操纵性与耐波性总结

操纵性与耐波性总结
操纵性与耐波性总结

操纵性

1.船舶操纵性定义及研究内容

操纵性:船舶按照驾驶者的意图保持或改变其运动状态的性能。即船舶能保持或改变航速、航向和位置的性能。

研究内容:航向稳定性、回转性、转首性及跟从性、停船性能。

2.船舶附加质量的含义及与物理质量比例的大致范围

附加质量:附加惯性力与船的加速度成比例,其比例系数称为附加质量。(作不定常运动的船舶,除了船体本身受到与加速度成比例的惯性力外,同时船体作用于周围的水,使之得到加速度,根据作用与反作用原理,水对船体存在反作用力,这个反作用力称为附加惯性力。)

附加质量:m x≈(0.05~0.15)m m y≈m z≈(0.9~1.2)m

附加惯性矩Jxx≈(0.05~0.15)Izz Jyy≈(1~2)Izz Jzz≈Iyy I是质量惯性矩3.漂角、航向角和水动力中心的含义

漂角:船舶重心处的速度矢量{EMBED Equation.KSEE3 \*

MERGEFORMAT |

V与x轴正方向的交角称为漂角β。并规定速度矢量转向x

轴顺时针方向为正。

航向角:船首指向的方向和船舶在水面上的真实轨迹之间的夹角。

4动坐标系统速度转换到大地坐标系统公式:

5、线性水动力导数Yv,Nv,Yr,Nr的物理意义

水动力的位置导数Yv是一个较大的负值。

水动力力矩的位置导数Nv是一个不大的负值。指的是v引起的升力系数/

力矩系数

水动力的旋转导数Yr的绝对值不是很大,其符号由船型决定,可正可负。

水动力矩的旋转导数Nr是一个很大的负值。指的是r引起的水动力系数/

水动力矩系数

6、线/角加速度水动力导数的物理意义及数值大小判断

水动力的线加速度导数是一个相当大的负值。指的是附加质量

水动力矩的线加速度导数是一个不大的数值,其符号取决于船型。指的是由引起的附加惯性力矩系数

水动力的角加速度是一个较小的值,其符号取决于船型

水动力矩的角加速度导数是一个很大的负值。指的是回转加速度引起的船舶附加惯性力系数/惯性力矩系数

7、野本方程及物理意义

野本方程:+r=Kδ

物理意义δ:船舶的惯性力矩、阻尼力矩和舵力矩的作用下,进行的缓慢转,首运动,可以用下列式子近似表示:+N r=MδN为船舶回转中的阻尼力矩系数,I为船舶回转中的惯性力矩系数,M为舵产生的转首力矩系数。

T=I/N,K=M/N由此可知,T是惯性力矩系数与阻尼力矩系数之比,T值大,表示船舶运动过程中收到的惯性力矩大,阻尼力矩小。而K是舵转首力矩系数与阻尼力矩系数之比。K值大,表示舵产生的转首力矩大,而阻尼力矩小。8:稳定性衡准数,位置力臂和阻尼力臂表达式

答:稳定性衡准数 C>0表示船舶具有直线稳定性,C<0表示不具有直线稳定性.位置力臂阻尼力臂→直线稳定性

9.直线,方向,位置稳定性的定义

直线稳定性:船舶受瞬时扰动后,最终能恢复到直线航行状态,但航向发生变化. 方向稳定性:船舶受扰后,新航线为与原航线平行的另一直线.

位置稳定性:船舶受扰后,最终仍按原航线的延长线航行.

10.船舶是否具有直线稳定性的判断方法(同8)

11.船舶回转运动三个阶段的定义

回转运动的三个阶段:①转舵阶段:船舶从开始执行转舵命令起,到实现命令舵角止的阶段②过渡阶段:从转舵终止到船舶进入定常回转的中间阶段③定常阶段:在回转运动中,过渡阶段终了,船舶运动参数开始稳定,达到新的平衡阶段,称为定常阶段

12.船舶回转圈的特征参数及其定义(画图)

回转圈的特征参数:①定常回转直径D:在回转运动中,船舶进入定常阶段后的回转圈的直径②战术直径:船舶首向改变180゜时,其重心距初始直线的横向距离③纵距:自转舵开始时的船舶重心沿初始直线航向至首向改变90゜时的船舶重心间的纵向距离④正横距:船舶转首90゜时,其重心至初始直线航线的横向距离⑤反横距K:船舶离开初始直线航线的回转中心的反侧横移的最大距离

13.回转性指数(K)和应舵指数(T)无因次化方法

K,T无因次: 一般船舶K1.2~3.0。 T值为0.8~6或1左右

14.回转指数和应舵指数对船舶操纵性的影响

回转性指数K大,表示回转性好,定常回转直径小;应舵指数T小,表示船舶的稳定性和跟从性好.

15、一般船舶回转性指数和应舵指数的大致范围

回转性指数K’的大致范围为1.2~3.0

应舵指数T’的大致范围0.8~6或1左右

16、什么是船舶的转舵指数?其数值与船舶的转首性的关系?

转首指数p≈,P代表操舵后船舶移动一个船长时,用以判断操舵效应的每单位舵角引起的首向角改变值。P值越大,船的转首性越好,船越容易改变航向,P>0.3可以保证船舶拥有合理的转首性。

17、菲尔所夫船舶定常回转速降估算公式

是回转初速,回转直径越小,回转时漂角就越大,则回转速降就越大。18、船舶回转过程中横倾变化的基本特征及近似计算公式

基本特征:先内倾后外倾

近似估算公式:

19、船舶操纵性试验种类和实验目的

回转试验:测量船舶回转圈,从而确定船舶回转时的各要素

Z性操纵试验:测定回转性指数K和跟从性指数T

螺线试验、逆螺线试验、回舵试验:评价船舶的直线稳定性

20、《船舶操纵性暂行标准》规定的操纵性衡准

(1)回转能力(2)初始回转能力(3)偏航修正和航向保持能力

(4)停船能力

21、舵设计时偏重回转性还是稳定性的设计依据

可以采用系数作为初步考虑的依据

≥9时,舵设计应偏重回转性要求

≤7时,要侧重稳定性的要求。

22:舵设计的主要内容。

答:①舵的数目和形式的选择。②舵的尺度和形状的设计。③舵力及多杆扭矩计算和舵机功率估算。

23作用在舵上的无因次水动力系数物理含义。(画图)

答:升力系数Cy,阻力系数Cx,法向力系数,切向力系数,水动力合力系数C,水动力矩系数。在机翼理论中,以升力系数、阻力系数和压力中心系数Cp与攻角α的关系曲线来全面表达其水动力性能。

24;敞水舵水动力性能曲线的解读。

在某一攻角范围内,升力系数Cy随攻角α的增大而增加。当α较小时,Cy与α呈线性关系:随着α的增大,舵上水流在弦向叶背上某点开始分离,Cy与α不再保持线性关系。随着攻角的继续增加,水流分离的范围扩大,系数Cy随增加更慢。当舵叶背上水流产生大面积分离时,Cy迅速下降,这种现象称为失速,对应的攻角为失速角,用表示。

25:不同展弦比的升力特点。

展弦比大,小攻角升力系数大,失速角小;展弦比小,小攻角升力系数小,失速角大。

26.舵设计时通常采用的剖面形状、展弦比和叶厚比。

舵设计展弦比为1.5~2,厚度比:典型桨是0.15~0.18,一般取0.12~0.18我国内河船是0.18~0.24剖面形状为NACA型和茹可夫斯基型。

27:舵设计时需要船舶设计师做的主要工作?

①用于舵设计的Cy、Cp曲线②展弦比换算,把曲线展弦比换算成实际λ对应的Cy、Cp曲线③船桨后舵水动力计算④根据水动力计算结果进行舵机扭矩计算。28:改善船舶操纵性的有效措施

①提高直线稳定性,增加中纵剖面尾部面积,中纵剖面面积形心后移,最好使形心处于重心之后。例如:增加呆木,增加尾倾,切去前锺,前倾首柱②实践表明中横剖面面积和船尾形状的微小变动都对船舶操纵性有明显的影响.

