 考点类型一概念 (1)定义:①只含有一个未知数, 并且②未知数的最高次数是 二次方程。 2 (2) 一般表达式:ax bx c 0(a 0) ⑶难点:如何理解“未知数的最高次数是 2”: ① 该项系数不为“ 0”; ② 未知数指数为“ 2”; ③ 若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、卜列方程中是关于 x 的 ?兀二次方程的是 ( ) A 3 x 1 2 2 x 1 B 1 2 1 2 0 x x C ax 2 bx c 0 D x 2 2x x 2 1 变式:当k 时, 关于x 的方程kx 2 2x x 3是一元二 、次方程。 例2、方程 m 2 x' 叫3mx 1 0是关于 x 的一 ?兀二次方程, 则 m 的值 为 ____________ ★ 1、方程8x 2 7的一次项系数是 ___________ ,常数项是 ★ 2、若方程m 2 x 冋1 0是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★ 3、若方程m 1 x 2 、m?x 1是关于x 的一元二次方程,则m 的取值范围 是 _____ 。 ★★★ 4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=3 ,n=1 C.n=2,m=1 D.m=n=1 兀二次方程 解与解法 根的判别 韦达定理 2,这样的③整式方程就是一元

考点类型二方程的解 ⑴概念:I使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知2y2 y 3的值为2,则4y2 2y 1的值为____________________ 。 例2、关于x的一元二次方程a 2x2 x a2 4 0的一个根为0,则为。 例3、已知关于x的一元二次方程ax2 bx c 0a 0的系数满足a c 此方程必有一根为 _______ 。 例4、已知a,b是方程x2 4x m 0的两个根,b,c是方程y2 8y 5m 个根,则m的值为________ 。 针对练习: ★ 1、已知方程x2 kx 100的一根是2,则k为,另根疋 ★ 2、已知关于x的方程x2kx 2 0的一个解与方程x 1 X 13的解相同 x 1 ⑴求k的值;⑵方程的另一?个解。 C b c D a ★★★ 6、若2x 5y 3 0,则4x?32y a的值b,则0的两 ★ 3、已知m是方程x2 x 10的一个根,则代数式m2★★ 4、已知a 是x2 3x 1 0的根,贝U 2a2 6a ★★ 5、方程a b x2 b c x c a 0的一个根为(

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程题型分类总结

一元二次方程题型分类总结 一、知识结构:一元二次方程考点类型一概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式: ⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。典型例题:例 1、下列方程中是关于x的一元二次方程的是()A B C D 变式:当k 时,关于x的方程是一元二次方程。例 2、方程是关于x的一元二次方程,则m的值为。针对练习:★ 1、方程的一次项系数是,常数项是。★ 2、若方程是关于x的一元一次方程,⑴求m的值;⑵写出关于x的一元一次方程。★★ 3、若方程是关于x的一元二次方程,则m的取值范围是。★★★ 4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是() A、m=n=2

B、m=3,n=1 C、n=2,m=1 D、m=n=1考点类型二方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。⑵应用:利用根的概念求代数式的值;典型例题:例 1、已知的值为2,则的值为。例 2、关于x的一元二次方程的一个根为0,则a的值为。例 3、已知关于x的一元二次方程的系数满足,则此方程必有一根为。例 4、已知是方程的两个根,是方程的两个根,则m的值为。针对练习:★ 1、已知方程的一根是2,则k为,另一根是。★ 2、已知关于x的方程的一个解与方程的解相同。⑴求k的值;⑵方程的另一个解。★ 3、已知m是方程的一个根,则代数式。★★ 4、已知是的根,则。★★ 5、方程的一个根为()A B1 C D ★★★ 6、若。考点类型三解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型 一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例 1、解方程:

一元二次方程压轴题[含答案解析]

一元二次方程 1.(北京模拟)已知关于x的一元二次方程x2+px+q+1=0有一个实数根为2. (1)用含p的代数式表示q; (2)求证:抛物线y1=x2+px+q与x轴有两个交点; (3)设抛物线y1=x2+px+q的顶点为M,与y轴的交点为E,抛物线y2=x2+px+q+1的顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值. 2.设关于x的方程x2-5x-m2+1=0的两个实数根分别为α、β,试确定实数m的取值范围,使|α|+|β|≤6成立.

