物态和物态变化 固体分为晶体和非晶体

物态和物态变化 固体分为晶体和非晶体
物态和物态变化 固体分为晶体和非晶体

第一节固体

教学目标:

1、知道固体分为晶体和非晶体两大类

2、知道晶体和非晶体在外形上和物理性质上的区别

3、知道晶体有单晶体和多晶体

4、知道一种物质是晶体还是非晶体并不是绝对的

教学重点:知道晶体和非晶体的性质并能区别它们

教学难点:对各向同性和各向异性的理解

教学方法:讲述法、实验法、讨论法

教学用具:硫酸铜、食盐、松香、橡胶和明矾

教学过程:

(一)引入新课

通过前面的学习,我们知道:分子在不停地做无规则的运动,分子之间的相互作用力使得分子聚集在一起,而分子的无规则运动又使它们分散开来,我们看到自然界中物质的三种状态:液态、气态和固态,便是由于分子的这两种作用而产生的三种不同的聚集状态。

为了更好的研究微观分子的排布对物质宏观性质的影响,我们分别研究物质的固态、液态和气态——固体、液体和气体;首先,我们来研究固体。

(二)新课教学

1、固体材料的发展

教师出示图片:

生活用具、生产工具的演变——固态材料的发展;(图片的展示顺序:远古石器——商代的青铜器——春秋时期的铁制刀剑——到今天的人造固体材料:合金;低温超导材料;生产火箭、人造卫星的特殊材料;高强度、低密度、耐高温的钛合金等等)

教师讲解:人类在远古时期就开始利用石器作为生产工具与生活用品,随着生产力的发展,生产工具的不断革新,人们对固体材料的要求也在不断地提高,从对金属固体材料的提炼到今天可以运用科学技术制造出多种人造材料。各种材料的性质也是千差万别的,所有的这些固体材料性质的不同,都是与它们的分子

组成和分子排列有关的。

2、固体的分类

实验1:请同学们观察下面的几种固体颗粒:硫酸铜、食盐、松香、橡胶和明矾;

问题:同一种固体的颗粒形状是一样的么?

教师可以通过大屏幕显示各个固体颗粒的图片;或者让学生进行分组实验,得出实验结论。

学生观察到具有规则的几何形状,没有规则的几何形状。

(硫酸铜、食盐、明矾具有规则的几何形状,而松香、橡胶没有规则的几何形状)

教师讲解:自然界中的固态物质可以分为两种:晶体和非晶体。

晶体:由分子、原子或离子按一定的规律重复排列而成的固体叫做晶体,晶体的外形具有规则的几何形状(教师出示食盐 NaCl晶体的结构示意图),如食盐晶体呈立方体,石英的晶体中间是六棱柱,两端是六棱锥(教师出示石英晶体的图片),雪花是冰的晶体,各种雪花的形状都是六角形的(教师出示书中的图片)。像玻璃、松香、沥青等没有规则的几何形状的固体叫做非晶体(出示各类图片)。

板书:晶体、非晶体(给出晶体和非晶体的定义)

3、单晶体和多晶体

教师讲解:晶体有单晶体和多晶体两种。整个物体就是一个晶体叫做单晶体,如果整个物体由大量不规则排列的小晶体组成,叫做多晶体。

多晶体:不具有规则的几何形状,各种金属材料都是多晶体。由于小晶体的排列是杂乱的,所以金属整体表现为各向同性。

教师出示图片:

(1)单晶体的硅与锗——半导体工业的重要原材料;

(2)我国在60年代用单晶体红宝石制成的第一台激光器

4、晶体和非晶体的物理性质的不同

晶体和非晶体的这种宏观形状的不同是由分子的排列不同决定的,进而使得

它们的物理性质上也是不同的。

问题:晶体和非晶体的物理性质有什么不同呢?

实验2:在云母薄片和玻璃片上面均匀地涂一层很薄的石蜡。将烧热的钢珠分别接触云母片和玻璃片的反面,观察石蜡熔化形成的图形。

观察发现:云母片上石蜡熔化形成的图形是,玻璃片上石蜡熔化形成的图形是。

(云母片上石蜡熔化形成的图形是椭圆形的,玻璃片上石蜡熔化形成的图形是圆形的。)

问题:讨论实验现象说明了什么?

