黄金分割法与进退法的C语言程序

黄金分割法与进退法的C语言程序
黄金分割法与进退法的C语言程序

基本思想:

对f(x)任选一个初始点a1及初始步长h,通过比较这两点函数值的大小,确定第三点位置,比较这三点的函数值大小,确定是否为“高—低—高” 形态。

(1)选定初始点a, 初始步长h=h0,计算y1=f(a1),

y2=f(a1+h)。

(2)比较y1和y2。

(a)如y1>y2, 向右前进;加大步长h=2 h ,转(3)向前;

(b)如y1

值互换。转(3)向后探测;

(c)如y1=y2,极小点在a1和a1+h之间。

(3)产生新的探测点a3=a1+h,y3=f(a3);

(4) 比较函数值y2与y3:

(b)如y2>y3, 加大步长h=2 h ,a1=a2,

a2=a3,转(3)继续探测。

(a)如y2

a=min[a1,a3],b=max[a3,a1],函数最小值所在的区间为[a,b] 。

我编的修改

#include

#include

#define f(x) 3*x*x*x-4*x+2

main()

{ double f1,f2,f3,temp,x1,x2,x3,h,a,b,Y1,Y2,A,A1,A2,e=0.2; int n;

printf("x1=");

scanf("%lf",&x1);

printf("h=");

scanf("%lf",&h);

f1=f(x1);

x2=x1+h;

f2=f(x2);

if(f1==f2)

a=x1<(x1+h)?x1:x1+h;

b=x1>(x1+h)?x1:x1+h;

if(f2>f1)

{ h=-h;

temp=x1; x1=x2; x2=temp;

temp=f1; f1=f2; f2=temp;

x3=x2+h;

f3=f(x3);

else if(f2

{ h=2*h;

x3=x2+h;

f3=f(x3);

}

while(f2>f3)

{ x1=x2;

x2=x3;

f2=f(x3);

x3=x2+h;

f3=f(x3);

}

a=x1

b=x1>x3?x1:x3;

printf("[%f,%f]\n",a,b);

A1=b+0.328*(b-a); Y1=f(A1);

A2=a+0.618*(b-a); Y2=f(A2);

do {

n++;

if (!(Y1

{

a=A1;

A1=A2;

Y1=Y2;

A2=a+0.618*(b-a);

Y2=f(A2);

}

else

{

b=A2;

A2=A1;

Y2=Y1;

A1=b+0.382*(b-a);

Y1=f(A1);

}

} while ((a-b)>=e||(a-b)<=-e);

A=(a+b)*0.5;

printf("A = %lf\n",A);

printf("f(A) = %lf\n", f(A));

printf("n = %d\n",n);

printf("a=%f,b=%f",a,b);

getch();

}

陈文斌

#include

double m,n,p,e,a,b;

double F(double x)

{

return m*x*x+n*x+p;

}

InputData() //数据输入函数的名称要和倒数第四行的一起改,要同时改成同一名称

{

printf("x,y,z=?"); //这里提示输入方程的系数,提示语句x,y,z=?改成你自己的

scanf("%lf,%lf,%lf",&m,&n,&p);

printf("e=?"); //这里提示输入黄金分割的精度,提示语句e=?改成你自己的

scanf("%lf",&e);

}

JTF() //进退法的名称要和倒数第三行一起改

{

double x1,x2,x3,f1,f2,f3,t,h;

printf("x0,h=?"); //这里提示输入进退法的初始点和步长,提示语句x0,h=?改成你自己的scanf("%lf,%lf",&x1,&h);

f1=F(x1);x2=x1+h;f2=F(x2);

if(f1

{

h=-h;

t=x1;x1=x2;x2=t;

t=f1;f1=f2;f2=t;

}

else

{

h=2*h;

}

x3=x2+h;

f3=F(x3);

while(!(f2

{

x1=x2;x2=x3;f2=f3;x3=x2+h;f3=F(x3);

