活性炭的发展趋势

活性炭的发展趋势
活性炭的发展趋势

活性炭的发展趋势

最近的几年,我国活性炭进口呈现出迅猛的增长势头。进口迅猛增长的主要原因是由于国内对一些新类型的活性炭,尤其是高级活性炭的需求在近几年里快速膨胀;尽管我国的活性炭产业总体的生产能力在世界上数一数二,但由于国内活性炭产业在短期内根本无法改变的生产结构性矛盾,国内的一些新类型活性炭尤其是高级活性炭的产量远远无法跟上其快速膨胀的需求。

上世纪90年代的十年里,我国的活性炭进口平均每年就增长约8.8%。1990年,我国进口了约900吨活性炭和相关产品,2000年的进口量增加到了2500吨,差不多是1990年活性炭进口的近三倍,主要是各种不同类型的高级活性炭,又以颗粒活性炭占最大比例;由于对高级活性炭的需求快速增长,2001年的活性炭进口量大幅度飙升,达到6300吨,约960万美元;2002年的活性炭进口量更达到闯记录的9300吨,约1310万美元,均比2000年增长5成左右,大出乎有关机构早些年前的预测。

近几年我国活性炭进口迅猛增长,一方面固然是由于近年我国总体经济平稳高速发展,拉动了对活性炭需求的快速增长,但另一方面也是由于国内活性炭产业生产的结构性矛盾这一原因所至;国内活性炭年生产能力超过20万吨,但绝大部分为低档次品种,高档次品种尤其是一些新类型品种生产能力严重不足甚至是空白,从而不得不向国外寻求供应。国内活性炭生产厂家过去大多实行低档次路线,通过庞大的产量来占领市场,这已招至了许多国家和地区的反倾销;走高档次路线,通过多种不同类型的品种,而非以产量方面的优势来打开市场,在几年前就已成为国内众多活性炭生产厂家的共识;但实际的情况在2001、2002年才有所改善;随着国内生产厂家逐步走高档次、多品种路线,以满足国内市场对高级活性炭的需求,我国活性炭进口增长势头将会减弱,再出现像过去两年极高增长速率的可能性极小;预计从2003年到2005年的年平均增长率将会回落到10~20%,但对高级活性炭的需求仍将不得不主要由国外进口来满足;高级活性炭仍将是近期我国活性炭进口的焦点。

我国活性炭进口市场分布格局方面,最近两三年,发生了很大的变化;过去最大的供应商是美国、香港、台湾和西欧的一些国家;而2002年我国活性炭进口最多的是美国,然后较大的依次是香港、韩国、日本、菲律宾、印度尼西亚、越南、马来西亚。

由于美国各大活性炭生产厂家加大了在华的销售力度,2002年我国从美国进口活性炭出现异乎寻常的增长,全年进口量达4,300多吨,约占2002年我国活性炭总进口量的45%,对比2001年的1,700多吨,劲增150%以上;从美国进口的活性炭以中、高档次颗粒炭品种为主。

韩国、日本则一直以高档次的活性炭来打开我国市场,尤其是日本公司的特定用途高等级品种,占据了我国该类品种的大部分市场;2002年我国从韩国、日本进口的活性炭分别是790吨和760吨,分别比2001年增长了5.5%和3%,预计直到2005年仍会是一个平稳的小幅增长趋势。

2002年我国从东南亚的菲律宾、印度尼西亚、越南、马来西亚等国家进口的主要是果壳活性炭及其原料;2002年我国从上述四国共进口的约1,700吨,比2001年的约1,800吨,略减5%;由于西方发达国家产业转移的原因,美、日、欧等的国际著名活性炭公司纷纷加大了在这些国家的活性炭投资生产,这些国家过去几年对我国的活性炭出口增长很快,但绝大部分为那些合资企业的产品;而由于存在着极大的价格优势,我国的果壳活性炭及其原料又极其缺乏,预计未来几年内从东南亚这些国家进口的数量仍会保持重新增长。

