高三数学正弦定理

三垂线定理

三垂线定理 周口市第三高级中学 王杰 教学目标 三垂线定理是反映三种垂直关系的定理。要求熟练掌握三垂线定理及逆定理,并据此 能够进行推理,论证和解决有关问题。进一步提高学生利用数学知识解决实际问题的能力。 教学重难点 三垂线定理及其逆定理的理解和应用 教学方法 启发式教学法 依知识点的形成过程,实际问题的分析过程,启发学生寻求证明的途径,解决问题的 思路。 教学过程 引例: 如图,已知PA ⊥平面ABC ,∠ABC=90°,求证:BC ⊥PB 。 证明:∵PA ⊥平面ABC ,BC 在平面ABC 内, ∴PA ⊥BC ,又∠ABC=90°, ∴BC ⊥AB ∴BC ⊥平面PAB ,PB 在平面PAB 内 ∴BC ⊥PB 思考: (1)证明线线垂直的方法有哪些? (2)三垂线定理及其逆定理的主要内容。 线线垂直的方法 : (1)a ⊥? ,b 在?内,则a ⊥b (2)a ∥b ,m ⊥b ,则a ⊥m (3)三垂线定理及其逆定理 三垂线定理包含几种垂直关系? ○ 1线面关系 ○2线射垂直 ○3线斜垂直 定理 直线和平面垂直 平面内的直线和平面 平面内的直线和平 的一条斜线射影垂直 面的一条斜线垂直 逆定理 三垂线定理: 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么, 它就和这条斜线垂直。 三垂线定理的逆定理: 在平面内的一条直线,如果和这个平面的一条斜线垂直,那 么,它也和这条斜线的射影垂直。 B

例1: 如图所示,已知PA ⊥平面ABC ,∠ACB= 90°, AQ ⊥PC ,AR ⊥PB ,试 证?PBC 、 ?PQR 为直角三角形。 证明:∵PA ⊥平面ABC ,∠ACB= 90°∴AC ⊥BC ∵AC 是斜线PC 在平面ABC 的射影 ∴BC ⊥PC ∴?PBC 是直角三角形;∴BC ⊥平面PAC ∵AQ 在平面PAC 内,∴BC ⊥AQ ,又PC ⊥AQ , ∴ AQ ⊥平面PBC ,∴QR 是AR 在平面PBC 的射影 又AR ⊥PB ,∴QR ⊥PB (三垂线逆定理), ∴?PQR 是直角三角形。 小结: 凡是能够使用三垂线定理或逆定理证明的结论,都能由线面垂直的性质来证明, 而我们的目标应该是能够熟悉这两个定理的直接应用。 例2. 在四面体ABCD 中,已知AB ⊥CD ,AC ⊥BD 求证:AD 证明:作AO ⊥平面BCD 于点O ,连接BO ,CO ,DO 则BO ,CO ,DO 分别为AB ,AC ,AD 在平面BCD 上的射影。 ∵AB ⊥CD ,∴BO ⊥CD ,同理CO ⊥BD 于是O 是△BCD 的垂心, ∴DO ⊥BC ,于是AD ⊥BC. 小结:运用三垂线定理及逆定理,必然要找出斜线,及作出该斜线在平面内的射影. 例3 . 如图,已知DB 、EC 都垂直于正三角ABC 所在的平面,,BC=EC=2DB , 求平面ADE 与平面ABC 所成二面角的平面角。 解:延长ED 、BC 交于F ,连AF ,则AF 为二面角的棱 由已知DB 、EC 都垂直正三角ABC ,∴ DB//EC 又BC=EC=2DB ∴ FB=BC=AB ,∴ ?FAC 为直角三角形,且FA ⊥AC 而EC ⊥平面ABC ∴ AF ⊥AE (三垂线定理) 于是∠EAC 为平面ABC 与平面ADE 的平面角, 又EC=AC ,∴ ∠EAC= 45° ∴ 二面角的平面角为45°。 思考:本题还可以用什么方法求二面角的平面角? ( 用 c o s ABC ADE s S θ??= ) 小结:求二面角往往是作出二面角的平面角,先确定二面角的棱,再设法过棱上一点在 二面角的两个半平面上作棱的两条垂线以找到平面角,从而转化为平面问题来解决。作二面角的平面角常用的方法有(1)定义法(2)三垂线定理法(3)作垂面法。 此外射影面积定理也是求二面角大小的一种常用方法。学习空间向量之后,我们还有另外的方法来求二面角,例如法向量法等. 例4: 直角三角形ABC 中,∠B= 90°,∠C= 30°,D 是BC 的中点,AC=2, DE ⊥平面ABC 且DE=1,求E 到斜线AC 的距离? 解:过点D 作DF ⊥AC 于F ,连结EF , ∵DE ⊥平面ABC ,由三垂线定理知EF ⊥AC 即E 到斜线AC 的距离为EF 在Rt ?ABC 中, ∠B= 90°,∠C= 30°,C=2 A