}

if(x1>x3)

{a=x3;b=x1;}

else{a=x1;b=x3;}

printf("[%lf,%lf]\n",a,b);

}

HJFGF() //黄金分割法的名称要和倒数第二行一起改{ double x1,x2,f1,f2;

x1=a+0.382*(b-a);

x2=a+0.618*(b-a);

do

{

if(F(x1)

{b=x2;x2=x1;f2=f1;x1=a+0.382*(b-a);f1=F(x1);}

else{a=x1;x1=x2;f1=f2;x2=a+0.618*(b-a);f2=F(x2);}

}while(!((a-b>0?a-b:b-a)

printf("a=%lf,b=%lf\n",a,b);

printf("x=%lf\n",0.5*(a+b));

printf("F(x)=%lf\n",F(0.5*(a+b)));

}

main()

{

InputData(); //数据输入

JTF(); //进退法

HJFGF(); //黄金分割法

}

黄金分割构图法(新)

黄金分割构图法 让我们从最基本的介绍开始这个话题——“黄金分割”是一种由古希腊人发明的几何学公式,遵循这一规则的构图形式被认为是“和谐”的,在欣赏一件形象作品时这一规则的意义在于提供了一条被合理分割的几何线段,对许多画家/艺术家来说“黄金分割”是他们在现时的创作中必须深入领会的一种指导方针,摄影师也不例外。 原理1 如图A:“黄金分割”公式可以从一个正方形来推导,将正方形底边分成二等分,取中点X,以X为圆心,线段XY为半径作圆,其与底边直线的交点为Z点,这样将正方形延伸为一个比率为5︰8的矩形,(Y’点即为“黄金分割点”), A︰C = B ︰A = 5︰8。幸运的是,35MM胶片幅面的比率正好非常接近这种5︰8的比率(24︰36 = 5︰7.5) 图A 原理2 如图B:通过上述推导我们得到了一个被认为很完美的矩形,连接该矩形左上角和右下角作对角线,然后从右上角向Y’点(黄金分割点,见图A)作一线段交于对角线,这样就把矩形分成了三个不同的部分。现在,在理论上已经完成了黄金分割,下一步就可以将你所要拍摄的景物大致按照这三个区域去安排,也可以将示意图翻转180度或旋转90度来进行对照。

图B 图B-1 三分法则 “三分法则”实际上仅仅是“黄金分割”的简化版,其基本目的就是避免对称式构图,对称式构图通常把被摄物置于画面中央,这往往令人生厌。在图C1和C2中,可以看到与“黄金分割”相关的有四个点,用“十”字线标示。用“三分法则”来避免对

称在使用中有两种基本方法,第一种:我们可以把画面划分成分别占1/3和2/3面积的两个区域。 图C1 图C1-1 天然画框 有时在我们看到的场景中有一个引人注目的被摄主体,但往往由于主体周围杂乱的环境分散了观众的注意力而削弱了主体的吸引力,使照片最终的效果令人很失望。试试寻找一个能够排除杂乱环境干扰的天然画框使观众注意力集中于被摄主体,如图D利用主体周围的树枝形成一个天然画框从而使中间的山岩更为突出。 图D

优化设计黄金分割发以及迭代法

机械优化设计课程论文 院系机械工程系 专业机械设计 班级一班 姓名 学号

一、优化题目 应用所学计算机语言编写一维搜索的优化计算程序,完成计算结果和输出。 二、建立优化数学模型 1、目标函数方程式: y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10 2、变量:x 3、初始值: 初始值x1=5初始步长tt=0.01 三、所选用的优化方法 1、采用外推法确定搜索区间 2、采用黄金分割法求函数最优 3、计算框图: (1)、外推法程序框图 (2)、黄金分割法程序框图

