各电压等级供电半径要求

各电压等级供电半径要求
各电压等级供电半径要求

各电压等级供电半径要求

供电半径取决于以下2个因素的影响:

1电压等级(电压等级越高,供电半径相对较大)

2、用户终端密集度(即:电力负载越多,供电半径越小)

0.4千伏线路供电半径在市区不宜大于300米。近郊地区不宜大于500米。接户线长度不宜超过20米, 当超过250米时,每100米加大一级电缆。

110kV供电线路一般不超过60km;

35kV供电线路一般不超过30km。

对三类供区的供电距离要求见下表。

A类供区的低压线路供电长度不宜超过250m,

B类不宜超过400m,

C类不宜超过500m,农业排灌、偏远地区供电长度可适当延长,但应满足电压质量要求。

A类供区

a. 经济相对发达的县(包括县级市)所辖城区;中心镇及福建省综合改革建设试点的小城镇的中心城区;重要旅游区(国家4A级旅游区)的重点用电区域。

b. 国家级开发区及重要的省级、市级开发区。

c. 工业比重较大的综合性地区。

B类供区

a. 县城、乡镇、旅游城镇、列入福建省综合改革建设试点的小城镇的城区。

b. 一般的省级开发区、省级以下的开发区。

c. 闽南高效优质农业区、沿海蓝色农业区、闽西北绿色农业区中形成集中开发和规模化生产基地的地区;自然、旅游资源丰富且距离城市、城镇较近,交通便捷的地区。

d. 规模化农业及中小型轻工业比重较大的综合性地区

1500至4000kWh/年

C类供区

a. 保持良好自然生态,以中小规模的简单农业生产为主的农村地区,或具备观光休闲资源,但地处偏远的农村地区。

b. 有村级及以上建制,但人口密度以及人均用电量在全省属于偏低水平的农村地区。

低压电网供电半径应按照负荷密度来确定,具体标准见下表。

农村中压配电线路主干线长度原则上应不大于下表要求:

为保证供电质量,应逐步缩小低压线路供电半径。低压电源布点线路供电半径在市中心区、市区、城

镇地区及集中居住区一般不大于150 米,在农村地区不宜超过200 米。超过250 米时,必须进行电压质量校核。供电距离:由变电站(或开关站)以10kV线路馈电到用户临近侧,以低压线路(220V)配电进户,尽量缩短接户线。A、B类供区单相变压器低压线长度一般不超过100m, C类供区一般不超过250m。

对供电半径过长线路的处理

1对供电距离大于15km,小于30km的10千伏重载和过载线路,优先通过转移负荷到其它10kV 线路来消除“低电压”,其次考虑新增变电站出线,对现有负荷进行再分配。

2对供电距离大于30km,规划期内无变电站建设计划,合理供电距离以外所带配变数量较多,所带低压用户长期存在“低电压”现象的10kV 线路,可采用加装线路自动调压器的方式来消除“低电压”。

3对供电距离大于500m,供电距离500m以后仍存在低压用户,3年内难以实施配变布点,且长期存在“低电压”现象的低压线路,可采用加装线路调压器或户用调压器及增大导线截面等措施。

国内电网电压等级划分

国内电网电压等级划分 局民用电是220V,工业用电是380V,为什么同样是变电站出来的电,到了用户端就不同呢?高压与低压有什么不同呢? 工业用电与居民用电 工业用电其实就是我们经常提到的三相交流电(由三个频率相同、电势振幅相等、相位差互差 120 °角的交流电路组成的电力系统),而民用电采用的是单相220V对居民供电。 三相交流电可以使电机转动,当三相交流电流通入三相定子绕组后,在定子腔内便产生一个旋转磁场。转动前静止不动的转子导体在旋转磁场作用下,相当于转子导体相对地切割磁场的磁力线,从而在转子导体中产生了感应电流(电磁感应原理)。这些带感应电流的转子导体在磁场中便会发生运动,因此工业用电都是三相交流电。 民用电的火线与零线之间电压为220V ,工业用电则是各相线间电压380V ,相地之间电压220V。民用电其实就是三相之中的一相。电厂到居民变电站都是3相5线,变电站的作用之一就是把电分成很多个1相3线给居民使用。 高压与低压的分界线 根据GB/T 2900.50-2008中定义2.1规定,高[电]压通常指高于1000V(不含)的电压等级,低[电]压指用于配电的交流电力系统中1000V及以下的电压等级;国际上公认的高低压电器的分界线交流电压则是1000V(直流则为1500V)。 在工业上也有另外一种说法,电压为380V或以上的称之为高压电,因此我们习惯上所说的220V、380V都是低压,高于这个电压都是高压;再之前的电业规程中规定分界线为250V,虽然新的《电业安全工作规程》已经出台,但很多地方执行的还是以前的标准。 高压电器的通俗分类 1、所谓的高压、超高压、特高压并无本质区别(随着电压增高,绝缘要求、安全要求会有不同),只是人们的叫法不同而已,其分界线也是约定俗成,并无明确规定。 2、电网就是指整个供配电系统,包括发电厂,变电站,线路,用电侧。

