VF控制与矢量控制瞬间弄懂

VF控制与矢量控制瞬间弄懂
VF控制与矢量控制瞬间弄懂

V F控制与矢量控制瞬

间弄懂

Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

针对异步电机,为了保证电机磁通和出力不变(转矩不变),电机改变频率时,需维持电压V和频率F的比率近似不变,所以这种方式称为恒压频比(VF)控制。VF控制-控制简单,通用性强,经济性好,用于速度精度要求不十分严格或负载变动较小的场合。从本质上讲,VF控制实际上控制的是三相交流电的电压大小和频率大小,然而交流电有三要素,就是除了电压大小和频率之外,还存在相位。VF控制没有对电压的相位进行控制,这就导致在瞬态变化过程中,例如突加负载的时候,电机转速受冲击会变慢,但是电机供电频率也就是同步速还是保持不变,这样异步电机会产生瞬时失步,从而引起转矩和转速振荡,经过一段时间后在一个更大转差下保持平衡。这个瞬时过程中没有对相位进行控制,所以恢复过程较慢,而且电机转速会随负载变化,这就是所谓VF控制精度不高和响应较慢的原因。

矢量控制国外也叫磁场定向控制,其实质是在三相交流电的电压大小和频率大小控制的基础上,还加上了相位控制,这个相位在具体操作中体现为一个角度,简单的讲就是电机定子电流相对于转子的位置角。

综上,我觉得矢量控制和VF控制的最本质的区别就是加入了电压相位控制上。从操作层面上看,矢量控制一般把电流分解成转矩电流和励磁电流,这里转矩电流和励磁电流的比例就是由转子位置角度(也就是定子电压相位)决定的,这时转矩电流和励磁电流共同产生的转矩是最佳。宏观上看,矢量控制和VF控制的电压,电流,频率在电机稳定运行时相差不大,都是三相对称交流,基本上都满足压频比关系,只是在瞬态过程如突加、突减负载的情况下,矢量控制会随着速度的变化自动调整所加电压、频率的大小和相位,使这个瞬时过程更快恢复平衡。

变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。变频器作矢量控制时,对电机参数的依赖很大,所以必须对电机作旋转自整定(自学习),参数自整定前,必须设置正确的电机机型参数,完全脱开电机负载。

矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电机的扭矩。

矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。

具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种,前者精度高后者精度低。矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。常用的方法有基于检测定子电流信号的辨识方法,有同时使用电流检测信号和电压检测信号的辨识方法,还有根据电流检测信号和逆变器的开关控制信号重构电压信号的方法。

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

浅析交流伺服电机的矢量控制

浅析交流伺服电机的矢量控制 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)关于交流电机的矢量控制技术,有很多论文与各种文章介绍。但多用难解的公式与坐标来记述,如果没有扎实的数学和控制等理论基础的话,相信大家有同感比较难理解。日笃君尽量用简单易懂的图解与计算来聊聊电机的构造,静止坐标与旋转坐标的变化,矢量控制,伺服控制等电机驱动技术。 在聊控制之前,为了更好理解控制,我们先来看看电机的构造。实时应用的电机构造很复杂,但可以简单的理解成:电机由装在里面的转子与装在外面的定子构成(也有相反的电机),转子里面一般放入永久磁石,定子里面一般缠绕铜线。然后在中间插入中轴来带动驱动物体。 电机技术经过百年的发展,形成了如上的各种分类。电机上使用的磁石属于稀有金属,产量主要分布在中国,近年由于稀土材料的价格高腾,工业界正在积极研究如何减少稀土的使用量,保持性能的同时降低产品成本,是企业也更是工程师永远的课题。如今实际应用中,同步电机得到广泛的采用。 同步电机又以磁石所装入的部位,主要分类为SPM(表面磁石)和IPM(内部磁石): SPM电机由于控制简单,早起被工业界所采用,但是这种电机由于磁石装在转子的表面,所以可以利用的动力主要来源于自身的表面磁石。 IPM电机由于可以利用磁石与磁石周围励磁的动力,产生高密度的能量,而且可以通过构造的工夫减少稀土的使用量,所以今年得到更广泛的应用。 下面进入正题,聊聊交流电机的控制问题。