3.(湖南怀化)已知x 1,x 2是一元二次方程( a -6)x 2 +2ax +a =0的两个实数根. (1)是否存在实数a ,使-x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由; (2)求使( x 1+1)( x 2+1)为负整数的实数a 的整数值. 4.(江苏模拟)已知关于x 的方程x 2 -(a +b +1)x +a =0(b ≥0)有两个实数根x 1、x 2,且 x 1≤x 2. (1)求证:x 1≤1≤x 2 (2)若点A (1,2),B ( 1 2 ,1),C (1,1),点P (x 1,x 2)在△ABC 的三条边上运动,问 是否存在这样的点P ,使a +b = 5 4 ?若存在,求出点P 的坐标;若不存在,请说明理由. 5.(福建模拟)已知方程组 ???y 2 =4x y =2x +b 有两个实数解 ? ????x =x 1y =y 1 和 ?????x =x 2 y =y 2 ,且x 1x 2≠0,x 1≠x 2. (1)求b 的取值范围; (2)否存在实数b ,使得 1 x 1 + 1 x 2 =1?若存在,求出b 的值;若不存在,请说明理由.

一元二次方程的解法—知识讲解

一元二次方程及其解法(一)直接开平方法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常 数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0. 要点二、一元二次方程的解法 1.直接开方法解一元二次方程: (1)直接开方法解一元二次方程:

一元二次方程的应用题分类题型汇总

一元二次方程的应用(设未知数——找等量关系——求解——检验) 一、商品销售问题 售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润 1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元? 2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价 3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件? 4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。(1)当日产量为多少时每日获得的利润为1750元? (2)若可获得的最大利润为1950元,问日产量应为多少? 二、行程问题 路程=速度*时间相遇路程=速度和*相遇时间追及问题=速度差*追及时间 顺水速度=船速(静水中的速度)+ 水流速度逆流速度=船速(静水中的速度)—水流速度 1、甲乙二人分别从相聚20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米?

《一元二次方程》知识讲解

《一元二次方程》全章复习与巩固—知识讲解(提高) 【学习目标】 1.了解一元二次方程及有关概念; 2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程; 3.掌握依据实际问题建立一元二次方程的数学模型的方法. 【知识网络】 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 2.一元二次方程的一般式:   3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释: 判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2. 对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. 要点二、一元二次方程的解法 1.基本思想

一元二次方程??? →降次一元一次方程 2.基本解法 直接开平方法、配方法、公式法、因式分解法. 要点诠释: 解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法. 要点三、一元二次方程根的判别式及根与系数的关系 1.一元二次方程根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=?. (1)当△>0时,一元二次方程有2个不相等的实数根; (2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根. 2.一元二次方程的根与系数的关系 如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,a c x x =21. 注意它的使用条件为a ≠0, Δ≥0. 要点诠释: 1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题. 2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 要点四、列一元二次方程解应用题 1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系; 三是正确求解方程并检验解的合理性. 2.利用方程解决实际问题的关键是寻找等量关系. 3.解决应用题的一般步骤: 审 (审题目,分清已知量、未知量、等量关系等);

一元二次方程题型分类总结

一元二次方程题型分类总结 知识梳理 一元二次方程?? ???*?韦达定理根的判别解与解法 考点类型一 概念 只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程.... 就是一元二次方程。 )0(02≠=++a c bx 2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 例1、下列方程中是关于x 的一元二次方程的是() A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()013 2=+++mx x m m 是关于x 的一元二次方程,则m 的值为。 ★1、方程782=x 的一次项系数是,常数项是。 ★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是() A.m=n=2 B.m=3,n=1 C.n=2,m=1 D.m=n=1 考点类型二 方程的解 例1、已知322-+y y 的值为2,则1242++y y 的值为。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为。 ★1、已知方程0102=-+kx x 的一根是2,则k 为,另一根是。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值;⑵方程的另一个解。 ★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2。 ★★4、已知a 是0132=+-x x 的根,则=-a a 622 。 ★★5、方程()()02=-+-+-a c x c b x b a 的一个根为() A 1-B1C c b -D a - ★★★6、若=?=-+y x 则y x 324,0352。 考点类型三 解法