我国安全电压和各种不同电压等级的安全距离

我国安全电压和各种不同电压等级的安全距离 引言 电在工业和日常生活中应用极为广泛,在工矿企业和家庭中都有品种繁多的电气设备。为保证电气设备和人身安全,必须认真贯彻国家有关规定,以免使人体受到伤害,财产受到损失。 1、安全电压 交流工频安全电压的上限值,在任何情况下,两导体间或任一导体与地之间都不得超过50V。我国的安全电压的额定值为42,36,24,12,6V。如手提照明灯、危险环境的携带式电动工具,应采用36V安全电压;金属容器内、隧道内、矿井内等工作场合,狭窄、行动不便及周围有大面积接地导体的环境,应采用24或12V安全电压,以防止因触电而造成的人身伤害。 2、安全距离 为了保证电气工作人员在电气设备运行操作、维护检修时不致误碰带电体,规定了工作人员离带电体的安全距离;为了保证电气设备在正常运行时不会出现击穿短路事故,规定了带电体离附近接地物体和不同相带电体之间的最小距离。安全距离主要有以下几方面: 2.1、设备带电部分到接地部分和设备不同相部分之间的距离(见表1) 表1 各种不同电压等级的安全距离 注:上表格110kv、220 kv、330 kv、500 kv为中性点接地系统。 2.2、设备带电部分到各种遮栏间的安全距离(见表2) 表2 设备带电部分到各种遮栏间的安全距离

注:上表格110kv、220 kv、330 kv、500 kv为中性点接地系统。 2.3无遮栏裸导体到地面间的安全距离(见表3) 表3 无遮栏裸导体到地面间的安全距离 注:上表格110kv、220 kv、330 kv、500 kv为中性点直接接地系统。 2.4电气工作人员在设备维修时与设备带电部分间的安全距离(见表4) 表4 工作人员与带电设备间的安全距离 2.5安全距离的其他规定 ,通常应不小于2500mm。 ,在屋内距地面2300mm处,在屋外距地面2500mm处,与围栏上方带电部分的距离,应不小于表1中规定的数值。 ,外廓到无遮栏裸导体的距离,应不小于表4中规定的数值。 ,应不小于表4中规定的数值。 ,见表5。 表5 带电部分到建筑物和围墙顶部的安全距离

电力系统电压等级与规定

电力系统的电压等级与规定 1、用电设备的额定电压 要满足用电设备对供电电压的要求,电力网应有自己的额定电压,并且规定电力网的额定电压和用电设备的额定电压相一致。为了使用电设备实际承受的电压尽可能接近它们的额定电压值,应取线路的平均电压等于用电设备的额定电压。 由于用电设备一般允许其实际工作电压偏移额定电压±5%,而电力线路从首端至末端电压损耗一般为10%,故通常让线路首端的电压比额定电压高5%,而让末端电压比额定电压低5%。这样无论用电设备接在哪一点,承受的电压都不超过额定电压值的±5% 2、发电机的额定电压 发电机通常运行在比网络额定电压高5%的状态下,所以发电机的额定电压规定比网络额定电压高5%。具体数值见表4.1-1的第二列。 表4.1-1 我国电力系统的额定电压 网络额定电压发电机额定电压 变压器额定电压 一次绕组二次绕组 3 6 103.15 6.3 10.5 3及3.15 6及6.3 10及10.5 3.15及3.3 6.3及6.6 10.5及11 13.8 15.75 18 20 13.8 15.75 18 20 35 110 220 330 500 35 110 220 330 500 38.5 121 242 363 550 3、变压器的额定电压 根据功率的流向,规定接收功率的一侧为一次绕组,输出功率的一侧为二次绕组。对于双绕组升压变压器,低压绕组为一次绕组,高压绕组为二次绕组;对于双绕组降压变压器,高压绕组为一次绕组,低压绕组为二次绕组。 ①变压器一次绕组相当于用电设备,故其额定电压等于网络的额定电压,但当直接与发电机连接时,就等于发电机的额定电压。 ②变压器二次绕组相当于供电设备,再考虑到变压器内部的电压损耗,故当变压器的短

电缆可以按照电压等级来划分资料

电缆可以按照电压等 级来划分

电缆可以按照电压等级来划分:380V/220V~660V为低压电缆,6kV~35kV 为中压电缆,110kV~220kV为高压电缆,330kV~500kV为超高压电缆。也可以按照绝缘材料来划分:PVC绝缘、PP绝缘、PE绝缘、XLPE(交联聚乙烯)等。按照载体材料来分还可以分为:铜芯/铝芯电缆、光电复合电缆、超导电缆等。从电缆生产工艺上看,可分为悬链生产线、立塔生产线。如果按照用途来划分那就更多了:输电电缆、装备电缆、建筑电缆、矿用电缆、船用电缆、轨道交通电缆、风电电缆、核电电缆、海底电缆等(不包括专用于弱电系统的通信电缆和控制电缆)。 对于普通投资者来说,最初的认识就是“生产电线的”,而深入研究时又会对纷繁复杂的品种无所适从。为了在投资时删繁就简、清晰界定,在此可以简单地把所有强电电缆分为两大类——常规电缆、特种电缆。(资本市场投资分析所需,非专业分类!) 常规电缆——即在现有电网和用户中大量使用的常规意义上的电缆产品,包括几乎所有低压电缆、大部分中压电缆。这也是我们以前包括目前对“电缆”概念的基本认识。这部分产品由于准入门槛低,成本波动大,同业低价竞争异常惨烈,产品利润空间被反复挤压,前景不容乐观。 特种电缆——包括中低压电缆中采用新型绝缘材料的品种、高压超高压电缆、新能源电站电缆,工业特种用途电缆,轨道交通、海底传输电缆等。总之,技术含量高、应用领域新、发展前景好、有进口产品替代需求的电缆,都可以划入特种电缆。相比常规电缆,特种电缆的利润空间较高,竞争对手较少。