至于过去一度在我国活性炭进口市场占据一定地位的台湾、新加坡和西欧的一些国家,在2002年度来自这些国家和地区的数量几乎微不足道;近几年来这些国家和地区,尤其是新加坡和欧洲,出于https://www.360docs.net/doc/e113972086.html,环境保护方面的原因,活性炭产业的减退很多,而随着它的这种日渐式微,我国从这些国家和地区的活性炭进口还将逐步减少。

关于进口高级活性炭的价格趋势方面,一直以来,进口的高级产品和国内产品相比有较高的价格,而根据不同品种、不同用途,其市场销售价格也有很大差别,从六、七千元人民币每吨,到上万元人民币每吨,某些特定用途的高等级品种甚至达到几万元人民币每吨的价格都有;由于国内特殊活性炭产品不能满足国内市场需求,使得这些进口高级活性炭价格出人意料地长期高企。而据预测,由于国内对高级活性炭的需求还在增长,这些活性炭的价格在近几年内还将上涨的可能性极大。

国内外活性炭的发展趋势

(一)国外的活性炭发展趋势

工业发达国家近几年活性炭的应用表明,环保问题是推动工业发达国家活性炭生产发展及消费量增加的主要推动力,而且在今后几年内,https://www.360docs.net/doc/e113972086.html,环境保护仍然是活性炭生产发展及消费量增加的主要推动力。

据统计,美国在1994年至1998年期间活性炭消费增长率约3.5%,颗粒活性炭消费增长率高于粉状活性炭增长率为3.7%,粉状活性炭消费增长率为3.3%。美国活性炭主要应用领域为水处理,其中粉状活性炭用量约占50%,其余为颗粒活性炭;在气相领域主要采用颗粒活性炭。近几年美国从中国和东南亚进口的廉价活性炭数量增加;国外权威机构预测美国今后几年活性炭的消费年增长率为4---4.5%。

西欧活性炭的消费增长速度在1994---1998年间低于美国为0.7%,面对从中国进口廉价活性炭数量的增加,1995年欧共体对中国出口活性炭实行了反倾销l外权威机构预测今后几年内西欧活性炭需求增长率2%。欧洲严格的环保法规和传统工业是欧洲活性炭需求增长的主要推动力。但欧洲粉状活性炭需求量将下降,颗粒活性炭的需求量将增加。

1994----1998年,日本活性年需求增长率为1.9%,在这个时期由于水处理和气相吸附用活性炭的增加,使粒状活性炭需求量增加,而粉状活性炭需求量下降,在2005年以前活性炭的总需求量仍会增加,其中水处理用活性炭需求量增加最快。

总之,在未来几年内,工业发达国家的活性炭需求量将进一步增加,应用领域越来越广,在环境保护领域发挥着越来越重要的作用。

(二)我国活性炭发展趋势

我国是世界最大的活性炭出口国,每年活性炭出口量在10万t以上,因此国外活性炭市场对我国活性炭生产发展影响很大,国外活性炭产品用途广,产品种类多,在美国等工业发达国家水处理用活性、汽车用活性炭、废水https://www.360docs.net/doc/e113972086.html,净化用活性炭及溶剂回收用活性炭需求增长较快,生产用于上述领域的各种活性炭产品,一定会取得好的经济效益。

我国活性炭工业生产起步于20世纪50年代,按生产原料划分有煤质活性炭、森质活性炭、果壳活性炭等。我要产量最大的煤基活性炭产品主要采用物理活化法生产,活化装置则主要采用我国20世纪50年代从前苏联引过的斯列普炉,经过多次改进,炉体性能有了很大提高。目前我国主要生产煤基柱状活性炭和原煤破碎活性炭等品。

由于活性炭生产新技术如成型新技术、配煤技术和催化活化技术等在我国活性炭厂的广泛推广应用,使我国活性炭产品正向质量越来越好,品种越来越多的方向发展,以满足国内外不同用户的需求。