总结:通过实验现象我们可知云母在各个方向上的导热性能不相同,玻璃在各个方向上的导热性能相同。

实验3:将方铅矿石晶体,灵敏电流计,干电池,电键连接成简单的串联电路(如图),先让矿石 A端和电池正极相连接。然后把矿石掉个头,B端跟电池正极相连接。观察两次通电时电流计的读数。

观察发现:方铅矿石各个方向的导电性能________(相同、不相同)。

(方铅矿石各个方向的导电性能不相同)

教师总结:方铅矿石各个方向的导电性能不相同、方解石在光的折射上表现出明显的各向异性表明晶体在不同方向上导热性能、导电性能等物理性质不相同,这种特性叫做各向异性,而非晶体在各个方向上的各种物理性质都是相同的。

5、晶体的微观结构

教师:阅读课文晶体的微观结构部分并完成以下要求:

(1)了解人类认识晶体与非晶体的历程。

(2)同种物质可以生成不同的晶体吗?

(3)同种物质可以以晶体和非晶体两种形态出现吗?

学生阅读,讨论。

师生共同总结上述问题。(三)课堂小结

学生自己总结并与同学交流(四)布置作业

1、阅读课文

2、完成问题与练习

2020《中考物理总复习》 考点13 —— 晶体和非晶体的区别(无答案)

考点13 ——晶体和非晶体的区别 1.(2019秋?唐县期末)下列说法错误的是() A.铝、冰、海波都是晶体 B.真空不能传声是用推理法得出的 C.增加液体的表面积可以加快液体蒸发 D.速度大小不变的运动一定是匀速直线运动 2.(2019?西宁)关于物态变化。下列说法正确的是() A.海波是一种晶体,液态海波凝固时要放出热量 B.冰熔化成水的过程中吸收热量,温度升高 C.冰棒表面的“白霜”,是水蒸气凝固形成的小冰晶 D.春天的早晨经常出现大雾,这是汽化现象 3.(2018?葫芦岛)下列物态变化中,需要吸热且温度保持不变的是()A.蜡熔化成蜡油 B.水凝固成冰 C.冰熔化成水 D.白霜的形成

4.(2017?齐齐哈尔)中央电视台播出的中国古诗词大会,深受观众喜爱,下列诗词中涉及到的物理知识说法正确的是() A.春蚕到死丝方尽,蜡炬成灰泪始干﹣﹣蜡烛成灰泪始干是晶体的熔化 B.月落乌啼霜满天,江枫渔火对愁眠﹣﹣﹣霜的形成是凝固现象 C.八月秋高风怒号,卷我屋上三重茅﹣﹣﹣是因为流体中流速越大的位置,压强越大D.花气袭人知骤暖,鹊声穿树喜新晴﹣﹣﹣﹣诗句体现出温度越高分子无规则运动越剧烈 5.(2019?邯郸模拟)下列分类正确的是() A.氧化物:水、液氧、干冰 B.有机物:碳酸、塑料、葡萄糖 C.非晶体:松香、沥青、玻璃 D.省力杠杆:扳手、钳子、钓鱼竿 6.(2019?烟台模拟)2015年5月26日印度出现高温天气,首都新德里的一条道路上的沥青被烤化,斑马线变得扭曲模糊。如图所示,关于这个情景的说法正确的是() A.沥青属于晶体 B.沥青被烤化属于熔化现象 C.沥青被烤化属于汽化现象 D.沥青被烤化过程放热 7.(2017?兰山区一模)物理实验中经常需要对物体加热,对下列各图的相关描述与实际相符的是()