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

异步电机矢量控制Matlab仿真实验

基于Matlab/Simulink异步电机矢量控制系统仿真 一.理论基础 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流iA、iB、iC ,通过3/2变换可以等效成两相静止正交坐标系上的交流isα和isβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流ism和ist。 图1-1 异步电动机矢量变换及等效直流电动机模型 从图1-1的输入输出端口看进去,输入为A、B、C三相电流,输出为转速ω,是一台异步电动机。从内部看,经过3/2变换和旋转变换2s/2r,变成一台以ism和ist为输入、ω为输出的直流电动机。m绕组相当于直流电动机的励磁绕组,ism相当于励磁电流,t绕组相当于电枢绕组,ist相当于与转矩成正比的电枢电流。 按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值,图1-2是基于电流跟随控制变频器的矢量控制系统示意图。

图1-2矢量控制系统原理结构图 通过转子磁链定向,将定子电流分量分解为励磁分量i sm 和转矩分量i st ,转子磁链r ψ仅由定子电流分量i sm 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。简化后的等效直流调速系统如图1-3所示。 图1-3简化后的等效直流调速系统 二.设计方法 1.电流模型设计 转子磁链在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。本设计采用在αβ坐标系上计算转子磁链的电流模型。 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量 ?? ? ?? ?? ++-=+--=β αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-1-1) 也可表述为:

控制系统仿真与设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:刘峰 7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验内容 1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值值比较 实际值理论值 峰值 1.3473 1.2975

峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352 +%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示:

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

永磁同步电机双闭环矢量控制系统仿真实验指导书剖析

题目1:永磁同步电机双闭环矢量控制系统仿真 一.实验目的 .加深理解永磁同步电机矢量控制系统的工作原理1.掌握永磁同步电机驱动系统仿真分析方法2 二.实验要求: 1.永磁同步电机双闭环控制系统建模 2.电流控制器设计 3.电流环动态跟随性能仿真实验 4.转速控制器设计 5.转速环抗负载扰动性能仿真实验 6.给出仿真实验结果与理论分析结果的对比及结论 三.预习内容 注:以下所有找不到的器件均可以通过搜索框搜索 Simulink的启动在MATLAB中键入>>Simulink,进入Simulink library,2014版本的可直接点击MATLAB界面上的Simulink library,在Simulink界面上选择 File->New->Model。如图1所示: 图1 Simulink界面 拖入空白文件作为转速)阶跃函数step(将source一级标题下点击Simulink在.给定,也可用两个ramp函数相减,使转速缓慢达到预定转速,如图2:

图2 转速给定 在Simulink一级标题下点击Ports & Subsystems 选择Subsystem放入空白文件并双击,删除In1和Out1的连线,如图3: 图3 子函数模块 选择Simulink>Continuous下的integrator、Simulink>discontinuous下的Saturation、Simulink>math operation下的gain和Add,连好线后保存并返回,作为PI调节器,其中saturation可设置上下限为100和-100,如图4:

图4 PI子函数模块设置 此PI调节器输出结果作为Iq的电流给定,同样方法得到一个PI调节器,输出结果作为电压给定,并设置saturation上下限为380和-380,Simulink下math operation选择sum双击并修改第二个“+”为“-”,如图5: 图5 转速和电流反馈PI调节 选择Simulink>Ports & Subsystems下的Subsystem 拖入并双击进入子系统,并添加2个In1和1个Out1如图6:

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB 仿真与设计课后答 案

第二章 1>>x=[15 22 33 94 85 77 60] >>x(6) >>x([1 3 5]) >>x(4:end) >>x(find(x>70)) 2>>T=[1 -2 3 -4 2 -3] ; >>n=length(T); >>TT=T'; >>for k=n-1:-1:0 >>B(:,n-k)=TT.^k; >>end >>B >>test=vander(T) 3>>A=zeros(2,5); >>A(:)=-4:5 >>L=abs(A)>3 >>islogical(L) >>X=A(L) 4>>A=[4,15,-45,10,6;56,0,17,-45,0] >>find(A>=10&A<=20) 5>>p1=conv([1,0,2],conv([1,4],[1,1]));

>>p2=[1 0 1 1]; >>[q,r]=deconv(p1,p2); >>cq='商多项式为 '; cr='余多项式为 '; >>disp([cq,poly2str(q,'s')]),disp([cr,poly2str(r,'s')]) 6>>A=[11 12 13;14 15 16;17 18 19]; >>PA=poly(A) >>PPA=poly2str(PA,'s') 第三章 1>>n=(-10:10)'; >>y=abs(n); >>plot(n,y,'r.','MarkerSize',20) >>axis equal >>grid on >>xlabel('n') 2>>x=0:pi/100:2*pi; >>y=2*exp(-0.5*x).*sin(2*pi*x); >>plot(x,y),grid on; 3>>t=0:pi/50:2*pi; >>x=8*cos(t); >>y=4*sqrt(2)*sin(t); >>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p');