三、特种电缆需求 1、城乡电网大面积改造对耐水树电缆的放量需求 如果说“智能电网”对普通老百姓还是个陌生的新概念的话,身处全国各地的每一个人,应该都体会到了居住地电网的扩建改造正紧锣密鼓地展开。尤其在城网改造中,配网入地已成趋势。大城市双环网供电、空间走廊日益狭小、市中心地下电缆率的目标提升(80%以上),都给中压配电电缆带来极大的需求。而电缆的免维护要求和绝缘耐压的寿命关注,又对配电电缆的绝缘介质、性能指标、品牌信誉提出更高的要求。 常规电缆的绝缘介质在电场、水分和杂质等绝缘缺陷的协同作用下,逐步产生树枝状早期劣化。当树枝状劣化贯穿介质或转变成电树枝,将导致电力电缆线路的电缆本体或附件发生试验击穿或运行击穿故障。所以,如何防止水树(WT)和电树(ET)的产生,避免电缆绝缘击穿,是电缆选型的关键。 因此,具有特殊工艺的耐水树电缆自然就得到青睐。虽然目前在整个中压电缆中,耐水树电缆的份额只有10%,但优越的抗击穿性能和免维护性决定着耐水树份额的大幅拉高指日可待。 2、高压超高压电缆的局部应用 高压超高压电网历来以架空裸线为主。近年来,随着电网容量的扩大,原有区域主干网110kV已经让位于220kV,大量的110kV线路已经变身为主力配网,城市负荷中心、商业中心、居民中心对负荷的需求越来越大,在城市负荷中心兴建110kV变电站已经大力开展,虽说居民对电场辐射的恐惧给城市中

电力系统电压等级与变电站种类

1.电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4kV),3kV、6kV、10kV、20kV、35kV、66kV、110kV、220kV、330kV、500kV。随着电机制造工艺的提高,10kV电动机已批量生产,所以3kV、6kV已较少使用,20kV、66kV也很少使用。供电系统以10kV、35kV为主。输配电系统以110kV以上为主。发电厂发电机有6kV与10kV两种,现在以10kV为主,用户均为220/380V(0.4kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500kV、330kV、220kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6kV,低压配电网为0.4kV(220V/380V)。 发电厂发出6kV或10kV电,除发电厂自己用(厂用电)之外,也可以用10kV电压送给发电厂附近用户,10kV供电范围为10Km、35kV为20~50Km、66kV为30~100Km、110kV 为50~150Km、220kV为100~300Km、330kV为200~600Km、500kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。枢纽站电压等级一般为三个(三圈变压器),550kV/220kV/110kV。区域站一般也有三个电压等级(三圈变压器),220kV/110kV/35kV或110kV/35kV/10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV/10kV或35kV/10kV。用户本身的变电站一般只有两个电压等级(双圈变压器)110kV/10kV、35kV/0.4kV、10kV/0.4kV,其中以10kV/0.4kV 为最多。 3.变电站一次回路接线方案 1)一次接线种类:变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。 2)线路变压器组:变电站只有一路进线与一台变压器,而且再无发展的情况下采用线路变压器组接线。 3)桥形接线:有两路进线、两台变压器,而且再没有发展的情况下,采用桥形接线。针对变压器,联络断路器在两个进线断路器之内为内桥接线,联络断路器在两个进线断路器之外为外桥接线。 4)单母线:变电站进出线较多时,采用单母线,有两路进线时,一般一路供电、一路备用(不同时供电),二者可设备用电源互自投,多路出线均由一段母线引出。 5)单母线分段:有两路以上进线,多路出线时,选用单母线分段,两路进线分别接到两段母线上,两段母线用母联开关连接起来。出线分别接到两段母线上。 单母线分段运行方式比较多。一般为一路主供,一路备用(不合闸),母联合上,当主供断电时,备用合上,主供、备用与母联互锁。备用电源容量较小时,备用电源合上后,要断开一些出线。这是比较常用的一种运行方式。 对于特别重要的负荷,两路进线均为主供,母联开关断开,当一路进线断电时,母联合上,来电后断开母联再合上进线开关。 单母线分段也有利于变电站内部检修,检修时可以停掉一段母线,如果是单母线不分段,检修时就要全站停电,利用旁路母线可以不停电,旁路母线只用于电力系统变电站。 6)双母线:双母线主要用于发电厂及大型变电站,每路线路都由一个断路器经过两个隔离开关分别接到两条母线上,这样在母线检修时,就可以利用隔离开关将线路倒在一条件母线上。双母线也有分段与不分段两种,双母线分段再加旁路断路器,接线方式复杂,但检

主板常见供电电压分布详解

主板常见供电电压分布详解 12V主要是给CPU供电,通过电压调整模块,调节成1.15-1.75V核心电压,供CPU、Vtt FSB、CPU-I/O。12V除了CPU外,还提供给AGP、PCI、CNRCommunicationNetwork Riser)。其中负电压-12V主要为AC’97、串口以及PCI接口提供。2n5[.['S%t#G-k5H9N6 I 5V被分成了四路,第一路经过VID(VoltageIdentificationDefinition)调整模块调整成1.2V供CPU,主板会根据Pentium4处理器上5根VID引脚的0/1相位来判别这块处理器所需要的VCC电压(也就是我们常说的CPU核心电压)第二路经过2.5V电压调整模块调整成2.5V供内存,并经过二次调整,从2.5V调整到1.5V供北桥核心电压、VccAGP、VccHI。第三路直接给USB设备供电。第四路供给AGP、PCI、CNR供电。;k9k8p'm9i/r7 k(u2b!a$D.m 3.3V主要是为AGP、PCI供电,这两个接口占了3.3V的绝大部分。除此之外,南桥部分的Vcc3_3以及时钟发生器、LPCSuperI/O、FWH即主板BIOS)也是由3.3V供电。. k0L3m5s,T3s6X J)/ 5VSB一直被我们忽视,这一路电压与开关机、唤醒等关联紧密;5VSB在INTEL84 5GE/PE芯片组中至少需要1A的电流,目前绝大部分电源9b%的5VSB都是2A。其中一路调整成2.5V电压供内存;第二路调整成1.5V,在系统挂起时为南桥提供电压;第三路调整成3.3V供南桥5R0~2o0X)N6h