晶体与非晶体的本质区别是什么

第一章 1.1 晶体与非晶体的本质区别是什么?单晶体为何有各向异性?而实际金属却表现为各向同性? 1.2 作图表示立方晶系(211)、(112)、(210)、(321)、(223)、(236)晶面与[111]、[111]、[021]、[112]、[11]、[123]晶向。 1.3 立方晶系中,{120}、{123}晶面族包括哪些晶面? 1.4 铜和铁室温下的晶格常数分别为0.286nm 和0.3607nm ,求13cm 铁和铜中的原子数。 1.5 常见的金属晶体典型结构有哪几种?αFe ?、γFe ?、Cu 、Al 、Ni 、Pb 、Cr 、V 、Mo 、Mg 、Zn 、W 各属何种晶体结构? l.6 分析纯金属冷却曲线中出现“过冷现象”和“平台”的原因。 1.7 液态金属过冷提供了结晶的驱动力,所以只要有过冷就可以形核,试分析此种说法是否正确? 1.8 凝固时典型金属晶体生长具有何种长大机制?何种条件下,纯金属晶体长大后会得到树枝晶? 1.9 说明过冷(或过冷度)对晶粒细化的影响、如何理解降低浇注温度对晶粒细化的作用。 1.10 试说明布氏硬度、洛氏硬度、维氏硬度的应用范围及相互关系。 1.11 试分析钨(熔点3380℃)和铁(熔点1538℃)在1100℃变形,铅(熔点323℃)和锡(熔点232℃)在室温(20℃)变形,能否发生加工硬化现象? 1.12 发动机曲轴毛坯的加工方法为锻造,试问锻造前为什么要将坯料加热? 1.13 指出面心立方金属中位于(111)和(111)滑移面上每一个滑移方向的晶向指数(作图并标出)。 1.14 某面心立方晶体[001]晶向的拉伸应力达到 20MPa 时,(111)、[110]滑移系上位错开始滑移, 求临界分切应力。 1.15 说明滑移和孪生的主要区别? 1.16 一块厚金属板冷弯180℃后进行再结晶退火,试画出纵截面上显微组织示意图。 第二章 2.1 什么是固溶强化?造成固溶强化的原因是什么? 2.2 合金相图反映一些什么关系?应用时要注意什么问题? 2.3 为什么纯金属凝固时不能呈枝晶状生长,而固溶体合金却可能呈枝晶状生长? 2.4 30kg 纯铜与20kg 纯镍熔化后慢冷至125O ℃,利用图2.3的Ni Cu ?相图,确定: ⑴合金的组成相及相的成分;⑵相的质量分数。 2.5 示意画出图2.8中过共晶合金Ⅳ(假设Sn w =70%)平衡结晶过程的冷却曲线。画出室温平衡组织示意图,并在相图中标注出组织组成物。计算室温组织中组成相的质量分数及各种组织组成物的质量分数。 2.6 铋 (Bi )熔点为271.5℃,锑 (Sb )熔点为630.7℃,两组元液态和固态均无限互溶。缓冷时=Bi w 50%的合金在520℃开始析出成分为=Sb w 87%的α固相,=Bi w 80%的合金在400℃时开始析出=Sb w 64%的α固相,由以上条件: ⑴ 示意绘出Sb Bi ?相图,标出各线和各相区名称; ⑵ 由相图确定Sb w = 40%合金的开始结晶和结晶终了温度,并求出它在400℃时的平衡相成分和相的质量分数。 2.7 若Sn Pb ?合金相图(图2.8)中f 、c 、d 、e 、g 点的合金成分分别是Sn w 等于2%、19%、61%、97%和99%。问在下列温度(t )时,=Sn w 30%的合金显微组织中有哪些相组成物和组织组成物?它们的相对质量百分数是否可用杠杆定律计算?是多少? ⑴t =300℃;⑵刚冷到183℃共晶转变尚没开始;⑶在183℃共晶转变正在进行中;⑷共晶转变刚完,

(完整版)晶体与非晶体的区别

晶体与非晶体的区别 物质的存在状态一般有三种情况:固态、液态和气态。固体又分为两种存在形式:晶体和非晶体。 所谓晶体就是指物质在熔化和凝固过程中,固态和液态并存时,温度保持不变,这类物质叫做晶体。例:海波、萘、石英、云母、明矾、食盐、硫酸铜、糖、味精、水晶、钻石、冰、干冰、霜、雪、冰雹、雪糕、各种金属。 而非晶体是指物质在熔化和凝固过程中,其温度不断的变化,没有固定的熔点和凝固点。例:玻璃、蜡、松香、沥青、橡胶、塑料、布。 (1) 从外形上观察: 晶体都有自己独特的、呈对称性的形状。如食盐呈立方体;冰呈六角棱柱体;明矾呈八面体等。非晶体的外形则是不规则的。如沥青、玻璃、松香、石蜡等。 (2)从温度上测量: 晶体在熔化(或凝固)过程中温度保持不变,即有确定的熔点(或凝固点)。如冰(或水)的熔点(或凝固点)是0℃、海波的熔点(或凝固点)是48℃。非晶体在熔化(或凝固)过程中温度持续上升(或下降),没有确定的熔点(或凝固点)。在给物质加热过程中,我们可以借助实验温度计,在物质熔化时,测量其温度是否发生变化,如果温度不变的就是晶体,温度上升的就是非晶体。 (3)从物质的状态上观察: 晶体在熔化(或凝固)过程中呈固液共存态。如冰熔化时,先是有一部分冰化成水,然后,随着熔化的进行,冰越来越少,水越来越多,只到最后冰全部化成水。非晶体在熔化(或凝固)过程中先是整体变软(或变硬),然后流动性越来越大(或越小),最后变成液态(或固态)。如我们看到的蜡烛点燃时就是这样,靠近火焰的地方先变软再变成液态的蜡油。不像冰熔化时,尽管有一部分冰已经化成了水,而其它部分的冰仍然是很坚硬的固体。