四、计算输出内容: 五、优化的源程序文件: #include #include #define e0.0001 #define tt0.01 float f(double x) { float y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10; return(y); } void finding(float*p1,float*p2) { float x1=10,x2,x3,t,f1,f2,f3,h=tt; int n=0; x2=x1+h;f1=f(x1);f2=f(x2); if(f2>f1) { h=-h;x3=x1;f3=f1; x1=x2;f1=f2; } x3=x2+h;f3=f(x3);

n=n+1; printf("n=%d,c1=%6.4lf,x2=%6.4lf,x3=%6.4lf,f1=%6.4lf,f2=^6.4lf,f3=%6.4lf\n",n, x1,x2,x3,f1,f2,f3); while(f3f2) {a=x1;x1=x2;f1=f2;x2=a+0.618*(b-a);f2=f(x2);} else {b=x2;x2=x1;f2=f1;x1=b-0.618*(b-a);f1=f(x1);} n=n+1; printf("n=%d,a=%6.4lf,b=%6.4lf,x1=%6.4lf,x2=%6.4lf,f1=%6.4lf,f2=%6.4lf\n",n,a,b ,x1,x2,f1,f2); c=fabs(b-a); } while(c>e); xmin=(x1+x2)/2; ymin=f(xmin); printf("The min is%6.4lf and the result is%6.4lf",xmin,ymin);

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

matlab编程实现二分法,牛顿法,黄金分割法,最速下降matlab程序代码

用二 4224min ()f t t t t =--[,.]t ∈内的极小值点,要求准 1. function [t d]=erfenfa(a,b) k=1; %记录循环次数 while abs(a-b)>0.0005 c=(a+b)/2; C(k)=c; %存储每次循环中点c 的值 if ff(c)<0 a=c; end if ff(c)==0 t1=c; break ; end if ff(c)>0 b=c; end k=k+1; end t=(a+b)/2; %最终符合要求的值 d=f(t); %最优解 C k function y=f(t) y=t^4-2*t^2-4*t; function y=ff(t) y=4*t^3-4*t-4; 运行结果 >> [t d]=erfenfa(1,1.5) C = Columns 1 through 9 1.2500 1.3750 1.3125 1.3438 1.3281 1.3203 1.3242 1.3262 1.3252 Column 10 1.3247 k = 11

t = 1.3250 d = -5.7290 2.黄金分割法 f (x)=x3-2x+1 初始区间[0, 3],收敛精度0.5 function [t,f]=huangjinfenge(a,b) m=1-(sqrt(5)-1)/2; t2=a+m*(b-a) f2=g(t2); t1=a+b-t2 f1=g(t1); while abs(t1-t2)>0.5 if f1 [t,f]=huangjinfenge(0,3) t2 = 1.1459 t1 = 1.8541

0.618法的matlab实现

实验报告 实验题目: 0.618法的MATLAB实现学生姓名: 学号: 实验时间: 2013-5-13

一.实验名称: 0.618法求解单峰函数极小点 二.实验目的及要求: 1. 了解并熟悉0.618法的方法原理, 以及它的MATLAB 实现. 2. 运用0.618法解单峰函数的极小点. 三.实验内容: 1. 0.618法方法原理: 定理: 设f 是区间],[b a 上的单峰函数, ] ,[ ,)2()1(b a x x ∈, 且)2()1(x x <. 如果)()()2()1(x f x f >, 则对每一个],[)1(x a x ∈, 有)()()2(x f x f >; 如果)()()2()1(x f x f ≤, 则对每一个] ,[) 2(b x x ∈, 有)()()1(x f x f ≥. 根据上述定理, 只需选择两个试探点, 就可将包含极小点的区间缩短. 事实上, 必有 如果)()()2()1(x f x f >, 则],[)1(b x x ∈; 如果)()() 2()1(x f x f ≤, 则][)2(x a x ,∈. 0.618 法的基本思想是, 根据上述定理, 通过取试探点使包含极小点的区间(不确定区间)不断缩短, 当区间长度小到一定程度时, 区间上各点的函数值均接近极小值, 因此任意一点都可作为极小点的近似. 0.618 法计算试探点的公式: ). (618.0),(382.0k k k k k k k k a b a a b a -+=-+=μλ 2. 0.618法的算法步骤: ①置初始区间],[11b a 及精度要求0>L , 计算试探点1λ和1μ, 计算函数值)(1λf 和)(1μf . 计算公式是 ).(618.0 ),(382.011111111a b a a b a -+=-+=μλ 令1=k . ②若L a b k k <-, 则停止计算. 否则, 当)()(k k f f μλ>时, 转步骤③; 当)()(k k f f μλ≤时, 转步骤④. ③置k k a λ=+1, k k b b =+1, k k μλ=+1,)(618.01111++++-+=k k k k a b a μ, 计算函数值)(1+k f μ, 转步骤⑤.