电力系统的电压等级

电力系统的电压等级 额定电压:各用电设备、发电机、变压器都是按一定标准电压设计和制造的。当它们运行在标准电压下时,技术、经济性能指标都发挥得最好。此标准电压就称为~。 一、电力系统的额定电压等级 1、电力系统的额定电压等级(输电线路的额定线电压) 220,kV 3,kV 6,kV 10,kV 35,kV 60,kV 110,kV 220,kV 330,kV 500,kV 750,kV 1000一般来说:110kv 以下的电压等级以3倍为级差:10kv 35kv 110kv 110kv 以上的电压等级,则以两倍为级差:110kv 220kv 500kv 确定额定电压等级的考虑因素: 三相功率S 和线电压U 、线电流I 的关系是UI S 3=。 当输送功率一定时,输电电压越高,电流越小,导线等载流部分的截面积越小,投资越小;但电压越高,对绝缘的要求越高,杆塔、变压器、断路器等绝缘的投资也越大。所以,对应于一定的输送功率和输送距离应有一个最合理的线路电压。 但从设备制造的角度考虑,线路电压不能任意确定。规定的标准电压等级过多也不利于电力工业的发展。 2、发电机、变压器、用电设备的额定电压的确定 1)用电设备的额定电压=线路额定电压 允许其实际工作电压偏离额定电压% 5±2)线路的额定电压: 指线路的平均电压(Ua+Ub )/2, 线路首末端电压损耗为10%;因为用电设备允许的电压波动是±5%,所以接在始端的设备,电压最高不会超过5%;接在末端的设备最低不会低于-5%; 3)发电机的额定电压 总在线路始端,比线路额定电压高5%;3kv 的线路发电机电压为3.15kv。

4)变压器的额定电压 一次侧:相当于用电设备 A、直接与发电机相连,额定电压与发电机一致。 B、直接与线路相连,额定电压与线路额定电压相同; 二次侧:相当于电源 A、二次侧位于线路始端,比线路额定电压高5%。计及自身5%的电压损耗,总共比线路额定电压高10%。 B、二次侧直接接用电设备(负荷)时,只需考虑自身5%的电压损耗。

各电压等级供电半径要求

各电压等级供电半径要求

供电半径取决于以下2个因素的影响: 1、电压等级(电压等级越高,供电半径相对较大) 2、用户终端密集度(即:电力负载越多,供电半径越小) 0.4千伏线路供电半径在市区不宜大于300米。近郊地区不宜大于500米。接户线长度不宜超过20米,当超过250米时,每100米加大一级电缆。 110kV供电线路一般不超过60km; 35kV供电线路一般不超过30km。 对三类供区的供电距离要求见下表。 三类供区的供电距离要求 A类供区的低压线路供电长度不宜超过250m, B类不宜超过400m, C类不宜超过500m,农业排灌、偏远地区供电长度可适当延长,但应满足电压质量要求。 A类供区 a. 经济相对发达的县(包括县级市)所辖城区;中心镇及福建省综合改革建设试点的小城镇的中心城区;重要旅游区(国家4A级旅游区)的重点用电区域。 b. 国家级开发区及重要的省级、市级开发区。 c. 工业比重较大的综合性地区。 B类供区 a. 县城、乡镇、旅游城镇、列入福建省综合改革建设试点的小城镇的城区。 b. 一般的省级开发区、省级以下的开发区。 c. 闽南高效优质农业区、沿海蓝色农业区、闽西北绿色农业区中形成集中开发和规模化生产基地的地区;自然、旅游资源丰富且距离城市、城镇较近,交通便捷的地区。

d . 规模化农业及中小型轻工业比重较大的综合性地区。 1500至4000kWh/年 C类供区 a. 保持良好自然生态,以中小规模的简单农业生产为主的农村地区,或具备观光休闲资源,但地处偏远的农村地区。 b. 有村级及以上建制,但人口密度以及人均用电量在全省属于偏低水平的农村地区。 低压电网供电半径应按照负荷密度来确定,具体标准见下表。 4.1.3 城市中压配电线路主干线长度原则上应不大于下表要求: 农村中压配电线路主干线长度原则上应不大于下表要求: 市区、城镇地区及集中居住区一般不大于 150 米,在农村地区不宜超过 200 米。超过250米时,必须进行

电压等级划分详细

电压等级(voltage class)电力系统及电力设备的额定电压级别系列。 额定电压是电力系统及电力设备规定的正常电压,即与电力系统及电力设备某些运行特性有关的标称电压。 电力系统各点的实际运行电压允许在一定程度上偏离其额定电压,在这一允许偏离范围内,各种电力设备及电力系统本身仍能能正常运行。 在我国电力系统中,把标称电压1kV及以下的交流电压等级定义为低压,把标称电压1kV以上、330kV以下的交流电压等级定义为高压,把标称电压330 kV及以上、1000 kV以下的交流电压等级定义为超高压,把标称电压1000 kV及以上的交流电压等级定义为特高压,把标称电压±800 kV以下的直流电压等级定义为高压直流,把标称电压±800 kV及以上的直流电压等级定义为特高压直流。通常还有一个“中压”的名称,美国电气和电子工程师协会(IEEE)的标准文件中把2.4 kV至69 kV的电压等级称为中压,我国国家电网公司(SG)的规范性文件中把1 kV 以上至20 kV 的电压等级称为中压。 目前我国常用的电压等级:220V、380V、6kV、10kV、35kV、60kV、110kV、220kV、330kV、500kV。