耐波性

1.船舶摇荡主要类型横摇、纵摇、垂荡

风浪要素:风速,即在水面规定高度上风的前进速度;风时,即稳定状态的风在水面上吹过的持续时间;风区长度,即风接近于不变的方向和速度在开敞水面上吹过的距离

风浪种类:风浪、涌浪、近岸浪

2.平稳随机过程和各态历经性的相关论述

定义随机过程的统计特性有两种方法:横截样集的统计特性和沿着样集的统计特性。考虑波面升高的横截样集的统计特性。取固定的时刻t=t1,则在每一个现实上得到一个相应的数值,组成一组随机变量,代表t1时刻的横截样集的一个现实,横截样集中的每一现实的统计特性是不同的,他们是时间的函数,如果横截样集中每一现实的统计特性不随时间转移而变化,则称这种随即过程为平稳随机过程。在造船工程中,通常把风浪和由此引起的船舶运动等都看成平稳随机过程。迅速增长或衰减的海面不能认为是平稳随机过程

各态历经性

对于平稳随机过程,当样集中每一个现实求的的统计特性都是相等的,而且样集在任意瞬间所有统计特性等于在足够长时间间隔内单一现实的所有统计特性,满足这样条件的平稳随机过程成为具有各态历经性,具有各态历经性的平稳随机过程是风浪和船舶摇荡运动及其他性能统计分析的基本假定

3.规则波:波面可以用简单函数表达的波浪.。余弦波:波形轮廓是余弦曲线的规则波。

波高为波幅的两倍,波幅波峰或波谷到静水面间的垂向距离

圆频率ω:轨圆运动的周期为波浪周期,轨圆运动的角速度为波浪圆频率

4.深水条件下波长、周期、波速之间的关系

5.史密斯效应:在深水中,由波浪引起的压力变化与轨圆半径的变化具有相同的规律,即随着水深的增加,压力变化以指数规律衰减。

6.波浪能量与波幅之间的关系

7.三一平均波幅又叫有义波幅,他是把侧得的波幅按大小依次排列,取最大1/3的平均值。有义波幅接近海上目测的波幅,通常用于衡准风浪大小。

8.风浪谱密度的使用以及使用条件(366)

已知风浪谱密度和频率响应函数,求船舶运动等的谱密度。

已知风浪谱密度和由测量分析中得到运动的谱密度,从而可以求得频率响应函数。

在某一海区用已知频率响应函数的船舶,测量其运动谱密度,从而可以得到该海区的风浪谱密度。

9.谱密度函数的数字特征:0、2、4阶矩及谱宽参数物理意义。

谱密度对原点的n阶矩,表明谱密度对原点的分布情况,和力学中表征分布的矩有相同的意义:n=0 0次矩是位移的方差

n=2 2次矩是速度的方差n=4 4次矩是加速度的方差

当或接近0时风浪中的能量相对集中,谱密度曲线窄而高,谱密度只分布在很窄的频率范围内,存在明显主频率,称为窄带谱。窄带谱对应的随机过程的幅值服从瑞利分布时间历经如图2-9,幅值作缓慢变化。

当或接近1时,谱密度曲线宽而低,成为宽带谱。宽带普对应的随机过程的幅值是具有平均值为0的正态分布,时间历经如图2-9所示,它相当于一些高频低波幅波浪叠加于另一低频高波幅波浪的情况。

10.了解线性系统、傅里叶变换、响应幅值算子、(RAO)概念(366)

一系统若响应是可叠加的和齐次的,则该系统成为线性系统。如果系统的可叠加性和齐次性不随时间而变,则称该系统为时间恒定的线性系统。解决船舶在不规则波中的运动问题,一般都假定船舶是时间恒定的线性系统。

频率响应函数是脉冲响应函数的傅里叶变换。

对于线性系统,输出的谱密度等于输入谱密度乘以系统的响应幅值算子(RAO)表示正弦输入对正弦输出的幅值比,其平方称为响应幅值算子RAO

11.遭遇频率和周期的计算公式

Te=/(C-Vcos)、e=- .....V(m/s)

12.船舶摇荡运动的频率响应函数的理解

式中分子代表输出,是船舶摇荡值(横倾角、纵倾角、或升沉距离);分母代表

输入,是波浪的波幅,波幅可由中波倾角替换,则频率响应函数为,代表遭遇频率

13.船舶摇荡预报工作的一般程序

①根据航区的特点和气象条件,确定估计海区的三一平均波高或风速,选取相应的谱密度公式

②确定频率响应函数)(Y ωζy 。

③根据e=-计算e

④计算摇荡谱密度对原点的n 阶谱矩mn,其中n=0、2、4

⑤计算谱宽参数

⑥计算谱宽修正后的方差,如果ε<0.4,不修正

⑦计算横荡的统计特性。

14.水质点m 的合力沿着波面的法线方向,此合力称为表现重力。

,0m α是有效波倾角的幅值,称为有效波倾,它代表 对船舶整个水下体积起作用的波倾;φK 是有效波倾系数,φK 应小于1,它是船体形状、船宽与波长比、吃水和重心位置等的函数,也是波浪频率的函数。

15.影响横摇固有周期的因素及计算式

横摇固有周期: D:船的排水量 h:船的初稳性高

穿的固有周期:

影响因素:排水量、初稳性高、以及船舶对纵轴ox 的总惯性矩Ixx 包含实际惯性矩和附加惯性矩。

16.横摇阻尼力矩系数、衰减系数、横摇调谐因素、无因次衰减次数,放大因数 横摇阻尼力矩系数:由横摇自由运动试验得到阻尼系数。

称为衰减系数,它表征阻尼和惯性对横摇衰减影响的程度。

称为横摇调谐因数,它等于波浪的频率与横摇固有频率之比。

称为无因次衰减次数,他表征了阻尼,惯性和复原力矩对横摇的影响,是表征横摇性能的又一重要参数。

表示横摇幅值与有效波倾之比,称为放大因数,它表征了船舶在规则波中横摇大小的程度。

18.船舶的主要减摇装置及效果

①舭龙骨②减摇鳍 它是减摇效果最好的主动式减摇装置,设计的好的减摇鳍在任何情况下都可以使横摇幅值保持在3°之内。③减摇水舱,分为主动式和被动

式两种,主动式水舱的效果很好,设计的好的被动式水舱可以使横摇幅值减小一半左右。

减摇效果的比较:减摇鳍>主动式水舱>被动可控式水舱>被动式水舱

19.用流体力学理论研究纵摇问题时做的基本假定。

①假设船舶是一个刚体,忽略它的弹性变形。②不考虑水的粘性和可压缩性③假定作用在船体上的是微幅规则波④假定船舶摇荡的幅值是微小的。

20.纵摇、横摇、垂荡周期和无因此衰减系数的比较。

纵摇和垂荡的固有周期是接近的,这里指的固有周期实际上是在静水中的自由摇荡周期,对于一般船型大约在2~5s之间,约为横摇固有周期的1/2。纵摇无因次衰减系数在0.3~0.5之间,而横摇只是在0.05~0.07之间。垂荡与纵摇相类似,垂荡的无因此衰减系数在0.3~0.4之间。

21.求顶浪航行时纵摇谐摇波长的方法。

将船舶纵摇固有周期或垂荡固有周期代替Te带入上式求出的就是纵摇谐摇波长。

22.最大能量波长和最大有义波长的定义和确定方法

(1)对应谱密度曲线的峰点的单元波,在不规则波的组成中含有最大的能量,称为最大能量的单元波,其波长称为最大能量波长

(2)波长超过一定范围的波,它在整个单元波中占有很小的比例,不具备使船产生很大横摇的能量,这个波长界线称为最大有义波长, ≈60

23.针对纵摇运动的主成分波和有义成分波的划分方法

(1)主成分波:波长等于船长的单元波和最大能量单元波之间的单元波,称为主成分波,他们对纵向运动起着主要的作用。

(2)有义成分波:波长等于3/4船长的单元波和最大有义波之间的单元波,称为有义成分波。在有义波区间之外的单元波,对船舶纵向运动不产生明显影响。

24.纵摇运动临界状态的划分方法

(1)亚临界区域:以某一航速航行的船舶,当谐摇波长小于3/4船长时,则定义该船处于亚临界区域。

(2)临界区域:当船舶的谐摇波长位于主成分波区间时,这时波浪给予船舶较多的能量,因而产生激烈的运动,称为临界区域。

(3)超临界区域:当谐摇波长大于时,称为超临界区域。

介于亚临界区域与临界区域之间的称为亚临界过渡区域。

介于临界区域与超临界区域之间的称为超临界过渡区域。

25.船舶初稳性高对船舶横摇运动的影响?