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

矢量控制异步电动机调速系统仿真设计

摘要 近年来,随着电力半导体器件及微电子器件特别是微型计算机及大规模集成电路的发展,再加上现代控制理论,特别是矢量控制技术向电气传动领域的渗透和应用,使得交流电机调速技术日臻成熟。以矢量控制为代表的交流调速技术通过坐标变换重建电机模型,从而可以像直流电机那样对转矩和磁通进行控制,交流调速系统的调速性能已经可以和直流调速系统相媲美。因此,研究由矢量控制构成的交流调速系统已成为当今交流变频调速系统中研究的主要发展方向。最后,综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。本设计研究的是矢量控制的异步电动机的调速系统,采用MATLAB软件在其simulink中进行仿真。 关键词:坐标变换矢量控制异步电动机MATLAB simulink仿真

ABSTRACT In recent years, with the development of the power semiconductor device,the microelectronics component, the microcomputer and large-scale integrated circuit and modern control theory, especially the penetration from vector control technology to electric drive field and application, the feasible AC motor speed regulation technology has become more mature day by day. Depend on the control principle of the MC and the rotor-flux orientation theory, and using the computer simulation technology, the simulation model of the MC and the matrix converter fed induction motor vector control drive system has been build. The input-output characteristic and the ability of four-quadrant

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

转差频率控制的异步电动机矢量控制系统的仿真建模

转差频率控制的异步电动机矢量控制系统 的仿真建模 *** (江南大学物联网工程学院,江苏无锡214122) 摘要:矢量控制是目前交流电动机的先进控制方式,本文对异步电动机的动态数学模型、转差频率矢量控制的基本原理和概念做了简要介绍,并结合Matlab/Simulink软件包构建了异步电动机转差频率矢量控制调速系统的仿真模型,并进行了试验验证和仿真结果显示,同时对不同参数下的仿真结果进行了对比分析。该方法简单、控制精度高,能较好地分析交流异步电动机调速系统的各项性能。 关键词:转差频率;交流异步电动机;矢量控制;Matlab Modeling and Simulation of induction motor vector control system Based on Frequency control Luxiao (School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract: Vector control is an advanced AC motor control, this paper dynamic mathematical model of induction motor, slip frequency vector control of the basic principles and concepts are briefly introduced, and combined with Matlab / Simulink software package ,give the slip frequency vector Control System of the simulation model of the induction motor .Showed the simulation results, and simulation results under different parameters were compared. The method is simple, high control precision, can better analyze the AC induction motor drive system of the performance. Keywords: AC asynchronism motor; vector control; modeling and simulation; Matlab; 引言: 由于交流异步电动机属于一个高阶、非线性、多变量、强耦合系统。数学模型比较复杂,将其简化成单变量线性系统进行控制,达不到理想性能。为了实现高动态性能,提出了矢量控制的方法。所谓矢量控制就是采用坐标变换的方法,以产生相同的旋转磁势和变换后功率不变为准则,建立三相交流绕组、两相交流绕组和旋转的直流绕组三者之间的等效关系,从而求出异步电动机绕组等效的直流电机模型,以便按照对直流电机的控制方法对异步电动机进行控制。因此,它可以实现对电机电磁转矩的动态控制,优化调速系统的性能。 Matlab是一种面向工程计算的高级语言,其Simulink环境是一种优秀的系统仿真工具软件,使用它可以大大提高系统仿真的效率和可靠性。本文在此基础上构造了一个矢量控制的交流电机矢量控制调速系统,包含了给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等环节,并给出了仿真结果。 1.异步电动机的动态数学模型 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在研究异步电动机的多变量非线性数学模型时,常作如下的假设: 1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

自动控制原理及系统仿真课程设计

自动控制原理及系统仿 真课程设计 学号:1030620227 姓名:李斌 指导老师:胡开明 学院:机械与电子工程学院

2013年11月

目录 一、设计要求 (1) 二、设计报告的要求 (1) 三、题目及要求 (1) (一)自动控制仿真训练 (1) (二)控制方法训练 (19) (三)控制系统的设计 (23) 四、心得体会 (27) 五、参考文献 (28)