电力系统一般是由发电厂、输电线路、变电所、配电线路及用电设备构成。 通常将35kV及35kV以上的电压线路称为送电线路。(35KV、60KV 线路为输电线路,110KV、220KV线路为高压线路,330KV以上线路称为超高压线路。把60KV以下电网称为地域电网,110KV、220KV电网称为区域电网,330KV以上电网称为超高压电网。把电力用户从系统所取用的功率称为负荷。) 10kV及其以下的电压线路称为配电线路。 将额定1kV以上电压称为“高电压”,额定电压在1kV以下电压称为“低电压”。 我国规定安全电压为36V、24V、12V三种。

最新各国供电电压参数

各国供电电压参数

各国供电电压参数 我国的标准是相电压380伏,线电压220伏,频率50赫之。 日本的标准是相电压190伏,线电压110伏,频率60赫之。 世界各国的用电频率,各国电压等级及频率 阿根廷:电压:220V (单相) ,380V (三相),频率:50Hz 巴西:电压:110/220V(单相) ,380/460V(三相),频率:60Hz 加拿大:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 墨西哥:电压:127/220V (单相) ,220V (三相);频率:60Hz 美国:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 澳大利亚 / 新西兰:电压:240/415V (单相) ,415V (三相);频率:50Hz 香港:电压:120/220V (单相) ,220V (三相);频率:50Hz 印度:电压:230V;频率:50Hz 印尼:电压:230V (单相) ,380V (三相) ;频率:50Hz 日本:电压:100/200V (單相) ,200V (三相);频率:50Hz 韩国:电压:220 (单相) ,380 (三相);频率:60Hz 马来西亚:电压:220-240V;频率:50Hz 菲律宾:电压:220V 频率:60Hz 新加坡:电压:230V (单相) 400V (三相) 频率:50Hz 台湾:电压:110/220V (单相) 220V (三相)频率:60Hz 泰国:电压:220V (单相) 380V (三相)频率:50Hz 越南:电压:120/220V (单相) 220V (三相)频率:50Hz 丹麦:电压:230V (单相) 380V (三相) 频率:50Hz

供电半径的经验计算和应用资料

供电半径 供电半径就是从电源点开始到其供电的最远的负荷点之间的线 路的距离,供电半径指供电线路物理距离,而不是空间距离。 低压供电半径指从配电变压器到最远负荷点的线路的距离,而不是空间距离。 城区中压线路供电半径不宜大于3公里,近郊不宜大于6公里。因电网条件不能满足供电半径要求时,应采取保证客户端电压质量的技术措施。 0.4千伏线路供电半径在市区不宜大于300米。近郊地区不宜大于500米。接户线长度不宜超过20米,不能满足时应采取保证客户端电压质量的技术措施。 供电半径是电气竖井设置的位置及数量最重要的参数。250米为低压的供电半径,考虑50米的室内配电线路,取200米为低压的供电半径,当超过250米时,每100米加大一级电缆。低压配电半径200米左右指的是变电所(二次为380伏)的供电半径,楼内竖井一般以800平方左右设一个,末端箱的配电半径一般30~50米。 供电半径取决于以下2个因素的影响: 1、电压等级(电压等级越高,供电半径相对较大) 2、用户终端密集度(即:电力负载越多,供电半径越小) 同种电压等级输电中,电压跌落情况小,那么供电半径就大。

相比较来说:在同能负载情况下,10kV的供电半径要比6kV 的供电半径大。 在统一电压等级下,城市或工业区的供电半径要比郊区的供电半径小。 三相供电时,铜线和铝线的最大合理供电半径计算公式(J 为经济电流密度): Lst=1.79×85×11.65/j=1773/jm Lsl=1.79×50×11.65/j=1042/jm 单相供电时:铜线和铝线最大合理供电半径计算公式如下。 Ldt=4.55×14×13.91/j=885/jm(11) Ldl=4.55×8.3×13.91/j=525/jm(12) 选定经济截面后,其最大合理供电半径,三相都大于0.5km,单相基本为三四百米,因此单纯规定不大于0.5km,对于三相来说是“精力过剩”,对单相来说则“力不从心”。 一、经济电流密度值