初稳性高是船舶安全的重要衡量标准,同时也是横摇的重要参数。

初稳性高影响横摇固有周期,减小初稳性高h时,横摇固有周期T增加,横摇缓和幅值减小。但要注意的是,为了船舶的安全,在任何情况下都必须保证h 具有适当的数值,如果h过小,不仅降低了船的抗风能力,而且在顺浪时,当波峰位于船中时,有可能丧失稳性而倾覆。同时也要估计到有自由液面的油水舱往往比设计的理想情况多,初稳性高要留有一定的余地。

改变初稳性高最有效的方法是改变重心位置。重心提高,h下降,显著增加。对于因重心过低而使过小的船,在设计中可以采取一些措施改善。

补充

1几种概率分布

正态分布(又称高斯分布)是一种常见的连续分布

若认为波浪是正态的,则由波浪所引起的船体运动,船体应力,航行中螺旋桨推力与转矩的变化等,所有这些过程的瞬时值都是正态分布的。

风浪的波幅值、摇荡幅值和应力幅值等都服从瑞利分布。

船舶砰击和甲板上浪服从泊松分布。

2切片法

在实际应用中,切片法已经超过了理论上的限定范围,就船体形状而言不仅适用于细长体,也适用于一般船体;就频率而言适用于从低频到高频的实用范围内;就航速而言,除了超过Fr=1.0的告诉区域外,一般的航速范围都适用,为了保证切片方法计算的精度,一般要求切片数不少于20段,频率范围应覆盖整个响应范围,大约0.2rad/s到2.40rad/s之间取20~30个频率进行计算。1995年柯尔问-克洛夫斯基首先提出了用切片的思想来计算船舶在波浪中的运动,虽然在理论上不够严密,但确立了切片法作为一种船舶运动实际计算方法的地位,后来成为普通切片法。之后,很多学者对切片法进行了改进,相继提出了一些新的传播运动的切片计算方法,如所谓的新切片法,STF切片法等,基本上大同小异。

3 斜浪中的船舶摇荡

由此可以看出,通过改变遭遇浪向可以避免产生严重的横摇。如果船的固有周期大雨涌浪的周期,那么在尾斜浪中可能产生较大的横摇;反之在首斜浪中可能产生较大的横摇。但是应该注意,随着船偏离横浪波浪对船舶的横摇扰动力矩随之减小。

纵摇和垂荡有与横摇相似的情况,在规则波中,当遭遇周期Te等于总要固有周期Tε时,纵摇产生谐摇。由于垂荡的固有周期接近纵摇的固有周期,因此两者的谐摇是同时发生的。纵摇和垂荡的固有周期较小,通常首斜浪比尾斜浪更容易发生谐摇。

完整稳性规则修正案

《2008年国际完整稳性规则》引言和A部分 目录 引言 1 宗旨 2 定义 A部分-强制性衡准 第1章总则 1.1 适用范围 1.2 波浪中的动态稳性现象 第2章-总体衡准 2.1 总则 2.2 关于复原力臂曲线特性的衡准 2.3 强风和横摇衡准(气候衡准) 第3章-某些类型船舶的特殊衡准 3.1 客船 3.2 5,000载重吨及以上的油船 3.3 载运木材甲板货的货船 3.4 散装运输谷物的货船 3.5 高速船

引言 1 宗旨 1.1 本规则旨在提出强制性和建议性的稳性衡准及其他确保安全操作船舶的措施,最大限度地降低对这些船舶、船上人员以及环境构成的风险。本引言和规则的A部分涉及强制性衡准,B部分包含建议和附加的导则。 1.2 除非另行说明,本规则载有适用于长度为24 m及以上的以下类型船舶和其他海上运载工具: .1 货船; .2 运输木材甲板货物的货船; .3 客船; .4 渔船; .5 特种用途船舶; .6 近海供应船; .7 移动式近海钻井装置; .8 平底船;及 .9 甲板上装载集装箱的货船和集装箱船。 1.3 主管机关可以对新颖设计的船舶或本规则未作规定的船舶做出设计方面的补充要求。 2 定义 就本规则而言,下述定义适用。所用术语如未在本规则中定义,则经修订的《1974年安全公约》中的定义适用。 2.1 主管机关系指船舶有权悬挂其国旗的国家的政府。 2.2 客船系指经修正的《1974年安全公约》第I/2条所定义的载运12名以上旅客的船舶。 2.3 货船系指除客船、军事船舶和运兵船、非机动船、原始方式建造的木船、渔船和移动式近海钻井装置以外的任何船舶。 2.4 油船系指主要为了在其货物处所散装油类而建造或改造的船舶,包括混装船和《防污公约》附则II中定义化学品船(当其载运的货物全部或部分为散装油类时)。 2.4.1 混装船系指设计成既可散装运输油类又可散装运输固体货物的船舶 2.4.2 原油船系指从事原油运输的油船。

船舶完整稳性规则

附则3 关于国际海事组织文件包括的所有船舶的完整稳性规则 说明与要求 1 本附则是国际海事组织第18届大会1993年11月4日通过的A.749(18)决议的附件。 2 本附则中“动力支承船”的有关规定已被《国际高速船安全规则》所替代。详见本法规第4篇附则2《际高速船安全规则》。 3 船舶的完整稳性还应符合本法规总则与第1篇的适用规定。 349

第1章一般规定 1.1 宗旨 关于国际海事组织文件包括的所有类型船舶的完整稳性规则(以下简称本规则)旨在提出稳性衡准及其他为确保所有船舶的安全操作而采取的措施,使之最大限度地减少对船舶、船上人员和环境的危害。 1.2 适用范围 1.2.1 除非另有说明,本规则中的完整稳性衡准适用于长度为24m及以上的下列类型船舶和其他海上运输工具: ——货船; ——装载木材甲板货的货船; ——装载散装谷物的货船; ——客船; ——渔船; ——特种用途船; ——近海供应船; ——海上移动式钻井平台; ——方驳; ——动力支承船; ——集装箱船。 1.2.2 沿海国家可对新型设计的船舶或未包含在本规则内的船舶的设计方面制定附加要求。 1.3 定义 下列定义适用于本规则。对过去常用的术语但在本规则中未定义的,如在1974 SOLAS公约中所定义的,亦适用于本规则。 1.3.1 主管机关:系指船旗国政府。 1.3.2 客船:系指经修改的1974 SOLAS公约第Ⅰ/2条中规定的载客超过12人的船舶。 1.3.3 货船:系指非客船的任何船舶。 1.3.4渔船:系指用于捕捞鱼类、鲸鱼、海豹、海象或其他海洋生物资源的船舶。 1.3.5 特种用途船:系指国际海事组织《特种用途船舶安全规则》(A.534(13)决议案)1.3.3中规定的因其特殊用途载有12名以上特种人员(包括可不超过12名乘客)的机动自航船舶(从事科研、探险和测量的船舶;用于培训海员的船;不从事捕捞作业的鲸鱼或鱼类加工船舶;不从事捕捞作业的其他海洋生物资源加工船或其设计特点和运行方式类似上述的其他船舶,根据主管机关的意见可列入此类范围)。 1.3.6 近海供应船:系指主要从事运送物品、材料和设备至近海设施上,并在船前部设计有居住处所和桥楼、在船后部有为在海上装卸货物的露天装货甲板的船舶。 1.3.7海上移动式钻井平台(MODU)或平台:系指能够为勘探或开采诸如液态或气态碳氢化合物、 硫或盐等海床之下的资源而从事钻井作业的海上建筑物: .1柱稳式平台:系指用立柱将主甲板连接到水下壳体或沉箱上的平台; .2浮式平台:系指有单体或多体结构船型或驳船型排水船体、用于漂浮状态下作业的平台; .3自升式平台:系指有活动桩腿能够将其壳体升至海面以上的平台。 1.3.8动力支承船(DSC):系指能够在水面或超出水面航行的船舶,其具有的特性与适用现行国际公约,特别是SOLAS公约和LL载重线公约的普通排水量船舶大不相同,以致要采取其他措施来获得同等安 350