虽然我国活性炭产量仅次于美国位居世界第二,但和国外工业发达国家相比,我国活性炭产品质量低、品种少、市场售价低,这主要是因为我国活性炭企业规模小、设备落后、经济实力差,活性炭企业没有产品开发能力造成的。因此目前我国需要规模大,经济实力强、具有产品开发能力的大型性炭企业,以增强我国活性炭产品在国际市场上的竞争力。

活性炭产品价格分析

由于活性炭属于资源消耗型、劳动密集型产品,所以发达国家生产的活性炭主要供自己国内使用,同时由于环保、资源等方面的原因,生产成本偏高,在国际市场上竞争力逐渐下

降。

我国具有生产活性炭的优质煤炭资源,且劳动力相对便宜,我国煤基活性炭市场售价,按人民币计算3---10元/kg,因此和工业发达国家相比,我国煤基活性炭生产成本低,产品价格低,在国际市场有很强的竞争力。据我国海关统计,20世纪80年代初我国出口活性炭仅4000吨,到90年代大幅度增加,统计数字表明,1994年出口活性炭4万t,1995年出口量达到5.3万t,1996年出口量超过8万t,且煤基活性炭年出口量在6万t以上,显示了中国活性炭产品特别是煤基活性炭产品在国际市场上的巨大竞争优势。因此可以认为,中国活性炭工业的发展前景非常乐观,尤其是中国加入WTO以后,中国活性炭产品出口量还会大幅度增加。

20世纪90年代以后,世界经济发展很快,经济全球全球一体化渐成趋势,环境保护要救济越来越高,环保问题已不再是一个国家、一个地区的问题,而是全球关注必须解决的问题,因此活性炭作为一种https://www.360docs.net/doc/e113972086.html,环保产品和生产必需品,需求量越来越大,这些都将导致活性炭工业在世界范围内的进一步发展,目前国内现有的活性炭生产量远远不能满足国内外市场的需要,因此中国活性炭有巨大的国内外市场发展空间。

由于活性炭是资源技术型的https://www.360docs.net/doc/e113972086.html,环保产品,其生产原料煤是不可再生资源,因此随着工业的发展,能用于生产活性炭的原料煤会越来越少,而随着工业的发展及人们环保意识的日益加强,活性炭的需求量越来越大,因此活性炭产品价格会逐渐上升。目前由于我国活性炭企业数量多,而规模小,活性炭产品竞争严重,因此,造成目前中国活性炭产品销售价格偏低,但这是暂时现象,随着我国经济秩序的好转及活性炭企业规模的扩大,活性炭行业一定会走出低谷,走上健康民展的轨道;近两年来我国活性炭市场的逐步回升,部分煤基活性炭品种供不应求就充分说明了这一点。

从长远观点来看,我国生产的活性炭产品的价格上涨和活性炭生产用原料煤的日益短缺,而逐渐升高。

在未来几年内,国内炭化料的需求量也会随着活性炭生产的增长而增长,按平均3t炭化料生产1t活性炭产品计算,预计2005年中国活性炭炭化料需求在80万t左右,目前投资生产活性炭炭化料产品有良好的市场前景。

在近期召开的全国活性炭学术研讨会上,与会的专家指出:未来10~20年,我国的活性炭需求将进一步加大,中国活性炭产业将向着低消耗、低https://www.360docs.net/doc/e113972086.html,污染和高品质、高科技的方向发展。

与国际先进水平尚有差距

然而,与发达国家相比,我国的活性炭工业仍然存在很大差距,主要表现在:企业规模小、生产装备落后、劳动生产率低、市场竞争力不强。国内90%的木质活性炭厂是年产几百吨到上千吨的小企业,年生产能力真正达到万吨规模的几乎没有。大多数为乡镇企业,分布在林区,规模较小,生产装备既不先进而且较难更新,主要设备大同小异,劳动生产率一般在几十吨/人年或更低。而国外,像美国、日本的活性炭生产要集中于万吨以上的大企业,这些大企业不但产量大,生产装备先进,而且大都实现了生产流水线的全盘自动化和计算机管理控制,故劳动生产率很高,达到几百吨/人年。