机械优化设计黄金分割法 外推法

大学 机械优化设计部分程序

1.外推法 2.黄金分割法 3.二次插值法 4.坐标轮换法 5.随机方向法 6.四杆机构优化设计

1.外推法 源程序: #include #include #define R 0.01 double fun(double x) { double m; m=x*x-10*x+36; return m; } void main() { double h0=R,y1,y2,y3,x1,x2,x3,h; x1=0;h=h0;x2=h; y1=fun(x1);y2=fun(x2); if(y2>y1) {h=-h; x3=x1; y3=y1; x1=x2; y1=y2; x2=x3; y2=y3; } x3=x2+h;y3=fun(x3); while(y3

#include #include #define f(x) x*x*x*x-5*x*x*x+4*x*x-6*x+60 double hj(double *a,double *b,double e,int *n) { double x1,x2,s; if(fabs((*b-*a)/(*b))<=e) s=f((*b+*a)/2); else { x1=*b-0.618*(*b-*a); x2=*a+0.618*(*b-*a); if(f(x1)>f(x2)) *a=x1; else *b=x2; *n=*n+1; s=hj(a,b,e,n); } return s; } void main() { double s,a,b,e,m; int n=0; printf("输入a,b值和精度e值\n"); scanf("%lf %lf %lf",&a,&b,&e); s=hj(&a,&b,e,&n); m=(a+b)/2; printf("a=%lf,b=%lf,s=%lf,m=%lf,n=%d\ n",a,b,s,m,n); } 运行过程及结果: 输入a,b值和精度e值 -3 5 0.0001 a=3.279466,b=3.279793,s=22.659008,m =3.279629,n=21 3.二次插值法 源程序: #include #include int main(void)

机械优化设计黄金分割法 外推法

郑州大学 机械优化设计部分程序

1.外推法 2.黄金分割法 3.二次插值法 4.坐标轮换法 5.随机方向法 6.四杆机构优化设计 1.外推法源程序: #include #include #define R 0.01 double fun(double x)

{ double m; m=x*x-10*x+36; return m; } void main() { double h0=R,y1,y2,y3,x1,x2,x3,h; x1=0;h=h0;x2=h; y1=fun(x1);y2=fun(x2); if(y2>y1) {h=-h; x3=x1; y3=y1; x1=x2; y1=y2; x2=x3; y2=y3; } x3=x2+h;y3=fun(x3); while(y3 #include #define f(x) x*x*x*x-5*x*x*x+4*x*x-6*x+60 double hj(double *a,double *b,double e,int *n) { double x1,x2,s; if(fabs((*b-*a)/(*b))<=e) s=f((*b+*a)/2); else { x1=*b-0.618*(*b-*a); x2=*a+0.618*(*b-*a); if(f(x1)>f(x2)) *a=x1; else *b=x2; *n=*n+1; s=hj(a,b,e,n); } return s; } void main() { double s,a,b,e,m; int n=0; printf("输入a,b值和精度e值\n"); scanf("%lf %lf %lf",&a,&b,&e); s=hj(&a,&b,e,&n); m=(a+b)/2; printf("a=%lf,b=%lf,s=%lf,m=%lf,n=%d\n",a,b ,s,m,n); } 运行过程及结果: 输入a,b值和精度e值 -3 5 0.0001 a=3.279466,b=3.279793,s=22.659008,m=3.279 629,n=21 3.二次插值法 源程序: #include #include