船舶操纵与摇荡

船舶操纵与摇荡期末总复习 考试题目类型: 1. 名词解释(5题) 2. 填空(10题左右,空不限) 3. 画图题(1~2题左右) 4. 简答题(5~6题左右) 5. 计算分析题(2题) 考试内容(操纵性): 第一章绪论 1. 操纵性的定义?操纵性包括哪些方面的内容? 答:所谓操纵性是指船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变航速、航向和位置的性能。船舶操纵性包括以下四方面内容: A、航向稳定性:它是指船舶在水平面内的运动受扰动而偏离平衡位置,当扰动完全消除后,保持原有航向运动的性能; B、回转性:它是指船舶应舵作圆弧运动的性能; C、转首性及跟从性:它是指船舶应舵转首及迅速进入新的稳定运动状态的性能。前者称为转首性,后者称为跟从性; D、停船性能:它是指船舶对惯性停船和倒车停船的响应性能。 第2章船舶操纵 1、描述船舶运动的坐标系?什么是首向角、漂角以及航速角(定义及正负号)? 答:为了描述船舶的运动,我们常采用一下两种右手坐标系:a、固定坐标系Oxyz,它是固定在地球表面的右手坐标系,其原点O可以任意选择,通常与t=0时船舶重心G的位置相一致。Xy平面位于静水面内,z轴垂直向下为正。b、运动坐标系Gxyz,它是以船舶重心位置G为原点而固定于船体上的直角坐标系。x、y和z轴分别是经过G的水线面、横剖面和中纵剖面的郊县,x轴向首为正,z轴向下为正。 首向角:船舶的重心位置和船舶中纵剖面与x轴交角,称为首向角。由x轴转到中纵剖面顺时针为正。 漂角:船舶重心处的速度矢量V与x轴正方向的交角称为漂角,规定由速度矢量转到x 轴顺时针方向为正。 航速角:Xo轴到V的夹角,顺时针为正。 2、水动力导数(回答要全面)?水动力模型? 水动力导数的物理意义(位置导数、旋转导数、角加速度导数以及舵导数,要求会分析其正负号) 答:水动力导数: 水动力模型: 3. 船舶运动稳定性包含哪三部分?(直线、方向、位置,其相互之间的关系) 答:直线稳定性:船舶受瞬时扰动后,最终能恢复直线航行状态,但航向发生变化;方向稳定性:船舶受扰后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受扰后,最终仍按原航线的延长线航行。 显然,具有位置稳定性必同时具有方向和直线稳定性,具有方向稳定性必同时具有直线

重庆交通大学操纵性与耐波性总结

操纵性 1.船舶操纵性定义及研究内容 操纵性:船舶按照驾驶者的意图保持或改变其运动状态的性能。即船舶能保持或改变航速、航向和位置的性能。 研究内容:航向稳定性、回转性、转首性及跟从性、停船性能。 2.船舶附加质量的含义及与物理质量比例的大致范围 附加质量:附加惯性力与船的加速度成比例,其比例系数称为附加质量。(作不定常运动的船舶,除了船体本身受到与加速度成比例的惯性力外,同时船体作用于周围的水,使之得到加速度,根据作用与反作用原理,水对船体存在反作用力,这个反作用力称为附加惯性力。) 附加质量:m x ≈(0.05~0.15)m m y ≈m z ≈(0.9~1.2)m 附加惯性矩Jxx ≈(0.05~0.15)Izz Jyy ≈(1~2)Izz Jzz ≈Iyy I 是质量惯性矩 3.漂角、航向角和水动力中心的含义 漂角:船舶重心处的速度矢量→ V 与x 轴正方向的交角称为漂角β。并规定速度矢量转向x 轴顺时针方向为正。 航向角:船首指向的方向和船舶在水面上的真实轨迹之间的夹角。 4动坐标系统速度转换到大地坐标系统公式:φφsin cos 00Y X X +=φφsin cos 00X Y Y -= 5、线性水动力导数Yv,Nv,Yr,Nr 的物理意义 水动力的位置导数Yv 是一个较大的负值。 水动力力矩的位置导数Nv 是一个不大的负值。 指的是v 引起的升力系数/力矩系数 水动力的旋转导数Yr 的绝对值不是很大,其符号由船型决定,可正可负。 水动力矩的旋转导数Nr 是一个很大的负值 。指的是r 引起的水动力系数/水动力矩系数 6、线/角加速度水动力导数的物理意义及数值大小判断 水动力的线加速度导数.V Y 是一个相当大的负值。指的是附加质量 水动力矩的线加速度导数.V N 是一个不大的数值,其符号取决于船型。指的是由V ? 引起的附加惯性力矩系数 水动力的角加速度.r Y 是一个较小的值,其符号取决于船型 水动力矩的角加速度导数.r N 是一个很大的负值。指的是回转加速度r ? 引起的船舶附加惯性力系数/惯性力矩系数 7、野本方程及物理意义 野本方程:. r T +r=K δ 物理意义δ:船舶的惯性力矩、阻尼力矩和舵力矩的作用下,进行的缓慢转,首运动,可以 用下列式子近似表示:.r I +Nr=M δ N 为船舶回转中的阻尼力矩系数,I 为船舶回转中的惯性力矩系数,M 为舵产生的转首力矩系数。T=I/N,K=M/N 由此可知,T 是惯性力矩系数与阻尼力矩系数之比,T 值大,表示船舶运动过程中收到的惯性力矩大,阻尼力矩小。而K 是舵转首力矩系数与阻尼力矩系数之比。K 值大,表示舵产生的转首力矩大,而阻尼力矩小。

船舶静力学计算及稳性衡准系统

船舶静力学计算及稳性衡准系统 4.1 2009年1月最新版 船舶静力学计算及稳性衡准系统V4.1_0901"(cyzwx) 是由中国船级社武汉规范研究所研制开发。 11全模块:静水力性能、舱容曲线、自由液面、完整稳性、倾斜试验、破舱稳性、随浪稳性、纵向下水、干舷吨位、总纵强度、应急响应 4.1.1 系统界面介绍 Windows应用程序的界面主要有三种,即单文档界面、多文档界面和资源管理器样式界面。顾名思义,单文档界面指只有一个窗体的界面,其应用程序只能打开一个文档,想要打开另一个文档时,必须先关闭已打开的文档。多文档界面指在主窗口中包含多个子窗口的界面,其应用程序允许用户同时显示多个文档,每个文档显示在它自己的窗口中,子窗口被包含在主窗口中(同时有两个或更多的窗口时,只有一个是活动的,用户可以用鼠标单击窗口的可见部分来将它激活),主窗口为应程序中的所有的子窗口提供工作空间。资源管理样式界面是包括有两个窗格(或者区域)的一个单独的窗口,通常是由右半部分的一个树形(或者层次型)的视图和右半部分的一个显示区所组成,其应用程序类似Windows资源管理器,左边窗格为主题,而右边窗格为选中的主题细节。 本程序系统采用多文档界面,同时具有资源管理器样式界面的风格,如图4.1所示。 计算功能

“船舶静力学计算及稳性衡准系统”的功能包括静水力性能计算、舱容曲线计算、自由液面修正计算、倾斜试验计算、完整稳性计算、可浸长度曲线计算、破舱稳性计算和下水计算等功能,在此基础上还将开发吨位计算、干舷计算和随浪稳性计算等功能。 1.3.1 静水力性能计算 1. 计算内容: 静水力曲线、邦戎曲线、费尔索夫曲线、横截曲线、进水角曲线和极限静倾角曲线。 2. 计算方法: 费尔索夫曲线、横截曲线、进水角曲线和极限静倾角曲线采用等体积法计算;静水力曲线和横截曲线可计入初始纵倾角的影响。 1.3.2 舱容曲线计算 1. 计算内容: 舱室要素和舱容曲线。 2. 计算方法: 采用特征点坐标描述舱室形状,自定义计算水线数目。 1.3.3 自由液面修正计算 1. 计算内容:

船舶耐波性总结2

船舶耐波性总结 第一章耐波性概述 一、海浪的描述、、。 船舶耐波性是船舶在波浪中运动特性的统称,它包括船舶在波浪中所产生的各种摇荡运动以及由这些运动引起的抨击、飞溅、上浪、失速、螺旋桨飞车和波浪弯矩变化等性能,直接影响船舶在风浪作用下维持正常功能的能力。 二、6个自由度的摇荡运动 船舶任意时刻的运动可以分解为在Oxyz坐标系内船舶中心G沿三个坐标轴的直线运动及船体绕三个坐标轴的转动。而这些运动中又有直线运动和往复运动 垂荡对船舶航行影响最大,是研究船舶摇荡运动的主要内容。船舶摇荡是指船舶在风浪作用下产生的摇荡运动,他们的共同特点是在平衡位置附近做周期性的震荡作用。产生何种摇荡运动形式取决于船首方向与风浪船舶方向之间的夹角,称为遭遇浪向。 三、动力响应 船舶耐波性是船舶在风浪中性能的总的反应,它主要包括船舶摇荡、砰击、上浪、失速、螺旋桨飞车。 剧烈的横摇、纵摇和垂荡对船舶产生一系列有害的影响,甚至引起惨重后果,主要表现在以下三个方面: 1)、对适居性的影响; 2)、对航行使用性的影响; 3)、对安全性的影响; 船舶在风浪中产生摇荡运动时,船体本身具有角加速度和线加速度,因此属于非定常运动。 第二章海浪与统计分析 2-1 海浪概述 风浪的三要素:风速、风时、风区长度。 风浪要素定义:表观波长、表观波幅、表观周期。 充分发展海浪条件:应有足够的风时和风区长度。 海浪分类:风浪、涌浪、近岸浪。 风浪的要素表示方法:统计分析方法。