(4)从图像上看: 根据晶体熔化(或凝固)时的温度不变这一特征,所以在晶体熔化和凝固图像上就表现为在它的变化曲线有一段是平滑的或者说是有一段图像曲线是与时间轴是平行的。而非晶体熔化(或凝固)时的温度变化曲线中则没有这一段。

晶体与非晶体的区别

晶体与非晶体区别 晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。组成晶体的微粒——原子是对称排列的,形成很规则的几何空间点阵。空间点阵排列成不同的形状,就在宏观上呈现为晶体不同的独特几何形状。组成点阵的各个原子之间,都相互作用着,它们的作用主要是静电力。对每一个原子来说,其他原子对它作用的总效果,使它们都处在势能最低的状态,因此很稳定,宏观上就表现为形状固定,且不易改变。晶体内部原子有规则的排列,引起了晶体各向不同的物理性质。例如原子的规则排列可以使晶体内部出现若干个晶面,立方体的食盐就有三组与其边面平行的平面。如果外力沿平行晶面的方向作用,则晶体就很容易滑动(变形),这种变形还不易恢复,称为晶体的范性。从这里可以看出沿晶面的方向,其弹性限度小,只要稍加力,就超出了其弹性限度,使其不能复原;而沿其他方向则弹性限度很大,能承受较大的压力、拉力而仍满足虎克定律。当晶体吸收热量时,由于不同方向原子排列疏密不同,间距不同,吸收的热量多少也不同,于是表现为有不同的传热系数和膨胀系数。石英、云母、明矾、食盐、硫酸铜、糖、味精等就是常见的晶体。 非晶体的内部组成是原子无规则的均匀排列,没有一个方向比另一个方向特殊,如同液体内的分子排列一样,形不成空间点阵,故表现为各向同性。 当晶体从外界吸收热量时,其内部分子、原子的平均动能增大,温度也开始升高,但并不破坏其空间点阵,仍保持有规则排列。继续吸热达到一定的温度——熔点时,其分子、原子运动的剧烈程度可以破坏其有规则的排列,空间点阵也开始解体,于是晶体开始变成液体。在晶体从固体向液体的转化过程中,吸收的热量用来一部分一部分地破坏晶体的空间点阵,所以固液混合物的温度并不升高。当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。而非晶体由于分子、原子的排列不规则,吸收热量后不需要破坏其空间点阵,只用来提高平均动能,所以当从外界吸收热量时,便由硬变软,最后变成液体。玻璃、蜂蜡、松香、沥青、橡胶等就是常见的非晶体。 晶体分为单晶体和多晶体,单晶体有固定的熔点和各向异性;而多晶体虽然也有固定的熔点但是却是各向同性的.非晶体与晶体不同的是它没有固定的熔点,而且有的是各向同性! 补充:关于熔点,我说一个实验,相比你也听说过.加热海波(晶体)并一直测量它的温度,发现它在有固态变成熔融状态的过程中温度一直不变,因此把这个温度叫做它的熔点,当然是固定的了.再者,如果加热玻璃(非晶体),会发现它有固体到熔融状态温度一直在升高,因此没有固定的熔点,意思也就是没有熔点!!! 非晶體的熔點用TG點來表示。

1晶体结构与非晶体结构各有什么特点

1晶体结构与非晶体结构各有什么特点 非晶体:结晶材料在高温下熔融为液态,当温度急剧下降到低于凝固点温度时;熔融体内部的质点来不及排列成有序结构的晶核,粘度增加很快,最后形成了玻璃态固体 特点:无固定熔点及外形,加热随温度升高而变软 2什么是复合型的材料分为哪几类?举例说明 1】纤维复合型组织:由一种或一种以上的单纤维聚集而成。 例如:岩棉、毛毡、纺织品、木质纤维板 2】多孔性组织:存在大致均匀分布的较小气孔 例如:木材、泡沫塑料、石膏 3】复合聚集组织:由颗粒状骨料【或纤维状增强材料】与基材复合而成例如:刨花板、纤维板 4】层叠组织:把片状材料叠为层状再粘结或用其他方法结合成一体 例如: 3材料的密度及表观密度 密度:在绝对密实状态下,材料单位体积的质量。 表观密度:材料在自然状态下单位体积的重量 4材料的导热性,影响到热性的因素 导热性:材料本身有传递热量的性质,即材料两表面有温度差时,热量从材料的一面透过材料传到另一面的能力 孔隙率,容重 孔隙率,容重 木材为多孔材料,为良好的绝热材料,导热系数较小