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

高中数学:(一)正弦定理

课时达标训练(一) 正 弦 定 理 [即时达标对点练] 题组1 利用正弦定理解三角形 1.若△ABC 中,a =4,A =45°,B =60°,则b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 解析:选C 由正弦定理a sin A =b sin B ,得4sin 45°=b sin 60°,所以b =26,故选C. 2.在△ABC 中,A =60°,a =3,b =2,则B =( ) A .45°或135° B .60° C .45° D .135° 解析:选C 由正弦定理a sin A =b sin B , 得sin B =b sin A a =2sin 60°3=2 2. ∵a >b ,∴A >B , ∴B =45°. 3.在△ABC 中,cos A a =sin B b ,则A =( ) A .30° B .45° C .60° D .90° 解析:选B ∵sin A a =sin B b ,又cos A a =sin B b , ∴cos A a =sin A a , ∴sin A =cos A ,tan A =1. 又0°

5.已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 解析:∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°. ∵a sin A =b sin B =c sin C =1 sin 30°=2,∴a =2sin A ,b =2sin B ,c =2sin C . ∴ a -2 b +c sin A -2sin B +sin C =2. ★答案★:2 6.已知b =10,c =56,C =60°,解三角形. 解:∵sin B = b sin C c =10·sin 60°56 =2 2, 且b =10,c =56,b 0,∴cos A =0,即A =π 2 ,∴△ABC 为直角三角形. ★答案★:直角三角形 8.在△ABC 中,a cos ????π2-A =b cos ????π 2-B ,判断△ABC 的形状. 解:法一:∵a cos ????π2-A =b ·cos ????π2-B , ∴a sin A =b sin B .由正弦定理,得a ·a 2R =b ·b 2R , ∴a 2=b 2,∴a =b , ∴△ABC 为等腰三角形. 法二:∵a cos ????π2-A =b cos ????π 2-B , ∴a sin A =b sin B . 由正弦定理,得2R sin 2A =2R sin 2B , 即sin A =sin B ,

三垂线定理及其逆定理

三垂线定理及其逆定理 【学习内容分析】 “三垂线定理”是安排在“直线与平面的垂直的判定与性质”后进行学习的。它是线面垂直性质的延伸。利用三垂线定理及其逆定理,可将空间两直线垂直与平面两直线垂直进行互相转化,具体应用表现例如辅助我们做二面角平面角等。所以在立体几何中有核心定理的作用。 【课程目标】 一.知识与技能目标 理解和掌握三垂线定理及其逆定理的内容、证明和应用。 二.过程与方法目标 1通过对定理的学习,培养学生观察、猜想和论证数学问题的能力。 三.情感、态度和价值观目标 3、培养学生逻辑推理证明的能力和相互转化的思想。 【教学重点和难点】 一.教学重点 定理的理解和运用 二.教学难点 如何在具体图形中找出适合三垂线定理(或逆定理)的直线和平面。 【教学方法】 以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,运用小组学习合作探究。 【教学过程】 一复习引入: 1.复习提问 1、回顾直线与平面垂直的相关性质以及射影、斜线等概念; 设计意图(因为平面的垂线、平面的斜线及射影是三垂线定理的基础,直线与平面垂直的判定与性质又是证明三垂线定理的基本方法,因此我用提问的形式让学生温故知新,作好新课的铺垫。) 2.有意设疑,引入新课。 平面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。那么平面的斜线与平面内的直线在什么情况下是垂直的呢 学生思考后,我再引导学生利用三角板和直尺在桌面上搭建模型(如图),使直尺与三角