我国是少林国家,生产活性炭只能采用林业加工剩余物为原料,个体企业主为获取更大利润,只顾眼前利益,置森林保护和生态环境不顾,成片砍伐林木烧炭,造成森林破坏、水土流失。近几年,有些生产厂家虽然在治理环境污染上做了努力,但终因经费、技术、设备等原因尚未得到根本治理。

活性炭下游产业发展迅速

我国活性炭的下游产业主要是https://www.360docs.net/doc/e113972086.html,环保产业。在环保产业当中,活性炭用量最大的是城市水源https://www.360docs.net/doc/e113972086.html,净化工程和污水处理工程,约占环保产业

活性炭总用量的70%以上;其次是空气净化,活性炭用量也在逐年上升。然而,活性炭生产过程却存在着一定程度的https://www.360docs.net/doc/e113972086.html,环境污染。在国家环保政策越来越严的情况下,解决好活性炭生产企业的环保问题,是活性炭行业可持续发展的重大课题。

有关资料显示,活性炭化学法生产中的污染治理和降低消耗就其技术而言是可以做到的。如日本氯化锌法生产活性炭锌耗几乎为零,所采用设备为回转炉;美国磷酸法生产活性炭酸耗为0.2吨/吨以下,所用炉型亦为回转炉。浙江、江苏等地有些活性炭企业近几年采用新的转炉和气相回收装置后,酸耗和气相污染有很大降低和改善。由此可见,尽可能采用适合的活性炭再生方法,以使活性炭循环再利用,进一步节约资源,降低使用成本,将成为今后大多数活性炭生产企业谋求利益最大化的有效途径。

随国家相关法律、法规的更加规范化,活性炭行业的高https://www.360docs.net/doc/e113972086.html,污染势必成为被整治的重点领域。可是当前许多业内人士对此注意不够,相关企业的环保配套设施不全,未来因环保问题被淘汰是不可避免的。而谁注重了环保及相关设施的配套,对社会环境所产生的负面影响小,谁就会持续发展,同时占领国家强化环境治理的新领域,对企业而言其经济效益、社会效益是不言而喻的。

向低消耗低污染方向发展

就21世纪活性炭产业发展趋势,中国林业科学研究院林产化工研究所的专家认为:活性炭作为新材料和碳素材料的一个重要分支,其综合的优良吸附性能和在国民经济部门的广泛应用,必将在新世纪里继续显示其旺盛的生命力,同时也将面临更多的发展机遇和挑战。

从环境保护的发展趋势来看,从20世纪70年代开始,世界发达国家的环保行业逐渐成为活性炭的主要消费市场。我国近10多年来环保形势日趋严峻,但水处理、气体处理用活性炭还远远没有普及。随着2008年北京奥运会、2010年上海世博会的申办成功和我国在10~20年里要全面跨入小康社会,可以预计,仅环境保护这一领域,活性炭的用量将会成倍增长,届时环保用炭不会少于10~12万吨/年。

中国兵工学会活性炭专业委员会有关负责人黄健曾指出,对活性炭行业来说,本世纪头20年是大有作为的重要战略机遇期。根据活性炭行业发展现状和内外部环境的变化,引导科研生产和贸易转型升级,必须通过科技创新和结构优化两方面推进工作,使活性炭产业走经济、环境、社会“三赢”的可持续发展之路。同时要处理好活性炭贸易转型升级与产业结构调整的关系,正确处理发展活性炭技术产业和传统产业的关系,加快向内蒙古、新疆、甘肃地区和符合国家产业政策的领域扩展,争取再形成若干优势互补、内外结合、增值率高、创新能力强的活性炭经济增长带和产业群。在保持活性炭贸易持续发展的前提下,走出一条科技含量高、环境污染少、比较优势大、人力资源得到充分发挥的新型工业化路子。