5什么是材料的韧性、脆性。举例说明分别有哪些 脆性:在破坏前没有明显塑性变形。例如:玻璃 韧性:钢材木材 6什么是木材的各项异性 木材因含水量减少引起体积收缩之现象叫做干缩 7木材按树的种类分分为几大类?各有什么特点举例说明其在工程中的应用 桉树的种类分为针叶树和阔叶树两大类。 针叶树:树干一般通直高大,纹理顺直,材质均匀,木质较软而易于加工,故又称为软材。 木材强度较高,表观密度和胀缩变化较小,具较多的树脂,耐腐性较强。 广泛用于各种承重构件、装修和装饰部件 阔叶树:树干大多通直部分较短,材质坚硬,表观密度相对较大,较难加工,强度高,胀缩和变形翘曲大,易开裂。 纹理漂亮,适于制作尺寸较小的构件、室内装饰材料、家具制作及胶合板。 8解释木材的顺纹抗压强度大于其横纹抗压强度

填空题1晶体与非晶体的最根本区别是2金属晶体中常见的点缺陷

第一章金属的晶体结构 (一)填空题 1)晶体与非晶体的最根本区别是 2)金属晶体中常见的点缺陷是,最主要的面缺陷是。 3)表示晶体中原子排列形式的空间格子叫做,而晶胞是指。 4)在常见金属晶格中,原子排列最密的晶向,体心立方晶格是,而面心立方晶格是。 5)晶体在不同晶向上的性能是,这就是单晶体的现象。一般结构用金属为 晶体,在各个方向上性能,这就是实际金属的现象。 6)实际金属存在有、和三种缺陷。位错是缺陷。实际晶体的强度比 理想晶体的强度得多。。 7)常温下使用的金属材料以晶粒为好。而高温下使用的金属材料在一定范围内以 晶粒为好。 8)金属常见的晶格类型是、、。 9)在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数 为. 10)金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有的————结合 方式。 11)同素异构转变是指。纯铁在温度发生和多晶型转变。 12)金属原子结构的特点是。 (二)判断题 1)因为单晶体具有各向异性的特征,所以实际应用的金属晶体在各个方向上的性能也是不相同的。 () 2)金属多晶体是由许多结晶位向相同的单晶体所构成。() 3)因为面心立方晶体与密排六方晶体的配位数相同,所以它们的原子排列密集程度也相同。() 4)体心立方晶格中最密原子面是{111}。() 5)金属理想晶体的强度比实际晶体的强度高得多。() 6)金属面心立方晶格的致密度比体心立方晶格的致密度高。() 7)实际金属在不同方向上的性能是不一样的。() 8)面心立方晶格中最密的原子面是<111},原子排列最密的方向也是<111>。() 9)在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。() 10)纯铁只可能是体心立方结构,而铜只可能是面心立方结构。() 11)实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。() 1

晶体与非晶体的区别

JISHOU UNIVERSITY 《固体物理》期末 考核报告 晶体与非晶体的区别 摘要:自然界中的固体物质可以分为晶体和非晶体两大类。其中,晶体是指那些内部质点(原子、离子或分子)在三维空间周期性地重复排列构成的固体物质。 与此相反,内部质点在三维空间无规律地排列的固体物质为非晶体或非晶态。非晶体的各种物理性质,在各个方向上都是相同的,即各向同性。非晶体没有固定的熔点,在熔化过程中,随着温度的升高,它首先变软,然后逐渐由稠变稀,经历一个软化过程。这些特征和晶体是不同的。晶体可对X 射线发生,非晶体不可对X 射线发生衍射。非晶态内能高、不稳定,而晶态内能低、稳定。 关键词:晶体 非晶体 区别 一、定义 晶体:内部微粒(原子、离子或分子)在空间按一定规律做周期性重复排列构成的固体物质。如石英、云母、食盐、明矾等。 非晶体:内部原子或分子的排列呈现杂乱无章的分布状态的固体物质。如玻璃、橡胶、松香、沥青等。 一些物质又有晶体和非晶体不同形态,如天然水晶和石英玻璃都有二氧化硅成分,但前者是晶体,后者是非晶体。 二、晶体与非晶体的区别 表1 晶体与非晶体的主要区别