基本知识介绍_电压等级的划分及电压等级的选择--转载

基本知识介绍 ———电压等级的划分及电压等级的选择 汤继东 1.电压等级的划分 1.1中低压电压等级 低压系统标称电压见表1。 表1 低压系统标称电压(V) 50HZ 我国标准I EC推荐标准 60HZ 220/380230/400120/240(单相三线)277/488 380/660400/690347/600 1000600 在低压系统中,国外有的采用240/415V,如果采用I EC推荐标准230/400V系统,对于我国及使用240/415V的国家来说,在过渡期内,只要调一下电力变压器的接头即可,而电气设备也不必作改动,完全能适应新系统的要求。 中压系统的标称电压见表2。 表2 交流50HZ(60HZ)系统标 称电压及设备的最高电压 系统标称电压(kV) 系列1系列2 设备的最高电压(kV) 3 3.3 3.6 6 6.67.2 101112 1517.5 202224 3336 3540.2 表2的数据是根据I EC60038给出的数据,我国采用系列1的参数,对于33kV与35kV级,I EC正考虑制定一个统一标准。 设备的最高电压实际上规定为设备的额定电压,这里所讲的“设备”,不是指电动机,电动机的额定电压应与系统电压一致,例如在3k V、6k V及10k V 系统中,所用电动机的额定电压也分别为3k V、6k V 及10k V。这里所指“设备”为成套开关柜、熔断器、电压及电流互感器及各种开关设备而言,设备的最高电压或额定工作电压与标称电压系列2相比,一般不高出10%(约为9%),与标称电压系列1相比,一般不高出20%。 不论中压还是低压,在我国尚有些电压等级亟需尽快普及与推广。例如,在中压系统中,20kV电压等级应用得不够普遍,笔者认为,作为中压配电, 20kV比10k V优越。由于20kV比10k V电压高一倍,输出同样功率,线路有功损耗只为10kV线路的1/4。在同样的线路电压损失下,输送同样的功率20kV比10k V电压输送距离高出1倍,或者输送距离一样情况下,20kV比10k V输送容量增加一倍。 目前推行使用20kV电压系统,不论从技术还是从设备上皆不存在问题,传输电缆有专用此电压等级用的12/20(24)kV级电缆,至于成套中压柜,额定电压35k V级早已成熟。生产20kV系统用的额定电压24k V的成套开关柜更无问题,由于20k V 系统尚无普及,与此相适的额定电压24k V成套开关柜生产厂家很少,但可采用40.5kV开关壳体,作为过渡阶段使用,完全能满足使用要求,不过外形体积大了一些罢了。 目前采用660V级标称电压,更没有技术及设 信息技术  电气工程应用2009.245

电压等级及供电距离

电力是以电能作为动力的能源。发明于19世纪70 年代,电力的发明和应用掀起了第二次工业化高潮。成为人类历史18世纪以来,世界发生的三次科技革命之一,从此科技改变了人们的生活。 既是是当今的互联网时代我们仍然对电力有着持续增长的需求,因为我们发明了电脑、家电等更多使用电力的产品。不可否认新技术的不断出现使得电力成为人们的必需品。 20世纪出现的大规模电力系统是人类工程科学史上最重要的成就之一,是由发电、输电、变电、配电和用电等环节组成的电力生产与消费系统。它将自然界的一次能源通过发电动力装置转化成电力,再经输电、变电和配电将电力供应到各用户。 产生的方式:火力发电(煤)、太阳能发电、大容量风力发电技术、核能发电、氢能发电、水利发电等,21世纪能源科学将为人类文明再创辉煌。燃料电池燃料电池是将氢、天然气、煤气、甲醇、肼等燃料的化学能直接转换成电能的一类化学电源。生物质能的高效和清洁利用技术生物质能是以生物质为载体的能量。 输电 electric power transmission 电能的传输,它和变电、配电、用电一起,构成电力系统的整体功能。通过输电,把相距甚远的(可达数千千米)发电厂和负荷中心联系起来,使电能的开发和利用超越地域的限制。和其他能源的传输(如输煤、输油等)相比,输电的损耗小、效益高、灵活方便、易于调控、环境污染少;输电还可以将不同地点的发电厂连接起来,实行峰谷调节。输电是电能利用优越性的重要体现,在现代化社会中,它是重要的能源动脉。 输电线路按结构形式可分为架空输电线路和地下输电线路。前者由线路杆塔、导线、绝缘子等构成,架设在地面上;后者主要用电缆,敷设在地下(或水下)。输电按所送电流性质可分为直流输电和交流输电。19世纪80年代首先成功地实现了直流输电,后因受电压提不高的限制(输电容量大体与输电电压的平方成比例)19世纪末为交流输电所取代。交流输电的成功,迎来了20世纪电气化时代。20世纪60年代以来,由于电力电子技术的发展,直流输电又有新发展,与交流输电相配合,形成交直流混合的电力系统。 输电电压的高低是输电技术发展水平的主要标志。到20世纪90年代,世界各国常用输电电压有220千伏及以下的高压输电330~765千伏的超高压输电,1000千伏及以上的特高压输电。 变电 电力系统中,发电厂将天然的一次能源转变成电能,向远方的电力用户送电,为了减小输电线路上的电能损耗及线路阻抗压降,需要将电压升高;为了满足电力用户安全的需要,又要将电压降低,并分配给各个用户,这就需要能升高和降低电压,并能分配电能的变电所。所以变电所是电力系统中通过其变换电压、接受和分配电能的电工装置,它是联系发电厂和电力用户的中间环节,同时通过变电所将各电压等级的电网联系起来,变电所的作用是变换电压,传输和分配电能。变电所由电力变压器、配电装置、二次系统及必要的附属设备组成。 变压器是变电所的中心设备,变压器利用的是电磁感应原理。 配电装置是变电所中所有的开关电器、载流导体辅助设备连接在一起的装置。其作用是接受和分配电能。配电装置主要由母线、高压断路器开关、电抗器线圈、互感器、电力电容器、避雷器、高压熔断器、二次设备及必要的其他辅助设备所组成。 二次设备是指一次系统状态测量、控制、监察和保护的设备装置。由这些设备构成的回路叫二次回路,总称二次系统。 二次系统的设备包含测量装置、控制装置、继电保护装置、自动控制装置、直流系统及必要的附属设备。 配电