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

黄金分割法

机电产品优化设计课程设计 姓名: 学号:2908003032 学院:机械电子工程学院

一维搜索黄金分割法 一、优化方法阐述 1.原理阐述 1.1基本原理 设一元函数如图1所示,起始搜索区间为[a,b],为所要寻求的函数的极小点。 在搜索区间[a,b]内任取两点与,且,计算函数与。当将与进行比较时,可能的情况有下列三种: (1):如图1(a)、(b)所示,这种情况下,可丢掉 (,b]部分,而最小点必在区间[a,]内。 (2):如图1(c)、(d)所示,这种情况下,可丢掉[a,)部分,而最小点必在区间[,b]内。 (3):如图1(e)所示,这种情况下,不论丢掉[a, )还是丢掉(,b],最小点必在留下的部分内。 图1(a)

图1(b) 图1(c) 图1(d) 图1(e)

因此,只要在搜索区间内任取两点,计算它们的函数值并加以比较之后,总可以把搜索的区间缩小。 对于第(1)、(2)两种情况,经过缩小的区间内都保存了一个点的函数值,即或,只要再取一个点,计算函数值 并加以比较,就可以再次缩短区间进行序列消去。但对于第(3)种情况,区间中没有已知点的函数值,若再次缩短区间必须计算两个点的函数值。为了简化迭代程序,可以把第(3)种情况合并到前面(1)、(2)两种情况之一中去,例如可以把上述三种情况合并为下述两种情况: (1)若,取区间[a,]。 (2)若,取区间[,b]。 这样做虽然对于第(3)种情况所取的区间扩大了,但在进一步搜索时每次只要计算一个点,和第(1)、(2)种情况一致,简化了迭代程序。 1.2 “0.618”的由来 为了简化迭代计算的过程,希望在每一次缩短搜索区间迭代过程中两计算点、在区间中的位置相对于边界来说应是对称的,而且还要求丢去一段后保留点在新区间中的位置与丢去点在原区间中的位置相当。如图2所示,设区间[a,b]全长为L,在其内取两个对称计算点和,并令l/L=称为公比,无论如图2(b)所示丢去(,b],还是如图2(c)所示丢去[a,),保留点在新区间中相应线段比值仍为, (1) 由此得 解此方程的两个根,取其正根为 0.6180339887 这种分割称为黄金分割,其比例系数为,只要第一个试点取在原始区间长的0.618处,第二个试点在它的对称位置,就能保证无论经过多少次缩小区间,保留的点始终处在新区间的0.618处。再要进一步缩短区

优化设计黄金分割法实验报告

机械优化设计黄金分割法实验报告 1、黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 2 黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