一元二次方程应用题归纳分类及经典例题复习课程

一元二次方程应用题总结分类及经典例题 1、列一元二次方程解应用题的特点 列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等. 2、列一元二次方程解应用题的一般步骤 和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是: “审、设、列、解、答”. (1)“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础; (2)“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未 知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易; (3)“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出 含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键; (4)“解”就是求出所列方程的解; (5)“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数, 降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验. 3、数与数字的关系两位数=(十位数字)×10+个位数字 三位数=(百位数字)×100+(十位数字)×10+个位数字 4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍. 5、增长率问题 (1)增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数 (2)两次增长,且增长率相等的问题的基本等量关系式为:原来的×(1+增长率)增长期数=后来的 说明:(1)上述相等关系仅适用增长率相同的情形; (2)如果是下降率,则上述关系式为:原来的×(1-增长率)下降期数=后来的

一般的一元二次方程的解法—知识讲解

一元二次方程的解法(二) 一般的一元二次方程的解法—知识讲解(提高) 【学习目标】 1.了解配方法和公式法的概念、一元二次方程求根公式的推导过程,会用配方法和公式法解一元二次方程; 2.掌握运用配方法和公式法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,通过求根公式的推导,进一步体会转化的思想方法,并增强数学应用意识和能力. 培养学生数学推理的严密性及严谨性,渗透分类的思想. 【要点梳理】 要点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式222 ±+=±. a a b b a b 2() 要点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用

一元二次方程根与系数的关系各种类型题与训练

一元二次方程根与系数的关系应用例析及训练 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解? 分析:在同时满足方程(1),(2)条件的的取值围中筛选符合条件的的整数值。 解:∵方程(1)有两个不相等的实数根, ∴ 解得; ∵方程(2)没有实数根, ∴ 解得; 于是,同时满足方程(1),(2)条件的的取值围是 其中,的整数值有或 当时,方程(1)为,无整数根; 当时,方程(1)为,有整数根。 解得: 所以,使方程(1)有整数根的的整数值是。 总结:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。 分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 解:∵,∴△=—4×2×(—7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为, ∵<0

∴原方程有两个异号的实数根。 总结:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得 当时,原方程均可化为: , 解得: ∴方程的另一个根为4,的值为3或—1。 解法二:设方程的另一个根为, 根据题意,利用韦达定理得: , ∵,∴把代入,可得: ∴把代入,可得: , 即 解得 ∴方程的另一个根为4,的值为3或—1。 总结:比较起来,解法二应用了韦达定理,解答起来较为简单。 例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求的值。 分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。

一元二次方程知识点复习及典型题讲解

一元二次方程复习课1)一元二次方程的概念: 中考常见题型: 例1、下列方程中哪些是一元二次方程?试说明理由。 x?22x??122x?4?(x?2)2x?43x?2?5x?3x?1(1)(2)(3)(4) 2bx+a=0, x —2、方程(2a 2在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一 —4)例次方程?2。,求m的一元二次方程(m-1)x+3x-5m+4=0有一根为2例3 、已知关于x 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项练习一、????????222y?3y2y?1??y1??2x?2?3x2 2x(x-1)=3(x-5)-4 2(m?3)x?nx?m?0x练习二、关于,在什么条件下是一元二次方程?在什么条件下是一元一的方程次方程? 2)一元二次方程的解法: 1)直接开平方法(换元思想): 2)配方法: 3)求根公式(符号问题): 4)因式分解法(十字交叉法): 中考常见题型: 例1:考查直接开平方法和换元思想。 1)(x+2)=3(x+2) (2)2y(y-3)=9-3y (3)( x-2) — x+2 =0 22( 249??1x?2x2 4)(2x+1)=(x-1) (5) 2( 2:用配方法解方程x+px+q=0(p2-4q≥0). 2例