板的斜边垂直,引导学生猜想发现规律。经过实验,发现直尺与三角板在平面内的直角边垂直时便与斜边垂直。 启发学生把猜想、实验后得到的结论总结出来,表达成数学命题: 平面内的一条直线如果和平面的斜线的射影垂直,那么就和平面的这条斜线垂直(板书) 设计意图(为了唤起学生学习的兴趣,把学生的注意力集中起来,调动学生的思维积极性,我通过提出问题,创设情景,引导学生观察、猜想,发现新的知识,培养学生的探索能力) 二、新课讲授: 由以上的分析,我们可以抽象出如下的一个图。 PO⊥α,PA与α斜交于点A,AO ⊥a,问PA与a所成的角; 显然PO⊥α?PO a ⊥ α ? a OA a ⊥?a⊥平面POA ?PA PO I OA=O PA?平面POA 即:PA与a所成的角为900 三垂线定理来源于“线面垂直”,抓住平面α的垂线PO, 才是抓住了定理的实质与关键,并启发学生猜想逆命题的真假,学生把握住了线面垂直这个本质很容易得出三垂线定理的逆定理。 三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它和这条斜线在平面内的射线垂直。(板书) 设计意图(1证明命题。通过对猜想得到的命题的论证,加深学生对命题内容的认识,使学生的思维提高到演绎推理的水平上来。我通过启发学生进行思考讨论后再进行归纳小结,帮助学生理清证明的基本思路,培养学生相互转化的数学思想。2.利用命题变换,培养学生思维的灵活性,进一步深化对定理的学习和理解。3利用列表对比教学法,强化对三垂线定理及其逆定理内容的理解和记忆。) 剖析命题 (1).三垂线定理及其逆定理的内容反映了“四线一面”的相互关系,平面内的直线与平面的斜线以及斜线在平面上的射影垂直等价,本质就是线面垂直的定义。 (2).通过教具演示、图形分析、我再对灵活应用定理的程序进行总结: 一找垂面:即先确定平面及平面的垂线: 二找斜线:接着确定平面的斜线: 三定射影:由上面的垂足和斜足确定斜线的射影; 四证直线:即在平面内证明某一条直线与平面的斜线或斜线的射影垂直。(板书) 设计意图(为了加深对定理的理解,为灵活应用定理奠定基础,帮助学生化解难点,揭示定理的应用方法。) 三讲解例题

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

高中数学教案必修四:正弦定理

课 题 1.1.1 正弦定理 授课人 雷 娜 授课时间 5月 日 年 级 高 一 班 次 1321、1322 教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索,掌握正弦定理的 内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系,引导学生通过观察,推导,比较,由特殊到 一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感、态度、价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形 函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 内容分析 重 点: 正弦定理的探索和证明及其基本应用。 难 点: 已知两边和其中一边的对角解三角形时判断解的个数。 关 键: 掌握正弦定理的内容并能够灵活应用 教学方法 探究式教学 教 学 过 程 一、课题导入: 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二、新课探究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === A B C B A C

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

人教版高中数学,正弦定理(一)

人教版高中数学同步练习 第一章 解三角形 §1.1 正弦定理和余弦定理 1.1.1 正弦定理(一) 课时目标 1.熟记正弦定理的内容; 2.能够初步运用正弦定理解斜三角形. 1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2 . 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c =sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. 4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C ,这个比值是三角形外接圆的直径2R . 一、选择题 1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶3∶4 C .3∶4∶5 D .1∶3∶2 答案 D 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =b sin B , 得4sin 45°=b sin 60° ,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形 答案 A 解析 sin 2A =sin 2B +sin 2C ?(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形. 4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A > B B .A sin B ?2R sin A >2R sin B ?a >b ?A >B . 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60°

三垂线定理及其逆定理例题

三垂线定理及其逆定理例题 知识点: 1.三垂线定理;; 2.三垂线定理的逆定理; 3.综合应用; 教学过程: 1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,那么这条直线就和这条斜线垂直; 已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,,a α?a AO ⊥。 求证:a PO ⊥; 证明: 说明: (1)线射垂直(平面问题)?线斜垂直(空间问题); (2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂线定理; (3)三垂线定理描述的是PO(斜线)、AO(射影)、a(直线)之间的垂直关系。 (4)直线a 与PO 可以相交,也可以异面。 (5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。 例1.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。 求证:PC BC ⊥。 例2.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。 求证:,PO BD PC BD ⊥⊥。 P B B

例4.在正方体1AC 中,求证:1111 1,AC B D AC BC ⊥⊥; 2.写出三垂线定理的逆命题,并证明它的正确性; 命题: 已知: 求证: 证明: 说明: 例2.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。 求证:(1)AD BC ⊥; (2)点A 在底面BCD 上的射影是BCD ?的垂心; P D A B C 1 A C

例 3.求证:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上 已知: 求证: 说明:可以作为定理来用。 例5.已知:Rt ABC ?中,,3,42A AB AC π∠===,PA 是面ABC 的斜线,3 PAB PAc π ∠=∠=。 (1)求PA 与面ABC 所成的角的大小; (2)当PA 的长度等于多少的时候,点P 在平面ABC 内的射影恰好落在边BC 上; B