黄金分割的正确计算方法

黄金分割的正确计算方法 1.618减去基数1,得0.618,1再减去0.618得0.382,黄金分割在个股当中的应用方式有一派观点认为是:直接从波段的低点加上0.382倍、0.618倍、1.382倍、1.618倍……作为其涨升压力。或者直接从波段的高点减去0.382倍及0.618倍,作为其下跌支撑。 另一派观点认为不应以波段的高低点作为其计算基期。而应该以前一波段的涨跌幅度作为计算基期,黄金分割的支撑点可分别用下述公式计算: 1、某段行情回档高点支撑=某段行情终点-(某段行情终点-某段行情最低点)0.382 2、某段行情低点支撑=某段行情终点-(某段行情终点-某段行情最低点)0.618 如果要计算目标位:则可用下列公式计算 3、前段行情最低点(或最高点)=(前段行情最高点-本段行情起涨点)1.382(或1.618) 上述公式有四种计算方法,根据个股不同情况分别应用。 案例分析托普软件(000583) 该股的走势颇为符合黄金分割原则,1999年3月份,该股从14.31元起步,至6月底,该股拉升到34.31元,完成这一波的涨升,随后我们来看该股的支撑价位: 根据公式:下跌低点支撑=34.31-(34.31-14.35)0.618=22元事实上该股1999年11月份回调最低点为22.48元,误差极小,投资者只要在22元一线附近吸纳,就可以找到获利机会。目标价位也可通过公式计算。 上升行情上涨压力=21.97+(34.31-21.97)1.618=42元 该股在今年二月份摸高至45元后回落,投资者在42元可以从容卖出获利。 该股走势说明了如果对黄金分割掌握透彻,可以成功利用它来捕捉黑马。使用时要注意。 1、买点在回调到0.618处比较安全,回调到0.382处对于激进型投资者较适合,稳健型投资者还是选择回调到0.618处介入。 2、卖点在涨升1.382处比较保守,只要趋势保持上升通道,可选择涨升1.618处卖出。

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题(1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(法)。该方法用不变的区间缩短率代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。 黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而着称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果

f(a1)>f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

黄金分割法应用

黄金分割法应用(一)(2009-04-19 23:00:42) 分类:技术操作 黄金分割是一种古老的数学方法,被应用于从埃及金字塔到礼品包装盒的各种事物之中,而且常常发挥我们意想不到的神奇作用。对于这个神秘的数字的神秘用途,科学上至今也没有令人信服的解释。但在证券市场中,黄金分割的妙用几乎横贯了整个技术分析领域,是交易者与市场分析人士最习惯引用的一组数字。 二、运用黄金分割线预测趋势的幅度 (一)运用黄金分割线买卖股票,必须解决三大问题: 1. 如何确定股价的出发点,即黄金分割线的0位线。一般是以股价近期走势中重要的峰位或底位。当股价上涨时,以底位零点股价为基数,其涨跌幅达到某一重要黄金比时,则可能发生转势。 2. 如何确定已知股市走势中的第二个黄金分割点,即确定黄金分割线的0.382位线。一般是以距零点较近的股价转折点做为黄金分割线的0.382位线。 3. 如何运用黄金分割点把握股市走势,买卖股票。如果我们知道了0和0.382分割点在股价中的位置,是不是到达0.5点时,就跑掉呢?不见得。这要结合大盘和个股股质具体情况来定,具体问题具体分析。若出现换手率过大、cyq快速向上移动、涨幅过大或基本面重大利空的其中一种情况,都应该考虑离场。 (二)黄金分割线的应用: 1、0.382和0.618是反映了股市变化的重要转折点。当股价涨势趋近或达到38.2%和61.8%时,反跌很可能出现。反之,当股价跌势趋近或38.2%和61.8%时,反弹的可能性很大。 2、当股价上升时,可按黄金率算出上升的空间价位。一般预计股价上升能力与反转价位点的数字是0.191、0.382、0.618、0.809和1。当股价涨幅超过1倍时,反跌点数字为1.91、1.382、1.618、1.809和2,依次类推。

黄金分割法-进退法-原理及流程图

黄金分割法-进退法-原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

最优化方法之修正牛顿法matlab源码(含黄金分割法寻找步长)