自动控制原理及系统仿真课程设计 一:设计要求: 1、 完成给定题目中,要求完成题目的仿真调试,给出仿真程序和图形。 2、 自觉按规定时间进入实验室,做到不迟到,不早退,因事要请假。严格遵守实验室各项规章制度,实验期间保持实验室安静,不得大声喧哗,不得围坐在一起谈与课程设计无关的空话,若违规,则酌情扣分。 3、 课程设计是考查动手能力的基本平台,要求独立设计操作,指导老师只检查运行结果,原则上不对中途故障进行排查。 4、 加大考查力度,每个时间段均进行考勤,计入考勤分数,按照运行的要求给出操作分数。每个人均要全程参与设计,若有1/3时间不到或没有任何运行结果,视为不合格。 二:设计报告的要求: 1.理论分析与设计 2.题目的仿真调试,包括源程序和仿真图形。 3.设计中的心得体会及建议。 三:题目及要求 一)自动控制仿真训练 1.已知两个传递函数分别为:s s x G s x G +=+= 22132)(,131)(

①在MATLAB中分别用传递函数、零极点、和状态空间法表示; MATLAB代码: num=[1] den=[3 1] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) num=[2] den=[3 1 0] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) 仿真结果: num =2 den =3 1 0 Transfer function: 2 --------- 3 s^2 + s

基于Matlab的交流电机矢量控制系统仿真..

基于MATLAB交流异步电机矢量控制系统建 模与仿真 摘要:在分析异步电机的数学模型及矢量控制原理的基础上,利用MATLAB,采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性、有效性。 关键词:交流异步电机,矢量控制,MATLAB 一、引言 交流电动机由于动态数学模型的复杂性,其静态和动态性能并不是很理想。因此在上世纪前期需要调速的场合下采用的都是直流电动机,但是直流电动机结构上存在着自身难以克服的缺点,导致人们对交流调速越来越重视。从最初的恒压频比控制到现在的直接转矩控制和矢量控制,性能越来越优良,甚至可以和直流电机的性能相媲美。 本文研究交流异步电机矢量控制调速系统的建模与仿真。利用MATLAB中的电气系统模块构建异步电机矢量控制仿真模型,并对其动、静态性能进行仿真试验。仿真试验结果验证了矢量控制方法的有效性、可行性。 二、交流异步电机的矢量控制原理 矢量控制基本思想是根据坐标变换理论将交流电机两个在时间相位上正交 的交流分量,转换为空间上正交的两个直流分量,从而把交流电机定子电流分解成励磁分量和转矩分量两个独立的直流控制量,分别实现对电机磁通和转矩的控制,然后再通过坐标变换将两个独立的直流控制量还原为交流时变量来控制交流电机,实现了像直流电机那样独立控制磁通和转矩的目的。 由于交流异步电机在A-B-C坐标系下的数学模型比较复杂,需要通过两次坐标变换来简化交流异步电机的数学模型。一次是三相静止坐标系和两相静止坐标系

Simulink异步电机矢量控制(全文)

异步电动机矢量控制系统的仿真研究 摘要: 本文根据异步电动机矢量控制的基本原理,基于Matlab 软件构造了按转子磁场定向的矢量控制系统的仿真模型。通过仿真试验验证了模型的正确性,结果表明所建立的调速系统具有良好的动态性能,实现了系统的解耦控制。 关键词:异步电动机矢量控制Matlab 仿真 Simulation of Vector Control System for Asynchronous Motor Abstract: According to the basic principles of induction motor vector control,this paper constructssimulation model of rotor magnetic field oriented vector control system based on the MATLAB software.It verifies the accuracy of the model by simulation. Results show that it has good dynamic performance,andit realizes the decoupling control system. Key words: asynchronous-motor; vector control; matlab simulation 0 引言 异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从其动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。矢量控制就是基于动态模型的高性能的交流电动机调速系统的控制方案之一。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。 1异步电动机矢量控制原理及基本方程式 1.1基本公式 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。异步电动机在两相同步旋转坐标系上的数学模型包括电压方程、磁链方程和电磁转矩方程。分别如下: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? + - + - + - - + = ? ? ? ? ? ? ? ? ? ? ? ? ? ? rq rd sq sd r r r s m m s r s r r m m m m s s s m m s s s rq rd sq sd i i i i P L R L P L L L P L R L P L P L L P L R L L P L L P L R u u u u ω ω ω ω ω ω ω ω 1 1 1 1 1 (1) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? rq rd sq sd r m r m m s m s rq rd sq sd i i i i L L L L L L L L ψ ψ ψ ψ (2) ) ( rq sd rd sq m p e i i i i L n T- =(3)当两相同步旋转坐标系按转子磁链定

相关文档
最新文档