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

高一数学 余弦定理公式

正弦、余弦定理 解斜三角形 建构知识网络 1.三角形基本公式: (1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) (3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理: 2sin sin sin a b c R A B C ===外 证明:由三角形面积 111 sin sin sin 222S ab C bc A ac B === 得sin sin sin a b c A B C == 画出三角形的外接圆及直径易得:2sin sin sin a b c R A B C === 3.余弦定理:a 2 =b 2 +c 2 -2bccosA , 222 cos 2b c a A bc +-=; 证明:如图ΔABC 中, sin ,cos ,cos CH b A AH b A BH c b A ===- 222222 2 2 sin (cos )2cos a CH BH b A c b A b c bc A =+=+-=+- 当A 、B 是钝角时,类似可证。正弦、余弦定理可用向量方法证明。 要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角; 有三种情况:bsinA

立体几何 三垂线定理及其逆定理

立体几何:三垂线定理及其逆定理
知识点:
1.三垂线定理;;
2.三垂线定理的逆定理;
3.综合应用;
1.三垂线定理:平面内一条直线,如果和这个平面的一条斜线在平面内的射影垂直,
那么这条直线就和这条斜线垂直;
已 知 : PA, PO 分 别 是 平 面 α 的 垂 线 和 斜 线 , AO 是 PO 在 平 面 α 的 射
影, a ? α , a ⊥ AO 。
求证: a ⊥ PO ;
证明:
P
纪福双
a
说明:
(1)线射垂直(平面问题) ? 线斜垂直(空间问题);
(2)证明线线垂直的方法:定义法;线线垂直判定定理;三垂 (3)三垂线定理描述的是 PO(斜线)、AO(射影)、a(直线)之间
A
O
α
(4)直线 a 与 PO 可以相交,也可以异面。
(5)三垂线定理的实质是平面的一条斜线和平面内的一条直线垂直的判定定理。
例 1.已知 P 是平面 ABC 外一点, PA ⊥ ABC, AC ⊥ BC 。
求证: PC ⊥ BC 。
P
线定理; 的垂直关系。
A B
例 2.已知 PA ⊥ 正方形 ABCD 所在平面, O 为对角线 BD 的中点。 求证: PO ⊥ BD, PC ⊥ BD 。
例 4.在正方体 AC1 中,求证: A1C ⊥ B1D1, A1C ⊥ BC1 ;
C P
B
D1
A1 D
A
D
O C
C1
B1 C
A B
P
a
2.写出三垂线定理的逆命题,并证明它的正确性;
A
O
α
大行不倦 呕心沥血 传道授业解惑!大思行广 打通大脑思维的任督二脉,大行无疆 捍卫中国文化最后良心!第 1 页

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

人教新课标版数学高二-人教A必修5练习 余弦定理(一)

1.1.2 余弦定理(一) 课时目标 1.熟记余弦定理及其推论; 2.能够初步运用余弦定理解斜三角形. 1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C . 2.余弦定理的推论 cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 2 2ab . 3.在△ABC 中: (1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°; (3)若c 2=a 2+b 2+2ab ,则C =135°. 一、选择题 1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B 解析 ∵a >b >c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 2 2ab =72+(43)2-(13)2 2×7×43 =32.∴C =π6 . 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C 解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 2 2a =a =2. 4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B 解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,

三垂线定理

三垂线定理 教学目标: 1.掌握三垂线定理及其逆定理的证明 2.正确地运用三垂线定理或逆定理证明两直线垂直 3.通过三垂线定理及三垂线逆定理的学习,渗透相对论观点 教学重点:三垂线定理及其逆定理的证明 教学难点:用三垂线定理及其逆定理证明两条异面直线的垂直 教学方法:启发式教学法 教 具:模具 教学过程 一、复习引入: 1.直线与平面垂直的定义: 2.直线与平面垂直的判定定理: 3.平面的斜线,斜线在平面内的射影: 4.引入:若平面内一条直线与斜线的射影垂直,那么它和斜线垂直吗? 二、新授: 1.三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 已知:,PO PA 分别是平面α的垂线和斜线,OA 是PA 在平面α内的射影,a α?,且a OA ⊥ 求证:a PA ⊥; 证明:∵PO α⊥ ∴PO a ⊥,又∵,a OA PO OA O ⊥= ∴a ⊥平面POA , ∴a PA ⊥. 说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系; (2)符号表达:,,PO O PA A a PA a a OA αααα⊥∈??=?⊥???⊥? . (3)这两条直线可以是相交直线,也可以是异面直线. 2.三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 说明:符号表达: ,,PO O PA A a AO a a AP αααα⊥∈??=?⊥???⊥? . 注意:(1)三垂线指涉及的四线中三个垂直关系PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 (2)要考虑a 的位置,并注意两定理交替使用 (3)注意三垂线定理及其逆定理中的“平面内”三个字的重要性.

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.

高中数学正弦定理

正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等 式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则sin sin sin a b c c A B C === b c 从而在直角三角形ABC 中,sin sin sin a b c A B C == C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的 定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B (图1.1-3)