电压等级划分

电压等级划分 我国的电力网额定电压等级(KV): 0.22,0.38,3,6,10,35,60,110,220,330,500。 习惯上称10KV以下线路为配电线路,35KV、60KV线路为输电线路,110KV、220KV线路为高压线路,330KV以上线路称为超高压线路。把60KV以下电网称为地域电网,110KV、220KV电网称为区域电网,330KV以上电网称为超高压电网。把电力用户从系统所取用的功率称为负荷。另外,通常把1KV以下的电力设备及装置称为低压设备,1KV以上的设备称为高压设备。 电压等级(voltage class)电力系统及电力设备的额定电压级别系列。额定电压是电力系统及电力设备规定的正常电压,即与电力系统及电力设备某些运行特性有关的标称电压。电力系统各点的实际运行电压允许在一定程度上偏离其额定电压,在这一允许偏离范围内,各种电力设备及电力系统本身仍能正常运行。 我国最高交流电压等级是750KV(兰州---官亭线),其下有500、330、220、110、(60)、35、10KV,380/220V,国家电网公司正在实验1000KV特高压交流输电。 我国最高直流电压等级为正负500KV(葛洲坝---上海南桥线、天生桥---广州线、贵州---广东线、三峡---广东线),另有正负50KV(上海---嵊泗群岛线),100KV(宁波---舟山线),南方电网公司将建设正负800KV特高压直流输电线。

目前我国常用的电压等级:220V、380V、6KV、10KV、35KV、110KV、220KV、330KV、500KV。电力系统一般是由发电厂、输电线路、变电所、配电线路及用电设备构成。通常35KV及以上的电压线路称为送电线路。10KV及以下的电压线路称为配电线路。将额定1KV以上电压称为“高电压”,额定电压在1KV以下电压称为“低电压”。我国规定安全电压为36V、24V、12V三种。 我国规定的额定电压为:42V、36V、24V、12V、6V五种。 我国高压为:750KV、500Kv、220KV、110KV、35KV、10Kv、6KV。我国低压为:380V、220V、110V、36V、24V、12V。

我国电压等级的分类

㈠我国电压等级的分类 目前,我国一般采用以下标准电压等级: 超高压:500KV; 高压:220KV,110KV,和35KV 中压:10(20)KV 低压:380/220V ㈡TT系统 三相四线制中性点直接接地、且电气设备的外露可导电部分采用接地保护的低压配电系统。 在这种系统中,保护接地的接地电阻与触及漏电设备外露可导电部分的人体电阻形成并联回路。由于分流作用,使得通过人体的电流仅为故障电流的一部分,从而可以减小电击危险程度。如接地电阻很小,使得流过人体的电流降至安全电流以下,对人体就是安全的。㈢TN系统 三相四线制中性点直接接地系统。在该系统中新建的配电小区或有专用变压器的用户,传统上要做接零保护。 TN系统又分:①TN-C系统 ②TN-S系统 ③TN-C-S系统 三种形式。其主要区别在于保护线PE和中性线N的设置问题。 ①TN-C系统 在TN-C系统中,将保护线PE和中性线N合二为一。一般应将

电气设备的外露可导电部分接至PEN线上。 ②TN-S系统 在TN-S系统中,自电源处将保护线PE和中性线N分开设置,且分开后也不允许再次相接。对于TN-S系统中,电气设备的外露可导电部分应接至保护线PE(也可认为是接零保护)。其中性线N 仅作为单相用电设备的回路。 ③TN-C-S系统 在TN-C-S系统中,靠近电源侧的部分将保护线PE和中性线N 合二为一,实际上接成了TN-C;而在靠近负荷侧的部分又将保护线PE和中性线分开设置,实际上接成了TN-S。 在该系统中电气设备的外露可导电部分,再靠近电源侧的部分应接至保护中性线PEN上,而在靠近负荷侧的部分应接至保护线PE上。㈣三相,四线指通过正常工作电流的三根相线和一根零线,不包括不通过正常工作电流的PE。 2005-10-29

各国家电压等级

各个国家(地区)电压及频率比较 国家电压/ 频率 大溪地(Tahiti) 127V/60Hz 中国(China) 220V/50Hz 巴布亚新几内亚(Papua New Guinea) 240V/50Hz 巴林(Bahrain) 100V/60Hz; 230V/50Hz 日本(Japan) 220V/60Hz 北韩(North Korea) 220V/60Hz 卡达(Qatar) 240V/50Hz 台湾(Taiwan) 110V/60Hz 沙巴(Saba) 240V/50Hz 尼加拉瓜(Nicaragua) 127V/50Hz; 220V/60Hz 危地马拉(Guatemala) 115V/60Hz 沙特阿拉伯(Saudi Arabia) 127V/50Hz; 220V/60Hz 沙特阿拉伯:阿布达比(Abu Dhabi) 240V/50Hz 文莱(Brunei) 240V/50Hz 孟加拉国共和国(Bangladesh) 230V/50Hz 所罗门(Solomon Islands) 240V/50Hz 阿曼(Oman) 240V/50Hz 阿富汗(Afghanistan) 220V/50Hz

南韩(South Korea) 110V/60Hz 柬埔寨(Cambodia) 120V/50Hz; 208V/50Hz 科威特(Kuwait) 240V/50Hz 埃及(Egypt) 220V/50Hz 马来西亚(Malaysia) 240V/50Hz 斐济群岛(Fiji Islands) 240V/50Hz 斯里兰卡(Sri Lanka) 230V/50Hz 菲律宾(Philippines) 110V/60Hz 越南(Vietnam) 120V/50Hz 塞普路斯(Cyprus) 240V/50Hz 模里西斯(Mauritius) 230V/50Hz 缅甸(Burma) 230V/50Hz 黎巴嫩(Lebanon) 110, 220V/50Hz 苏维埃社会主义共和国联盟(USSR:Union of Soviet Socialist Republics) 127V/50Hz; 220V/50Hz 千里达& 托贝哥(Trinidad & Tobago) 120V/60Hz 厄瓜多尔(Ecuador) 110-120V/60Hz 巴西(Brazil) 110-220V/60Hz 巴贝多(Barbados) 115V/50Hz 巴拉圭(Paraguay) 220V/50Hz 巴哈马(Bahamas) 115V/60Hz 牙买加(Jamaica) 110V/50Hz