2-2规则波的特性 波面可以用简单的函数表达的波浪称为规则波。 A 0=cos kx -t ξξω() A k ξξω为波面升高,为波幅,为波数,为波浪圆频率。 在深水条件下,波长T c λ、周期和波速之间存在以下关系 : ≈ 2 =1.56T λ; c==1.25T λλ; 2= T πω; 2k=g ω 波浪中水质点的振荡,并没有使水质点向前移动,也没用质量传递。但是水 质点具有速度且有升高,因此波浪具有能量。余弦波单位波表面积的波浪所具有 的能量2A 1E=g 2 ρξ 2-3不规则波理论基础 一、不规则波的基本概念 1、确定性关系和统计关系 我们所讨论的不规则波引起的船舶摇荡运动等都是属于统计规律范畴之内的。 2、不规则波叠加原理 为了便于问题的讨论,我们假定不规则波是由许多不同波长、不同波幅和随机相位的单元波叠加而成的。考虑到不规则波的随机性,不规则波的波面升高方程为: An n 0n n n=1=cos k x -t+ξξωε∞ ∑() 随机相位n ε可以取0到2π间的任意值。 二、随机过程 1、随机过程 每一个浪高仪的记录代表一个以时间为变量的随机过程t ξ(),它是许多记录中的一个“现实”。所有浪高仪记录的总体表征了整个海区波浪随时间的变化,称为 “样集”。 2平稳随机过程 1)考虑时间12t=t t=t 、等处的统计特性,称为横截样集的统计特性。 2)考虑随时间变化的统计特性,称为沿着样集的统计特性。 3、各态历经性 对于平稳随机过程,当样集中每一个现实求得的统计特性都是相等的,而且样集在任一瞬时的所有统计特性等于在足够长时间间隔内单一现实的所有统计特性,满足这样条件的平稳随机过程称为具有各态历经性。 三、随机过程中的概率分布 1、随机性的数字特征

船舶操纵性与耐波性总结

船舶操纵性:是指船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变其航速、航向和位置的能力。航向稳定性:表示船舶在水平面内的运动受扰动而偏离平衡状态,当扰动完全消除后能保持其原有平衡状态的性能。 回转性:表示船舶在一定舵角作用下作圆弧运动的性能。转首性:表示船舶应舵转首并迅速进入新的稳定状态的性能. 运动稳定性与机动性制约:小舵角下的航向保持性 、中舵角下的航向机动性 、大舵角下的紧急规避性 固定与运动坐标系的关系: 漂角:速度V 与OX 轴正方向的夹角β。舵角:舵与OX 轴之间的夹角δ。舵速角:重心瞬时速度矢量与O 0X 0轴之间的夹角ψ0。 线性水动力导数意义:船舶作匀速直线运动,在其他参数不变时,改变某一运动参数所引起的作用于船舶的水动力或矩对该参数的变化率。水动力导数:Xu= Yu= 通常可称对线速度分量u 的导数为线性速度导数.如:Xu 等。对横向速度分量v 的导数为位置导数,如:Yv 、Nv 等。对回转角速度r 的导数为旋转导数,如:Nr 、Yr 等。对各加速度分量和角加速度分量的导数为加速度导数Xu 。 ,对舵角δ的导数为控制导数,如:Y δ等。 稳定性:对处于定常运动状态的物体(或系统),若受到极小的外界干扰作用而偏离原定常运动状态;当干扰去除后,经过一定的过渡过程,看是否具有回复到原定常运动状态的能力。若能回复,则称原运动状态是稳定的。直线稳定性:船舶受到瞬时扰动以后,重心轨迹最终恢复成为一条直线,但航向发生了变化。方向稳定性:船舶受到的瞬时扰动消失以后,重心轨迹最终成为原航线平行的另一直线。位置稳定性:船舶受到瞬时扰动,当扰动消失以后,重心轨迹最终恢复成为与原来航线的延长线。 稳定衡准数:C=-Y V (mx G u 1-N r )+N V (mu 1-Y r );C>0 表示船舶在水平面的运动具有直线稳定性;C<0 则不具有直线稳定性。 影响航向稳定性的因素:(1)为改善其航向稳定性,应使Nr 、Yv 二者的负值增加,从C 的表达式可见,此二者之乘积的正值就越大,显然有利于改善稳定性。(2) Nv 对稳定性的影响较大。只要Nv 为正值,船舶就能保证航向稳定性 (3)若沿船纵向设置升力面(如鳍、舵等能产生升力的物体),则将其加在首或尾部都能使Nr 的负值增加,但若加在首部会使Nv 增加负值,而加在尾部会使Nv 变正,故升力面设置在尾部可使Nr 负值增加的同时又使Nv 值变正,故对航向稳定性的贡献比设置在首部要大。与几何形体的关系:增加船长可使Nr 负值增加,增加船舶纵中剖面的侧面积可使Nr 、Yv 的负值增加,增加Nv 的有效方法是,增加纵中剖面尾部侧面积,可采用增大呆木,安装尾鳍,使船产生尾倾等。 船舶回转性各参数:反横距:从船舶初始的直线航线至回转运动轨迹向反方向最大偏离处的距离为S1。正横距:从船舶初始直航线至船首转向90°时,船舶重心所在位置之间的距离为S2。该值越小,则回转性就越好。纵距:从转舵开始时刻船舶重心G 点所在的位置,至船首转向90°时船舶纵中剖面,沿原航行方向计量的距离S3。其值越大,表示船舶对初始时刻的操舵反应越迟钝战术直径:从船舶原来航线至船首转向180°时,船纵中剖面所在位置之间的距离DT 。其值越小,则回转性越好。定常回转直径:定常回转阶段船舶重心点圆形轨迹的直径D 进程R ′:自执行操舵点起至回转圈中心的纵向距离;R′=S3-D/2;它表示船舶对舵作用的应答性,R′越小则应答性越好 回转过程的三个阶段: 转舵阶段:指从开始转舵到舵转至规定角度δ0为止。运动特点:V 。 ≠0 ,r 。≠0 ,v=r=0;过渡阶段:指从转舵结束起到船舶进入定长回转运动为止。运动特点:V 。 、r 。 、V 、r 都不为零且随时间发生变化。 定长回转阶段:当作用于船体的力和力矩相平衡时,船舶就以一定的侧向速度V 和回转角速 度r 绕固定点作定长圆周运动。特点:V 。=r 。 =0,v 、r 为常数。 枢心点P :船舶回转过程中,在船上还存在一个横向速度分量为零的点,称为枢心点p 。枢心点是船舶纵中线上唯一的漂角为零的点;枢心点仅仅是因为船舶转向而存在的;船舶加速时,枢心点会向船舶运动的方向移动 。反操现象:是船舶不具有直线稳定性的一种特征,回转性与稳定性相矛盾。回转衡倾的原因:船舶回转过程中,船体上承受的侧向力其作用点高度各不相同,于是形成对ox 轴的倾侧力矩,产生回转横倾。 野本模型:T r 。+r 。 =K δ 其中 K 、T 为操纵性指数。用参数K 评估回转能力。大K 意味着回转性能好。用参数T 评估直线运动稳定性、初始回转能力和航线改变能力。小T 意味着好的直线运动稳定性、初始回转能力和航线改变能力。K= T= 希望船舶有大K 、小T (但相互矛盾)。T 的单位是S ,K 的单位是S -1 转首性指数p :表示操舵后,船舶行驶一倍船长时,由单位舵角引起的首相角改变量。 诺宾指数:若平>0.3则转首性满足要求。与船体惯性 回转阻尼 舵的回转力矩相关。 操纵性试验:分为模型试验和实船试验两种,模型试验又可分为自由自航模操纵性试验和约束模操纵性试验两种。船舶固有操纵性的试验方法:回转试验、回舵试验、零速启动回转试验、Z 试验、螺线与逆螺线试验、航向改变试验、制动试验和侧向推进装置试验。 回转试验: 1首先在预定的航线上保持船舶直航和稳定航速。 2在开始回转前约一个船长的航程范围内,测量船舶的初始参数,如:航速u 、初始航向角、初始舵角、螺旋桨的初始转速n 0等。 3以尽可能大的转舵速度将舵操至规定舵角δ0并把定舵轮。随后开始测量船舶运动参数随时间的变化,包括船舶的轨迹、航速、横倾角及螺旋桨的转速等。 4待首向角改变540°时,即可结束试验。 螺线试验:评价船舶的直线稳定性,在直航中给船舶以扰动,通过观察扰动去掉后船舶是否能够恢复直航来测定直线稳定性。 1.首先在预定航线上保持匀速直航,并在操舵前测出初始航速、舵角及螺旋桨转速。 2. 执行操舵,以尽可能快的速度将舵转至一舷规定的舵角(如右舷15°) 并保持舵角不变,使船进入回转运动,待回转角速度r 达到稳定值时,记录下r 和相应的舵角δ值。 3. 改变舵角值重复以上过程,测出定常r 值及相应δ值。舵角从右舷15°开始,并按下列次序改变:右15°→右10°→右5°→右3°→右1°→ 0°→左1°→左3°- 左5°→左10°→左15° Z 形操舵试验:测定船舶操舵响应的一种操纵性试验法。进行Z 形试验时,先使船以规定航速保持匀速直航,然后将舵转至右舷规定的舵角(如右舷10°) ,并保持之,则船即向右转向,当首向角达到某一规定的舵角值时(如右舷10°) 立即将舵向左转至与右舵角相等的左舵角(左舷10°) ,并保持之。当反向操舵后,船仍朝原方向继续转向,但向右转首角速度不断减小,直至消失。然后船舶应舵地再向左转向,当左转首向角与舵角值相同时,再向右操舵至前述之右舵角。该过程如此继续,到完成五次操舵为止。 航向改变试验是研究船舶在中等舵角时的转向性能的一种较简易而实用的试验方法。 回舵试验是船舶航向稳定性的定义试验。该试验方法实质为回转试验(或螺线试验)的延续 操纵性船模试验中必须满足的相似条件:1使自航船模与实船保持几何形状相似;2通常保持无因次速度、加速度参数相等,即u/V 、v/V 、rL/V 等相等;3在水动力相似方面,只满足傅汝德数Fn 相等,保证二者重力相似。 实际进行自航模试验时保持:船体几何形状相似;质量、重心位置及惯性矩相似;在决定模型尺度时要考虑临界雷诺数的要求;选择航速时满足傅汝德数相等;机动中保持舵角相等。 船舶固有操纵性指标:直接的判据:它是由自由自航试验直接测定的参数;间接的判据:如野本的K 、T 指数,诺宾的P 指数 操纵性衡准:1回转能力,由回转试验确定。船舶以左(右)350 舵角回转时,回转圈的纵距应