(一)外形 1、区别 晶体都具有规则的几何形状,而非晶体没有一定的几何外形。 晶体自范性的本质:晶体中粒子微观空间里是呈现周期性的有序排列的。 晶体内部质点排列有序,外形规则。例如。在氯化钠晶体内部,无论任何方向上CI 一和Na+都是相间排列的,如图1,●代表Na离子,○代表Cl离子,其外形是非常规则的立方形,从盐场生产的粗大盐粒到实验室用的基准氯化钠微粒,无论大小都是立方形的。 图1 NaCl晶体结构 17世纪中叶,丹麦矿物学家斯迪诺在研究石英晶体断面时发现,石英晶面的大小和形状尽管千变万化,但相应晶面问的夹角却是相等的。如图2所示,无论哪种形状的石英晶体,其晶面a,b,C相互间的夹角均保持相等。随后人们又研究了大量不同形状的晶体。发现每种晶体不同晶面间的夹角都保持相等,从而就诞生了结晶学上的第一个定律——晶面夹角守恒定律。正因为晶体的生长必须遵循晶面夹角守恒定律,所以晶体由一个微小的结构单元生长成宏观晶体时永远保持有规则的外形。

教科版选修3-3 第15点 晶体和非晶体的宏观区别与微观成因

第15点晶体和非晶体的宏观区别与微观成因 1.宏观区别 说明:(1)由表可看出,晶体和非晶体不能从外形上进行区别,而应从有无确定熔点上区别.(2)晶体的各向异性不是指所有的物理性质,而是指某一方面的物理性质,如导热性、导电性、传光性等. 2.微观成因 晶体和非晶体的宏观差别是由它们各自不同的微观结构决定的.组成晶体的微粒,按照一定的规则在空间中整齐地排列,即形成空间点阵结构.微粒间的相互作用很强,热运动不足以克服它们间的相互作用来使它们远离,微粒只在平衡位置附近做微小振动.而组成非晶体的微粒则是杂乱无章的聚合在一起,微粒间的相互作用力很弱.

对点例题下列说法正确的是( ) A.一种物质只能形成一种晶体 B.玻璃、石墨和金刚石都是晶体 C.单晶体有确定的熔点,多晶体和非晶体没有确定的熔点 D.晶体不一定有天然规则的几何外形 解题指导一种物质可以形成多种晶体,如碳可以形成金刚石、石墨等晶体,A错误;玻璃是非晶体,B 错误;多晶体也有确定的熔点,C错误;只有单晶体才有天然规则的几何外形,多晶体没有,D正确. 答案 D 易错辨析玻璃没有固定的熔点,是非晶体,需要同学们记牢.准确记住单晶体、多晶体、非晶体性质的区别,并且记住几种常见的物质的分类是解决此类问题的唯一途径. (多选)下列叙述中正确的是( ) A.晶体的各向异性是由于它的微粒按空间点阵排列

B.单晶体具有天然规则的几何外形是由于它的微粒按一定的规则排列 C.非晶体有规则的几何形状和确定的熔点 D.石墨和金刚石相比,硬度很小,这是由于石墨的微粒没有按空间点阵排列 答案AB 解析晶体内部微粒排列的空间结构决定着晶体的物理性质,也正是由于它的微粒按一定规则排列,使单晶体具有天然规则的几何形状.非晶体没有天然规则的几何形状和确定的熔点.石墨与金刚石的硬度相差甚远是由于它们内部微粒的排列结构不同,石墨的层状结构决定了它的质地柔软,而金刚石的空间网状结构决定了其中碳原子间的作用力很强,所以金刚石有很大的硬度.故正确答案为A、B.

晶体与非晶体的区别

要理解这几个概念,首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚! 自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。 晶体共同特点: 均匀性:晶体内部各个部分的宏观性质是相同的。 各向异性:晶体种不同的方向上具有不同的物理性质。 固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形:理想环境中生长的晶体应为凸多边形。 对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为 离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书(郭可信,王仁卉著)。 与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶英语叫amorphous,也有人叫glass(玻璃态).

晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。 有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。 科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。 再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,

相关文档
最新文档