revisenewton.m syms x1 x2 x3 xx; % f = x1*x1 +x2*x2 -x1*x2 -10*x1 -4*x2 + 60 ; % f = x1^2 + 2*x2^2 - 2*x1 *x2 -4*x1 ; f = 100 * (x1^2 - x2^2) + (x1 -1 )^2 ; hessen = jacobian(jacobian(f , [x1,x2]),[x1,x2]) ; gradd = jacobian(f , [x1,x2]) ; X0 = [0,0]' ; B = gradd' ; x1 = X0(1); x2 = X0(2); A = eval(gradd) ; % while sqrt( A(1)^2 + A(2)^2) >0.1 i=0; while norm(A) >0.1 i = i+1 ; fprintf('the number of iterations is: %d\n', i) if i>10 break; end B1 = inv(hessen)* B ; B2= eval(B1); % X1 = X0 - B2 % X0 = X1 ; f1= x1 + xx * B2(1); f2= x2 + xx* B2(2); % ff = norm(BB) ? syms x1 x2 ; fT=[subs(gradd(1),x1,f1),subs(gradd(2),x2,f2)]; ff = sqrt((fT(1))^2+(fT(2))^2); MinData = GoldData(ff,0,1,0.01); x1 = X0(1); x2 = X0(2); x1 = x1 + MinData * B2(1) x2 = x2 + MinData * B2(2) A = eval(gradd) End GoldData.m function MiniData = GoldData( f,x0,h0,eps) syms xx;

最优化牛顿法最速下降法共轭梯度法matlab代码

牛顿法 迭代公式:(1)2()1()[()]()k k k k x x f x f x +-=-?? Matlab 代码: function [x1,k] =newton(x1,eps) hs=inline('(x-1)^4+y^2'); 写入函数 ezcontour(hs,[-10 10 -10 10]); 建立坐标系 hold on; 显示图像 syms x y 定义变量 f=(x-1)^4+y^2; 定义函数 grad1=jacobian(f,[x,y]); 求f 的一阶梯度 grad2=jacobian(grad1,[x,y]); 求f 的二阶梯度 k=0; 迭代初始值 while 1 循环 grad1z=subs(subs(grad1,x,x1(1)),y,x1(2)); 给f 一阶梯度赋初值 grad2z=subs(subs(grad2,x,x1(1)),y,x1(2)); 给f 二阶梯度赋初值 x2=x1-inv(grad2z)*(grad1z)'; 核心迭代公式 if norm(x1-x2)

end end end 优点:在极小点附近收敛快 缺点:但是要计算目标函数的hesse 矩阵 最速下降法 1. :选取初始点xo ,给定误差 2. 计算一阶梯度。若一阶梯度小于误差,停止迭代,输出 3. 取()()()k k p f x =? 4. 10 t ()(), 1.min k k k k k k k k k k t f x t p f x tp x x t p k k +≥+=+=+=+进行一维搜索,求,使得令转第二步 例题: 求min (x-2)^4+(x-2*y)^2.初始值(0,3)误差为0.1 (1)编写一个目标函数,存为f.m function z = f( x,y ) z=(x-2.0)^4+(x-2.0*y)^2; end (2)分别关于x 和y 求出一阶梯度,分别存为fx.m 和fy.m function z = fx( x,y ) z=2.0*x-4.0*y+4.0*(x-2.0)^3; end 和 function z = fy( x,y )

MATLAB黄金分割法课程论文--分析

中南林业科技大学 本科课程论文 学院:理学院 专业年级:14级信息与计算科学2班 学生姓名:邱文林学号:20144349 课程:MATLAB程序设计教程 设计题目:基于MATLAB的黄金分割法与抛物线插值法指导教师:龚志伟

2016年4月

中文摘要 为了求解最优化模型的最优解,可使用基于MATLAB算法编程的黄金分割法与抛物线插值法,来实现求解的过程。黄金分割法是通过所选试点的函数值而逐步缩短单谷区间来搜索最优点,利用迭代进而得出结论。抛物线插值法亦称二次插值法,是一种多项式插值法,逐次以拟合的二次曲线的极小点,逼近原寻求函数极小点的一种方法。通过将MATLAB与最优化问题相结合,不仅可以加深对黄金分割法、抛物线插值法的基本理解和算法框图及其步骤的全面理解,也有利于帮助我们掌握MATLAB的使用方法。 关键词:MATLAB,黄金分割法,抛物线插值法,最优解,迭代