船舶耐波性能实验——阻尼系数测量

船舶耐波性能试验 —阻尼系数测量试验 学生姓名: 学号: 学院:船舶与建筑工程学院班级: 指导教师:

一、船模横摇试验的目的 上风浪中航行最易发生横摇,而且横摇的幅度较大,不仅影响船 员生活和工作的各个方面,严重的横摇还会危及船舶的安全乃至倾覆失事。因此,在有关耐波性的研究中,首先关注的是要求设计横摇性能优良的船舶。 由于船舶在波浪中横摇运动的复杂性,理论计算尚未达到可用于实际的程 度,因而模型试验是目前预报船舶横摇最可靠的方法。 本教学试验由下列两部分组成,即: 1.船模在静水中的横摇衰减试验,目的是确定船的固有周期以及作用在船 体上的水动力系数,如附连水惯性矩及阻尼系数等。据此可根据线性运动方程计算船舶在风浪中的横摇频率响应曲线。 2.船模在规则波中的横摇试验,目的是确定船的横摇频率响应函数,可用 于预报船舶在中等海况下的横摇统计特性,对于高海况的预报数值则偏高,这是由于非线性影响的缘故。 二.实验原理 通过《船舶原理》课程的学习,我们知道船舶的横摇运动方程可以表示为: 式中,表示横摇角、横摇角速度、横摇角加速度;Ixx’表示船 舶在水中的横摇惯性矩,等于船舶在空气中的横摇惯性矩Ixx 与船舶在水中的横摇附加惯性矩之和;N为阻尼力矩系数;D为排水重量;h为横稳性高度;αm0为有效波倾;ω为波浪圆频率。 引入横摇衰减系数γ和横摇固有(圆)频率ωФ ωФ2=Dh/Ixx’ 横摇运动方程可以写成: 静水中自由横摇 考虑船舶在初始时刻浮于静水面上,并伴有一个静横倾角φ0,但不受波浪的作用,该船舶随后将作自由横摇运动,其表达式可以写成 式中,无因次衰减系数μ和相位超前角β为

耐波性习题(1)

耐波性作业 一、某船实测的纵摇幅值的统计表如下。 雷利用分布的参数为j K j j a P R ∑==12 )(θ,其中j a )(θ是第j 间隔中的幅值平均值。要 求: (1)作直方图; (2)假定纵摇幅值满足雷利分布,即 R a a a e R f 2 2)(θθθ- ?=,在直 方图上作出)(a f θ曲线。 (3)计算平均纵摇角R a 886.0=θ;三一平均纵摇角R a 416.1)(3/1=θ; 十一平均纵摇角R a 8.1)(10/1=θ 二、按不规则波上的纵摇估算表计算下列船舶的纵摇统计特性

(V g e 2 ,180ωωωβ+ ==)。 已知:三一平均波高4)2(3/1=A ρ米;船速V=6.37米/秒。 其中波谱)(ωρS 按12届ITTC 单参数公式计算。 三、已知某船船长L=147.18米,船宽B=20.40米,排水量D=16739吨,型深H=12.40米,重心高度z g =8.02米,初稳性高度h=1.2米, 阻尼系数2μ=0.12。 (1) 求横摇固有周期; (2) 横摇的放大因数为()2 2 2 2411 φ φμαφΛ +Λ-= mo A , 请按下列波浪频率计算横摇放大因数,ω=0, 0.1,0.3,0.4,0.458, 0.5,0.6,0.7,0.9,1.1,1.3,∞。 四、排水量为10000吨,初稳性高度h 为0.90米的船舶的横摇固有

周期为14秒。若在重心的上面2米处减少1000吨的重量,问新的横摇周期是多少?(稳心M 的位置认为不变,由于重心的改变,要求绕新的GX 轴的转动惯量)。 五、已知某船横摇周期T=13秒,初稳性高度h=1米,无因次阻尼衰减系数μ=0.10,计算: (1)使船发生共振的波长; (2)若波浪最大倾角为4 /10534.0-=λα(弧度),求共振时最大振幅; (3)假使该船由于载荷分布发生改变(排水量不变),总的质量惯性矩降低了10%,欲使固有周期不变,问初稳性高度改变了多少?在此新情况下,假定阻尼力矩系数2N 保持不变,试求共振横摇角度。 六、已知某货船的船宽B=20.40米,吃水T=8.04米,重心高度z g =8.02米,初稳性高度h=1.20米,舭龙骨比A b /LB=0.033,航行I 类航区。试计算该船的横摇角。 七、已知某船吃水T=8.02米,垂向棱形系数χ=0.70,计算该船的纵摇固有周期。 八、试按“实船试验数据分析表”,利用下表数据,计算某船纵摇幅

完整稳性计算书(初步)

REVISION DESCRIPTION 版 本 说 明 DATE 日 期 REV. 版 本 DESCRIPTION 简 述 MOD. 修 改 CHKD. 校 对 SHANGHAI HANSAIL MARINE & OFFSHORE DESIGN CO., LTD. 上 海 航 盛 船 舶 设 计 有 限 公 司 https://www.360docs.net/doc/df7936316.html, E-MAIL: HANSAIL@https://www.360docs.net/doc/df7936316.html, TEL:86-21-63167098 FAX:86-21-63167093 160TEU 双燃料动力集装箱船 HULL NO. 船 号 完整稳性计算书(初步) DETAIL DESIGN 详细设计 UNI. SUB. 会签专业 SIG. 签 字 HS4046-101-005JS EDIT 编 制 陈卫华 CHKD. 校 对 苏 颖 MATERIAL 材 料 WEIGHT 重量(kg)SCALE 比例RVE. 审 核 王万勇 DATE 日 期 2015.10.15 REVISION TOTAL PAGE 第1页版本: A 共 60页

船 名: 160TEU双燃料动力集装箱船 2015年10月08日 WH12026上海航盛船舶设计 共 60 页 第 2 页 船舶静力学计算及稳性衡准系统 V4.2(201208) WH12026 * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * 船 舶 完 整 稳 性 计 算 书 * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * 船 名 : 160TEU双燃料动力集装箱船 数据库名 : HS4046-20151013.mdy 图 纸 号 : 委托单位 : 计算标识 : 计算单位 : 上海航盛船舶设计 计算签名 : CWH 审核签名 : 批准签名 : 计算日期 : 2015 年 10 月 08 日 程 序 编 制 单 位 : 中 国 船 级 社 武 汉 规 范 研 究 所