此次全国活性炭学术研讨会上,就有专家建议:发挥活性炭行业协会的作用,加强行业的协调和管理,加强企业间合作并逐步向企业集团过渡,建立和培育中国的大型活性炭企业集团,增强国际竞争力。注意现有活性炭原料资源的有效利用,积极寻找替代原料和开发新资源。可供制取活性炭的资源很多,如南方的竹、木,北方的果壳、果核、木材加工“三剩物”、棉花秆、稻壳、优质煤、天然沥青、炭黑、石油焦、石油沥青等。石化行业大量废弃的石油焦也是一种很好的活性炭原料,通过简单的过热水蒸气加工即可生产出优质净水炭。密切科技与生产实际相结合,大力提倡科技创新,组织力量攻克化学法生产中的污染问题和降低消耗。

无粉尘技术受到持续关注

活性炭无粉尘技术的开发及应用问题一直是业内人士特别关注的,因为在众多的吸附剂中,活性炭以其独有的吸附特性和相对低廉的价格,使得它在液相吸附以及气相吸附领域扮演着举足轻重的角色。随着中国加入WTO,中国原产的活性炭更以其卓越的性能价格比被世界各国大量采购和使用。但是,无论是以煤为原料,还是以果壳或是木材为原料所生产的

不定型颗粒活性炭、圆柱形活性炭还是球形活性炭都无法彻底地清除掉其表面上附着的粉尘,特别是无法在基本保持活性炭原有的吸附特性的前提下清除活性炭表面上附着的粉尘。长期以来,市场一直在呼唤的活性炭无粉尘化技术至今未能研制成功。人们曾经尝试用水洗、风吹等方法以清除活性炭的表面浮灰。虽然有一定的效果,但由于活性炭颗粒之间的摩擦以及气流对活性炭表面的摩擦,又造成了新的微粉的形成,因此,上述方法无法从根本上解决问题。人们也曾尝试着用高分子物质将活性炭包裹住,但是受到了活性炭原有的物理吸附能力及特定的化学吸附能力的干扰。因而,业内人士对这一技术研发投入和关注度与日俱增。

但遗憾的是,如今能耗问题仍未引起行业人士的足够关注。据资料表明,同一产品的能耗,我国是日本的11倍,而活性炭可能也是其中之一。究其原因,一方面人们感觉是微利运行,另一方面又不知从何入手提高经济效益,单纯强调低价出售至少是不全面的。既然竞争的客观存在是众所周知的事实,市场又不能人为转移,因而只能从降低能耗入手。降低能耗,对企业而言可降低成本增加效益,对社会而言节约能源是国家发展的长久大计,利国利民。

活性炭的生产方法及工艺

活性炭的生产方法及工艺 作者:易择活性炭 上文我们分享了目前市场上有哪些活性炭:按材质分主要有煤质活性炭、木质活性炭、果壳活性炭、椰壳活性炭等;按形状分类有不定型颗粒炭、柱状活性炭、蜂窝活性炭、粉末活性炭等。 那么活性炭是如何生产的?是经过怎样的生产工艺得到的呢?这次我们以煤质活性炭的生产过程为例,来聊聊活性炭的生产方法和工艺。 01原料选择 按原理来说,所有的煤炭都可以生产制作成活性炭。但因不同的煤质生产的出来的活性炭品质有很大差异,为了更好的适应市场和让资源得到合理的利用,目前国内煤质活性炭的生产原料,主要采用山西大同地区的弱粘结性烟煤和宁夏的太西无烟煤。 此外,新疆烟煤也适宜制作活性炭。近几年受新疆地区煤层开发和经济发展的影响,现在采用新疆烟煤生产活性炭的厂家也越来越多。另外陕西神木地区也有部分企业使用当地烟煤生产活性炭,但活化出来的产品吸附值普遍较低,碘吸附值主要在400-700mg/g(国标87标)。 02炭化活化工段 “活性炭是一种含碳材料经过炭化、活化处理后的炭质吸附剂”,据此句定义可知生产活性炭有两个必备的工段,就是炭化和活化。 炭化是活性炭制造过程中的主要热处理工艺之一,常采用的设备主要有流态化炉、回转炉和立式炭化炉。