例3:用配方法解方程: 22xx(1)-6x-7=0;(2)+3x+1=0. 2205x??2x?2x?7x?20?42(3)(50. 2x4 ())3x+-3= 2?4bacb2(x?)?2ax?bx?c?0(a?0)2aa4呢?例4:能否用配方法把一般形式的一元二次方程转化为 22-1=0 -(4k+1)x+2k取什么值时,关于x的方程2x例5、当k 方程没有实数根.有两个不相等的实数根; (2)有两个相等实数根; (3) (1) -c)x+b=0ABC的三边的长,求证方程ax-(a+ba例6、已知,b,c是△222222没有实数根. 练习:222 +n=0无实数根.,求证关于x的方程2x+2(m+n)x+m.若 1m≠n +m=0.求证:关于x的方程x+(2m+1)x-m2 22有两个不相等的实数根. 7例: 2220??x3)?65?(2x3)?(20?x?7x10?0??3992x?x)(2 1()()3 3)一元二次方程的应用(常见四类题型):

一元二次方程、分式方程的解法及应用—知识讲解1

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高) 【考纲要求】 1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程; 2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 【知识网络】 【考点梳理】 考点一、一元二次方程 1.一元二次方程的定义 只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为2 0ax bx c ++=(a ≠0). 2.一元二次方程的解法 (1)直接开平方法:把方程变成2 x m =的形式,当m >0时,方程的解为x m =±;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.

(2)配方法:通过配方把一元二次方程2 0ax bx c ++=变形为2 22 424b b ac x a a -??+= ?? ?的形式,再利用直接开平方法求得方程的解. (3)公式法:对于一元二次方程2 0ax bx c ++=,当2 40b ac -≥时,它的解为 242b b ac x a -±-= . (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释: 直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法. 易错知识辨析: (1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元 二次方程一般形式中0≠a . (2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1. (4)用直接开平方的方法时要记得取正、负. 3.一元二次方程根的判别式 一元二次方程根的判别式为ac 4b 2 -=?. △>0?方程有两个不相等的实数根; △=0?方程有两个相等的实数根; △<0?方程没有实数根. 上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释: △≥0?方程有实数根. 4.一元二次方程根与系数的关系 如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2 121=?-=+,. 要点诠释: (1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分 解法,再考虑用公式法. (3)一元二次方程0c bx ax 2 =++(a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题. (4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

中考数学综合题专题复习【一元二次方程】专题解析及答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围; (2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长. 【答案】(1)k > 34;(2 【解析】 【分析】 (1)根据关于x 的方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根,得出△>0,再解不等式即可; (2)当k=2时,原方程x 2-5x+5=0,设方程的两根是m 、n ,则矩形两邻边的长是m 、n , 利用根与系数的关系得出m+n=5,mn=5,利用完全平方公式进行变形即可求得答案. 【详解】 (1)∵方程x 2-(2k +1)x +k 2+1=0有两个不相等的实数根, ∴Δ=[-(2k +1)]2-4×1×(k 2+1)=4k -3>0, ∴k >34 ; (2)当k =2时,原方程为x 2-5x +5=0, 设方程的两个根为m ,n , ∴m +n =5,mn =5, ∴ = =. 【点睛】 本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根. 2.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x 1,x 2,求a 的取值范围; (3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54 a ≤(3)-4 【解析】 分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.