英文摘要 In order to solve the optimization model of the optimal solution, using MATLAB algorithm based on the golden section method and the parabola interpolation method, to realize the process of solving. The golden section method is used to search the most advantage through the function value of the selected pilot, which can be used to search for the most advantage. Parabolic interpolation method, also known as the two interpolation method, is a polynomial interpolation method, successive to fit the two curve of the minimum point, the original search function to find a very small point of the method. By combining MATLAB and optimization problems can not only deepen the comprehensive understanding of the golden section method, the parabola interpolation basic understanding and block diagram of the algorithm and steps, but also conducive to help us to grasp the method of using MATLAB. Key words: MATLAB, golden section method, parabolic interpolation method, optimal solution, iteration

黄金分割法用于参数优化整定技术的研究

西安工程科技学院学报 Jo urnal of Xi’an University of Engineering Science and Technology  第21卷第2期(总84期)2007年4月Vol.21,No.2(Sum.No.84) 文章编号:16712850X(2007)022******* 黄金分割法用于PID参数优化整定技术的研究 宋永东1,张玉强1,张建华2 (1.延安大学信息学院,陕西延安716000;2.西安石油大学电子工程学院,陕西西安710065) 摘要:在原有的用一维黄金分割法进行单变量参数寻优的基础上,结合优化理论中的分形法思想,提出将二维和三维黄金分割法应用于PID控制器多个参数的同步优化整定的新方法.介绍了PID控制参数整定问题和黄金分割法基本思想,重点对二维黄金分割法基本思想和寻优原理进行分析,并给出了二维黄金分割参数寻优算法.通过实例验证,该方法寻优过程完善、收敛速度快,能够快速、准确地找出最佳整定参数. 关键词:黄金分割法;PID调节器;参数整定;优化 中图分类号:TP214.8;TP273.1;O221 文献标识码:A 0 前 言 PID控制是工业过程控制中应用最为广泛的一种控制规律,尽管各种新型控制器不断涌现,但PID 控制器仍以其结构简单、容易实现、鲁棒性好等优点,处于主导地位[1].对PID控制器的设计和应用,核心问题之一是参数的整定,准确有效地选定PID的最佳整定参数是PID控制器是否有效的关键. 参数优化方法应用于控制器参数整定始终是一个研究的热点问题.在人工PID参数整定的过程中,最初人们把黄金分割法应用于现场经验整定法,现场工程师根据对象特性和工作经验,可以快速准确地找出最佳PID整定参数,在这种人工试凑搜索的过程中,显示出了该法独特的优选功能.在控制器参数寻优自整定过程中,文献[2]采用爬山法中的单纯形法或者改进的单纯形法,或有的结合了模糊控制规则表,利用单纯形法寻优PID参数,不断修正知识库,用于离线、在线参数自整定.这些方法都是相当有效的,但还存在着一些缺陷:寻优目标函数、初值和步长选择不当时,经常会陷入寻优失败的状态,还有许多问题需要解决.本文在一维黄金分割寻优法的基础上,结合分形法的思想,将该法推广到二维平面和三维空间,以时间乘误差绝对积分指标(ITA E)最优为目标进行寻优搜索,来实现PID控制器参数的优化整定.该方法充分发挥了黄金分割法寻优过程完善、收敛速度快的特点,快速、准确地找出最佳整定参数,使控制效果达到最优. 1 PID调节器参数优化整定问题 1.1 PID调节器参数整定 将偏差e(t)的比例(Proportion)、积分(Integral)和微分(Derivative)通过线性组合构成控制量u(t),对被控对象进行控制,简称PID控制.其控制规律可表示为 收稿日期:2007201204 基金项目:陕西省教育厅专项科研计划项目(06J K158) 通讯作者:宋永东(19572),男,陕西省西安市人,延安大学信息学院副教授.E2mail:yandasyd@https://www.360docs.net/doc/e02248500.html,

相关文档
最新文档