煤质活性炭通常炭化的温度在350-600℃。在炭化过程中大部分非碳元素——氢和氧因原料的高温分解首先以气体形式被排除,排除了原料中的挥发分和水分,而获释的元素碳原子则组合成通称为基本石墨微晶的有序结晶生成物,使得炭颗粒形成了初步孔隙,具备了活性炭原始形态的结构。原料经过炭化之后,我们称之为炭化料,炭化料已经具备了一定的吸附能力,但吸附能力极低,经检测一般炭化料碘吸附值只有200mg/g左右。 活化方法根据活化剂的不同分为物理活化法(也称气体活化法)和化学活化法。 煤质活性炭常用的活化方法是物理活化法,以水蒸气、烟道气(水蒸气、CO2、N2等的混合气)、CO2或空气等作为活化气体、在800-1000℃的高温下与炭化料接触进行活化(实际生产过程中最常使用烟道气)。 活化过程通过开放原来闭塞的孔隙、扩大原有孔隙和形成新的孔隙三个阶段达到造孔的目的。活化主要是通过活化炉设备进行活化反应造孔,当下主流有斯列普炉(SLEP)、斯克特炉(STK)、耙式炉、回转炉,目前在国内斯列普炉是使用最多的气体活化法炉型。 03成品工段 成品工段主要是根据应用需要制作成粒度不同的产品,对于颗粒炭,主要有破碎、筛分和包装三个过程。 破碎设备通常是采用双辊式破碎机,通过调节双辊之间的间隙大小,控制产品的粒度大小,以提高合格粒度筛分的得率。 筛分设备通常采用振动筛,将破碎后的物料筛分成粒度较大、合格和粒度较大的三种。在实际生产过程中往往会在振动筛上加多层筛网筛出几种粒度范围内的产品,最后将粒度合格的产品进行包装销售。工业应用中通常采用500kg/包和25kg/包的方式进行包装。另外在生产过程中,对于特殊用途的产品也会用去石机和除铁机以降低产品的灰分。 对于粉末活性炭,主要是通过磨粉和包装两个过程。磨粉现在基本上大多工厂都是采用雷蒙磨设备生产,通过调节磨机的分析器可以生产出粒度为200目和325目的成品粉炭。 04深处理工段 针对某些特殊用途的产品,会将成品炭再进行酸洗、碱洗、水洗等深加工处理。

污泥制备活性炭及其应用研究报告

科技大学高新学院 结 课 论 文 科目:化工安全 :泽根 学号:1204060229 班级:安单1201

污泥制备活性炭及其应用研究 [摘要]国污水处理事业的迅猛发展使得城市污水污泥数量与日俱增。若污泥处理处置不当,必将造成严重的二次污染。因此必须高度重视污水污泥的科学处理处置问题。分析污泥的来源与组分,对污泥制备活性炭的国外研究现状及实际应用进行研究,提出了污泥制备活性炭目前存在的问题。 近年来,活性炭在环境保护领域的应用越来越广泛,吸附工艺也越来越成熟,同时活性炭的需求量也越来越大。我国是活性炭生产大国,1997年活性炭产量仅次于美国,位居世界第二。但是我国的活性炭质量一直都比较低,并且以煤和木材为原材料的话活性炭加工工艺对环境破坏非常大。而城市污水处理厂大规模兴起和生物处理发的迅速发展,必将产生大量活性污泥。作为污水处理的副产物,城市污泥是一类特殊的固体废物,其产生量大,成分复杂,由胶体、无机颗粒、有机残片、细菌菌体等组成,是组成非常复杂的非均质体,含有60%~80%的有机物,被世界水环境组织命名为“生