一元二次方程经典练习题及答案知识讲解

练习一 一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( ) A.x 2 +x=1 B.2x 2 -x-12=12; C.2(x 2 -1)=3(x-1) D.2(x 2 +1)=x+2 2.下列方程:①x 2 =0,② 21x -2=0,③22x +3x=(1+2x)(2+x),④32 x =0,⑤32x x -8x+ 1=0中, 一元二次方程的个数是( ) A.1个 B2个 C.3个 D.4个 3.把方程(+(2x-1)2 =0化为一元二次方程的一般形式是( ) A.5x 2 -4x-4=0 B.x 2 -5=0 C.5x 2 -2x+1=0 D.5x 2 -4x+6=0 4.方程x 2 =6x 的根是( ) A.x 1=0,x 2=-6 B.x 1=0,x 2=6 C.x=6 D.x=0 5.方2x 2 -3x+1=0经为(x+a)2 =b 的形式,正确的是( ) A. 23162x ? ?-= ?? ?; B.2 312416x ??-= ???; C. 2 31416x ? ?-= ? ? ?; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( ) A.-x 2 =2x-1 B.4x 2 +4x+ 5 4 =0; C. 20x --= D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2 =1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2 ]=1000 二、填空题:(每小题3分,共24分) 9.方程 2(1)5 322 x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______. 10.关于x 的一元二次方程x 2 +bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便. 12.如果2x 2 +1与4x 2 -2x-5互为相反数,则x 的值为________. 13.如果关于x 的一元二次方程2x(kx-4)-x 2 +6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x 的方程4mx 2 -mx+1=0有两个相等实数根,那么它的根是_______. 15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分) 17.用适当的方法解下列一元二次方程.(每小题5分,共15分) (1)5x(x-3)=6-2x; (2)3y 2 +1=; (3)(x-a)2 =1-2a+a 2 (a 是常数)

一元二次方程题型分类总结

元二次方程题型分类总结 ① 只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程 就是一元二次方程。 (2) —般表达式:I ax 2 + bx + C = 0(a H 0) ⑶难点:如何理解“未知数的最高次数是2”: ① 该项系数不为“ 0”; ② 未知数指数为“ 2”; ③ 若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨 论。 例1、下列方程中是关于x 的一元二次方程的是( ) 3(x +1 2 =2(x +1 ) B 2+丄-2=0 x x 时,关于x 的方程kx 2 +2x =X 2 十3是一元二次方程。 方程(m +2 乂叫+3mx +1=0是关于 x 的一元二次方程,则 m 的值 是 _______ O ★★★ 4、若方程nx m +x n -2x 2 =0是一元二次方程,则下列不可能的是( A.m=n=2 B.m=3 ,n=1 C.n=2,m=1 D.m=n=1 知识梳理 一、知识结构:^I 元二次方程= ‘解与解法 根的判别 韦达定理* ★★ 考点类型一 概念 (1)定义: ax 2 +bx + c = 0 2 2 D x +2x=x +1 变式: ★ 1、方程8x 2 =7的一次项系数是 ,常数项是

考点类型二方程的解 ★ 3、已知m 是方程x 2 -x-1=0的一个根,则代数式 m 2 -m = ★★ 4、已知 a 是 X 2 -3x +1 =0 的根,贝U 2a 2 -6a = ★★ 5、方程(a -b x 2 +(b —c x + c-a =0 的一个根为( ) C b -c ★★★ 6、若 2x+ 5y-3=0,贝 y 4X ?32y = ⑴概念: 使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 例1、已知2y 2 +y -3的值为2,则4y 2 +2y +1的值为 例2、关于x 的一元二次方程(a -2X 2 +x + a 2 -4 = 0的一个根为0,则a 的值 例3、已知关于x 的一元二次方程ax 2 +bx + c=0(aH0 )的系数满足a + c = b ,则 此方程 必有一根为 例4、已知a,b 是方程X 2 -4x +m =0的两个根,b,c 是方程y 2 -8y + 5m = 0的两 个根, 则m 的值为 ★ 1、已知方程 2 X 2 +kx-10 = 0的一根是2,贝U k 为 ,另一根是 ★ 2、已知关于 X +1 x 的方程X 2 + kx -2 =0的一个解与方程亠=3的解相同。 X-1 ⑴求k 的值; ⑵方程的另一个解。 A -1

相关文档
最新文档