第1章 船舶操纵基础理论解读

第一章船舶操纵基础理论 通过本章的学习,要求学员概念理解正确,定义描述准确,对船舶操纵性能够正确评估,并具有测定船舶操纵性能的知识。 根据船舶操纵理论,操纵性能包括: 1)机动性(旋回性能和变速运动性能) 2)稳定性(航向稳定性) 第一节船舶操纵运动方程为了定量地描述船舶的操纵运动,我们引入船舶操纵运动方程,用数学方法来讨论船舶的运动问题。 一、船舶操纵运动坐标系 1.固定坐标系Ox0y0z0 其原点为O,坐标分别为x0,y0,z0,由于我们仅讨论水面上的船舶运动,因此,该坐标系固定于地球表面。 作用于船舶重心的合外力在x0,y0轴上的投影分别为X0和Y0 对z0轴的合外力矩为N

2. 运动坐标系Gxyz 其原点为点G (船舶重心),坐标分别为x ,y ,z ,该坐标系固定于船上。 这主要是为了研究船舶操纵性的方便而建立的坐标系。 x ,y ,两个坐标方向的运动速度分别为u 和v ,所受的外力分别为X 和Y , 对z 轴的转动角速度为r ,z 轴的外力矩为N 。 二、 运动方程的建立 根据牛顿关于质心运动的动量定理和动量矩定理,船舶在水面的平面运动可由下列方程描述: y 0

??? ??===? Z og o og o I N y m Y x m X 该式一般很难直接解出。为了方便,将其转化为运动坐标系表示,这样可以使问题大为简化。经过转换,得: ?? ? ??=+=-=r I N ur v m Y vr u m X Z )()( 该方程看似复杂,但各函数和变量都与固定坐标系没有关系,因此,可以使问题大为简化。 三、 水动力和水动力矩的求解 对于上述方程中的水动力和水动力矩可表示为: ?? ? ??===),,,,,,(),,,,,,(),,,,,,(δδδr v u r v u f N r v u r v u f Y r v u r v u f X N Y X

毕业答辩——船舶操纵性与耐波性

1.什么是船舶耐波性? 船舶耐波性是指船舶在波浪扰动下,产生各种摇荡运动、抨击、甲板上浪、失速、螺旋桨出水以及波浪弯矩等,仍能维持一定航速在波浪中安全航行的性能。(P1) 2.什么是有效波面? 船宽、吃水相对波长是很小时,可近似认为船是水中一质点,它所受的浮力近似垂直于波面。当船宽和吃水相对波长为有限尺度时,由于船宽范围内波形曲率的变化以及沿船体水下表面所受到的浮力方向与波面法向不一致,使船受到的总浮力有所减小,同时其浮力作用线是垂直于某一次波面,这一次波面称为有效波面。(P17) 3.船舶阻尼力(矩)按物理性质大致可分为哪三类? 兴波阻尼、旋涡阻尼、摩擦阻尼(P8) 4.船在水中可能产生六个自由度的摇荡运动,分别是什么运动? 横摇、纵摇、首摇、垂荡(升沉)、横荡和纵荡 5.研究船舶耐波性用到的三种坐标系是哪三种,可画图说明? 空间固定坐标系:该坐标系用来描述海浪; 动坐标系Gxbybzb:随船做摇荡运动,坐标原点取在船的重心G上,坐标轴取作与船的中心惯性主轴相重合,Gxb在船中线面与龙骨线平行,向艏为正;Gzb在船中线面内垂直于Gxb,向上为正;Gyb垂直于船的中线面,向右舷为正。 随船移动的平衡坐标系Oxyz:当船在静水中以航速v航行时,该坐标系随船同速前进,Oxy位于静水面上,Ox正向与航速v同向。当船在波浪上做摇荡运动时,该坐标系不随船做摇荡,仍保持按船的平均速度和原航向前进。 6.船模实验需要满足的相似律有那几个? 几何相似、运动相似、动力相似。(P136-P137) 7.什么是船舶摇荡运动的兴波阻尼?(P9) 由于船舶运动使水面产生波浪,消耗船本身的能力所造成的阻尼。傅汝德认为兴波阻尼与速度一次方成比例。 8.目前采用较广泛的减摇装置有哪些? 舭龙骨、减摇水舱、减摇鳍(P168) 9.什么是有效波面角?

船舶操纵性与耐波性复习

漂角:船舶重心处速度与动坐标系中ox轴之间的夹角,速度方向顺时针到ox轴方向为正。首向角:船舶纵剖面与固定坐标系OX轴之间的夹角,OX到x轴顺时针为正 舵角:舵与动坐标系ox轴之间的夹角,偏向右舷为正 航速角:重心瞬时速度与固定坐标系OX轴的夹角,OX顺时针到速度方向为正 浪向角:波速与船速之间的夹角。 作用于船体的水动力、力矩将与其本身几何形状有关(L、m、I),与船体运动特性有关(u、v、r、n),也与流体本身特性有关(密度、粘性系数、g)。 对线速度分量u的导数为线性速度导数,对横向速度分量v的导数为位置导数,对回转角速度r的导数为旋转导数,对各角速度分量和角加速度分量的导数为加速度导数,对舵角的导数为控制导数。 直线稳定性:船舶受瞬时扰动后,最终能恢复指向航行状态,但是航向发生了变化; 方向稳定性:船舶受瞬时扰动后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受瞬时扰动后,最终仍按原航线的延长线航行; 具备位置稳定性的必须具备直线和方向稳定性,具备方向稳定性的必定具有直线运动稳定性。 1.定常回转直径 2.战术直径 3.纵距 4.正横距 5.反横距 回转的三个阶段 一、转舵阶段二、过度阶段三、定常回转阶段 耦合特性:船舶在水平面内作回转运动时会同时产生横摇、纵摇、升沉等运动,以及由于回转过程中阻力增加引起的速降。以上所述可理解为回转运动的耦合,其中以回转横倾与速降最为明显。 Tr r Kδ += 回转性指数K是舵的转首力矩与阻尼力矩系数之比,表征船舶转首性, 应舵指T 是惯性力矩数系数与阻尼力矩系数之比, 由T=I/N可见:参数T是惯性力矩与阻尼力矩之比,T值越大,表示船舶惯性大而阻尼力矩小;反之,T值越小,表示船舶惯性小而阻尼力矩大。 由K=M/N可见:参数K是舵产生的回转力矩与阻尼力矩之比,K值越大,表示舵产生的回转力矩大而阻尼力矩小;反之,K值越小,表示舵产生的回转力矩小而阻尼力矩大。 K值越大,相应回转直径越小,回转性越好.T为小正值时,船舶具有良好的航向稳定性. K表示了回转性,T表示了应舵性和航向稳定性。舵角增加:K、T同时减小;吃水增加:K、T 同时增大;尾倾增加:K、T同时减小;水深变浅:K、T同时减小;船型越肥大:K、T 同时增大。 船舶操纵性设计的基本原则是:给定船的主尺度(即船的惯性),以提供必要和足够的流体动力阻尼及舵效,使之满足设计船舶所要求的回转性、航向稳定性和转首性。通常最常用的办法是改变舵面积,因为舵既有明显的航向稳定作用,又会产生回转力矩。

年国际完整稳性规则

年国际完整稳性规则 《2008年国际完整稳性规则》引言和A部分 目录 引言 1 宗旨 2 定义 A部分-强制性衡准 第1章总则 1.1 适用范围 1.2 波浪中的动态稳性现象 第2章-总体衡准 2.1 总则 2.2 关于复原力臂曲线特性的衡准 2.3 强风和横摇衡准(气候衡准) 第3章-某些类型船舶的特殊衡准 3.1 客船 3.2 5,000载重吨及以上的油船 3.3 载运木材甲板货的货船 3.4 散装运输谷物的货船 3.5 高速船 引言 1 宗旨 1.1 本规则旨在提出强制性和建议性的稳性衡准及其他确保安全操作船舶的措施,最大限度地降低对这些船舶、船上人员以及环境构成的风险。本引言和规则的A部分涉及强制性衡准,B部分包含建议和附加的导则。 1.2 除非另行说明,本规则载有适用于长度为24 m及以上的以下类型船舶和其他海上运载工具: .1 货船; .2 运输木材甲板货物的货船; .3 客船; .4 渔船; .5 特种用途船舶; .6 近海供应船; .7 移动式近海钻井装置; .8 平底船;及 .9 甲板上装载集装箱的货船和集装箱船。 1.3 主管机关可以对新颖设计的船舶或本规则未作规定的船舶做出设计方面的补充要求。