电网电压等级的确定

电网电压等级的确定,是与供电方式、供电负荷、供电距离等因素有关的。 有关资料提供了供电电压与输送容量的关系: 当负荷为2000KW时,供电电压易选6KV,输送距离在3-10公里; 当负荷为3000KW-5000KW时,供电电压易选10KV,输送距离在5-15公里; 当负荷为2000KW-10000KW时,供电电压易选35KV,输送距离在20-50公里; 当负荷为10000KW-50000KW时,供电电压易选110KV,输送距离在50-150公里; 当负荷为50000KW-200000KW时,供电电压易选220KV,输送距离在150-300公里; 当负荷为200000KW以上时,供电电压易选500KV,输送距离在300公里以上。 但近年来,随着电气设备的进步及电力技术的发展,输送容量及距离有了很大进步。 电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4 kV),3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。随着电机制造工艺的提高,10 kV 电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。供电系统以10 kV、35 kV为主。输配电系统以110 kV以上为主。发电厂发电机有6 kV与10 kV两种,现在以10 kV为主,用户均为220/380V(0.4 kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电网为0.4 kV(220V/380V)。 发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也可以用10 kV电压送给发电厂附近用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV为30~100Km、110 kV为50~150Km、220 kV为100~300Km、330 kV为200~600Km、500 kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。枢纽站电压等级一般为三个(三圈变压器),550kV /220kV /110kV。区域站一般也有三个电压等级(三圈变压器),220 kV /110kV /35kV或110kV /35kV /10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV /10 kV 或35 kV /10 kV。用户本身的变电站一般只有两个电压等级(双圈变压器)110 kV /10kV、35kV /0.4kV、10kV /0.4kV,其中以10kV /0.4kV为最多。 3.变电站一次回路接线方案 1)一次接线种类 变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。

电能质量供电电压偏差

供电电压偏差 1.基本定义 1.1 系统标称电压用一标志或识别系统电压的给定值。 1.2 供电点供电部门配电系统与用户电气系统的联接点。 1.3 供电电压供电点处的线电压或相电压。 1.4 电压偏差实际运行电压对系统标称电压的偏差相对值以百分数表示 1.5 电压合格率实际运行电压偏差在限值范围内累计运行时间与对应的总运行时间的百分比。 2.电压偏差 根据电工学理论,两电势点之间的电势差称为电压,用U表示,单位为V(伏),分为直流电压与交流电压。电压偏差即为实际供电电压与额定供电电压之间的差值。引起电压偏差的因素有无功功率不足、无功补偿过量、传输距离过长、电力负荷过重和过轻等,其中无功功率不足是造成电压偏差的主要原因。 供电电压偏差是电能质量的一项基本指标。合理确定该偏差对电气设备的制造和运行,对电力系统的安全性和经济性都有重要意义。 2.1 供电电压偏差的限值 35kv及以上供电电压正、负偏差绝对值之和不超过标称电压的10%;注:如供电电压上下偏差同号(均为正或负)时,按较大的偏差绝对值作为衡量标准。 20kv及以下三相供电电压偏差为标称电压的±7%。 220kv单相供电电压偏差为标称电压的+7%,-10%。 对供电点短路容量较小、供电距离较长以及对供电电压有特殊要求的用户,由供、用点双方协议确定。 2.2 供电电压偏差的测量 2.2.1 测量仪器性能的分类 测量仪器性能分两类,分别定义如下: A级性能----用来进行需要精确测量的地方,例如合同的仲裁、解决

争议等。 B 级性能----可以用来进行调查统、排除故障以及其他的不需要较高精确度的应用场合。 注:应该根据每个具体应用场合来选择测量仪器性能的级别。 2.2.2 供电电压偏差的测量方法 获得电压有效值的基本测量时间窗口应为10周波,并且每个测量时间窗口应该与紧邻的测量时间窗口接近而不重叠,连续测量并计算电压有效值的平均值,最终计算获得供电电压偏差值,计算如下: 电压偏差(%)=系统标称电压 系统标称电压—电压测量值×100% 对A 级性能电压监测仪,可以根据具体情况选择四个不同类型的时间长度计算供电电压偏差:3s 、1min 、10min 、2h 。对B 级性能电压监测仪制造商应该表明测量时间窗口、计算供电电压偏差的时间长度。时间长度推荐采用1min 或10min 。 2.2.3 仪器准确度 A 级性能电压检测仪的测量误差不应超过±0.2%; B 级性能一起的测量误差不应该超过±0.5% 2.2.4 电压合格率统计 被监测的供电点称为监测点,通过供电电压偏差的统计计算获得电压合格率。供电电压偏差监测统计的时间单位为min ,通常每次以月(或周、季、年)的时间为电压监测的总时间,供电电压偏差超限的时间累计之和为电压超限时间,监测点电压合格率计算公式如下: %100-1%?=)总运行统计时间 电压超限时间()电压合格率( 2.2.5 电网电压检测 电网电压监测分为A 、B 、C 、D 四类监测点: (1)A 类为带地区供电负荷的变电站和发电厂的20kV 、10(6)kV 母线电压。 (2)B 类为20 kV 、35 kV 、66 kV 专线供电的和110 kV 及以上

相关文档
最新文档