2 定义 就本规则而言,下述定义适用。所用术语如未在本规则中定义,则经修订的《1974年安全公约》中的定义适用。 2.1 主管机关系指船舶有权悬挂其国旗的国家的政府。 2.2 客船系指经修正的《1974年安全公约》第I/2条所定义的载运12名以上旅客的船舶。 2.3 货船系指除客船、军事船舶和运兵船、非机动船、原始方式建造的木船、渔船和移动式近海钻井装置以外的任何船舶。 2.4 油船系指主要为了在其货物处所散装油类而建造或改造的船舶,包括混装船和《防污公约》附则II中定义化学品船(当其载运的货物全部或部分为散装油类时)。 2.4.1 混装船系指设计成既可散装运输油类又可散装运输固体货物的船舶 2.4.2 原油船系指从事原油运输的油船。 2.4.3 成品油船系指从事原油以外油类运输的油船。 2.5 渔船系指用于捕捞鱼类、鲸、海豹、海象或其它海洋生物资源的船舶。 2.6 特种用途船舶系指《特种用途船舶安全规则》(第MSC.266(84)号决议)中定义的特种用途船舶。 2.7 近海供应船系指主要从事向近海设施运输补给品、材料和设备,为了在海上装卸货物,居住舱室和驾驶台建筑物设计在船舶前部,后部设有露天货物甲板的船舶。 2.8 移动式近海钻井装置(MODU或钻井装置)系指能够为勘探或开采液态或气态的碳氢化合物、硫或盐等海底资源而从事钻井作业的船舶。 2.8.1 柱稳式钻井装置系指用支柱或沉箱将主甲板连接到水下船体或桩靴上的钻井装置。 2.8.2 水面式钻井装置系指具有单体或多体 结构的船型或驳船型排水船体,用于漂浮状态下作业的钻井装置。 2.8.3 自升式钻井装置系指其活动桩腿能将船体升至海面以上的钻井装置。 2.8.4 沿岸国系指对装置的钻井作业行使管理控制的国家政府。 2.8.5 作业模式系指钻井装置在就位或转移过程中可能作业或工作的状态或方式。.1 作业状态系指一钻井装置为开展钻井作业而就位,并且环境和运行的组合荷载处于为该种作业所确定的设计限制之内的状态。装置可以处于漂浮状态或处于被支撑在海床上的状态,视具体情况而定。 .2 抗强风暴状态系指一钻井装置可能受到该装置的设计最重环境荷载的状态。假设钻井作业由于环境荷载的严重性已被中断,装置可以处于漂浮状态或处于被支撑在海床上的状态,视具体情况而定。 .3 转移状态系指一钻井装置从一个地理位置移动到另一个地理位置的状态。 2.9 高速船(HSC)1系指能够以等于或大于米每秒(m/s)的最大航速行驶的船舶: 3.7*▽0.1667 其中▽为对应于设计水线的排水量(m3) 2.10 集装箱船系指主要用于运输海运集装箱的船舶。 2.11 干舷系指勘定载重线与干舷甲板之间的距离2。

船舶操纵与摇荡

船舶操纵与摇荡

————————————————————————————————作者:————————————————————————————————日期:

船舶操纵与摇荡期末总复习 考试题目类型: 1. 名词解释(5题) 2. 填空(10题左右,空不限) 3. 画图题(1~2题左右) 4. 简答题(5~6题左右) 5. 计算分析题(2题) 考试内容(操纵性): 第一章绪论 1. 操纵性的定义?操纵性包括哪些方面的内容? 答:所谓操纵性是指船舶按照驾驶者的意图保持或改变其运动状态的性能,即船舶能保持或改变航速、航向和位置的性能。船舶操纵性包括以下四方面内容: A、航向稳定性:它是指船舶在水平面内的运动受扰动而偏离平衡位置,当扰动完全消除后,保持原有航向运动的性能; B、回转性:它是指船舶应舵作圆弧运动的性能; C、转首性及跟从性:它是指船舶应舵转首及迅速进入新的稳定运动状态的性能。前者称为转首性,后者称为跟从性; D、停船性能:它是指船舶对惯性停船和倒车停船的响应性能。 第2章船舶操纵 1、描述船舶运动的坐标系?什么是首向角、漂角以及航速角(定义及正负号)? 答:为了描述船舶的运动,我们常采用一下两种右手坐标系:a、固定坐标系Oxyz,它是固定在地球表面的右手坐标系,其原点O可以任意选择,通常与t=0时船舶重心G的位置相一致。Xy平面位于静水面内,z轴垂直向下为正。b、运动坐标系Gxyz,它是以船舶重心位置G为原点而固定于船体上的直角坐标系。x、y和z轴分别是经过G的水线面、横剖面和中纵剖面的郊县,x轴向首为正,z轴向下为正。 首向角:船舶的重心位置和船舶中纵剖面与x轴交角,称为首向角。由x轴转到中纵剖面顺时针为正。 漂角:船舶重心处的速度矢量V与x轴正方向的交角称为漂角,规定由速度矢量转到x 轴顺时针方向为正。 航速角:Xo轴到V的夹角,顺时针为正。 2、水动力导数(回答要全面)?水动力模型? 水动力导数的物理意义(位置导数、旋转导数、角加速度导数以及舵导数,要求会分析其正负号) 答:水动力导数: 水动力模型: 3. 船舶运动稳定性包含哪三部分?(直线、方向、位置,其相互之间的关系) 答:直线稳定性:船舶受瞬时扰动后,最终能恢复直线航行状态,但航向发生变化;方向稳定性:船舶受扰后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受扰后,最终仍按原航线的延长线航行。 显然,具有位置稳定性必同时具有方向和直线稳定性,具有方向稳定性必同时具有直线

耐波性论文

关于耐波性理论的一些浅见 【摘要】船舶动力学的研究历来是由两个主要理论:操纵性和耐波性。 船舶在海水中的航行必将伴随波浪,耐波性的研究对于保证船舶的安全,维持船舶工作时环境的稳定,保证其功能,都具有重大的意义。 【关键词】耐波性理论;船舶动力学;流体力学;运动;操纵性 【前言】耐波性能力的措施 1976 年,St.Denis提出描述耐波性能所需的四个主要条件。这些都是: 使命: 什么船将要完成的目标。这艘船在海上的作用。 环境: 条件下,这艘船操作。这可以称为海况、风速、地理区域或它们的组合。 船舶的反应: 这艘船对环境条件的响应。反应是环境和容器特性的函数。 耐波性能标准: 船上的响应的既定的限制。这些都基于船舶运动和经历,加速度,包括舒适标准,例如噪音、振动和晕船、如非自愿的速度减少,基于性能值和可观察到的现象,如弓浸泡。 显然,钻探和一艘渡轮有着不同的任务,在不同的环境下运作。性能标准也会不同。都可算是适航,虽然出于不同的原因,根据不同的标准。 在船舶设计中,先确定船舶在波浪中的行为是重要的。这可以通过计算,发现通过物理模型测试,最终测量船上的船只。计算可以简单的形状如矩形驳船进行解析,但需要由计算机进行任何现实形船。 一些这些计算或模型试验的结果称为响应振幅运算符(RAO) 的传递函数。浮动结构他们将需要所有六个运动和所有相对波标题计算。 一影响耐波性因素: 以下许多因素会影响耐波性或更正确的船响应。 大小: 更大的船一般会比一个较小的低运动。这是因为海浪的相对与船舶的大小更低。 位移: 重船一般会降低运动,要比一个轻一点。既然波的能量每艘船舶是相同的,并提供激振力,具有更大质量的船将有较低的加速度。 稳定性: 稳定的船舶会倾向于跟随波的配置更接近于一个不稳定的。这意味着一个更稳定的船舶一般有较高的加速度,但较低的振幅的运动。 干舷: 更大的船的干舷是不太可能出现在巨大的甲板上。甲板浸水往往是耐波性标准,因为它会影响一些船只的任务能力。 二耐波性的应用 在船舶设计中,先确定船舶在波浪中的行为是重要的。这可以通过计算,通过物理模型测试,最终测量船上的船只。计算可以对简单的形状如矩形驳船进行解析,但需要由计算机进行任何现实形船的计算。这些计算或模型试验的结果称为响应振幅运算符(RAO) 的传递函数。浮动结构他们将需要所有六个运动和所有相对波总计算。 船舶运动对确定船员、旅客、船舶系统部件、安全货物和结构元件的动态载荷是非常重要的。过度的船舶运动可能会妨碍船舶完成其任务的能力,如小型艇或飞机的部署和恢复。衡量一个人的完成特定任务而车载移动船舶发生工作间断(MII)。它给出了一个指示的事件,即当一个站立的人将要寻找支持,以保持平衡。工作间断的测量是时时刻刻都在进行中的。

相关文档
最新文档