物固体”,表明了污泥具有资源化的潜质。将污泥制成活性炭是很有发展前景的污泥资源化的处置方式之一,它在保证了污泥不会造成二次污染的基础之上,还能制得活性炭吸附材料。 1污泥的来源与组分从元素的角度来讲,污泥中的有机物主要包含碳(C)、氢(H)、氧(0)、氮(N)、硫(S)、氯(C l)等六种元素。从化学组成的角度来讲,污泥中的有机物组成包含毒性有机物、有机生物质和有机官能团化合物和微生物。污水处理厂的剩余活性污泥的主要组成成分为有机物,粗蛋白质大概占60%~70%,碳水化合物大约占25%左右,其无机灰分的含量仅为5%左右。 2污泥制备活性炭的国外研究现状污泥基活性炭的活化方法主要有物理活化、化学活化和化学-物理联合活化等。 2.1物理活化法物理活化法主要包括直接热解法和气体活化法。 2.1.1直接热解法直接热解法是指在氮气气氛的保护作用下,将污泥置于电阻炉中,将污泥加

活性炭再生技术的发展(一)

活性炭再生技术的发展(一) 摘要:活性炭是废水处理中常用的一种有效吸附剂,其再生具有重要意义。对热再生法、生物再生法等活性炭再生的传统方法进行了回顾,同时也对目前新兴的活性炭再生技术,如电化学法、超临界流体法、催化湿式氧化法和超声波法等进行了介绍与讨论。 关键词:活性炭再生水处理 活性炭是一种无毒无味,具有发达细孔结构和巨大比表面积的优良吸附剂。20世纪60年代初,欧美各国开始大量使用活性炭吸附法处理城市饮用水和工业废水。目前,活性炭吸附法已成为城市污水、 工业废水深度处理和污染水源净化的一种有效手段。我国于20世纪60年代已将活性炭用于二硫化碳废水处理,自20世纪70年代初以来,采用粒状活性炭处理工业废水,不论是在技术上,还是在应用范围和处理规模上都发展很快,如在炼油废水、炸药废水、印染废水、化工废水和电镀废水处理等方面都已有了较大规模的应用,并取得了满意的效果。 随着活性炭的应用范围日趋广泛,活性炭的回收开始得到了人们的重视。如果用过的活性炭无法回收,除了每吨废水的处理费用将会增加0.83~0.90元外1],还会对环境造成二次污染。因此,活性炭的再生具有格外重要的意义。 1传统活性炭再生方法 1.1热再生法 热再生法是目前应用最多,工业上最成熟的活性炭再生方法2,3]。处理有机废水后的活性炭在再生过程中,根据加热到不同温度时有机物的变化,一般分为干燥、高温炭化及活化三个阶段。在干燥阶段,主要去除活性炭上的可挥发成分。高温炭化阶段是使活性炭上吸附的一部分有机物沸腾、汽化脱附,一部分有机物发生分解反应,生成小分子烃脱附出来,残余成分留在活性炭孔隙内成为“固定炭”。在这一阶段,温度将达到800~900°C,为避免活性炭的氧化,一般在抽真空或惰性气氛下进行。接下来的活化阶段中,往反应釜内通入CO2、CO、H2或水蒸气等气体,以清理活性炭微孔,使其恢复吸附性能,活化阶段是整个再生工艺的关键。热再生法虽然有再生效率高、应用范围广的特点,但在再生过程中,须外加能源加热,投资及运行费用较高。 1.2生物再生法 生物再生法是利用经驯化过的细菌,解析活性炭上吸附的有机物,并进一步消化分解成H2O和CO2的过程1,2]。生物再生法与污水处理中的生物法相类似,也有好氧法与厌氧法之分。由于活性炭本身的孔径很小,有的只有几纳米,微生物不能进入这样的孔隙,通常认为在再生过程中会发生细胞自溶现象,即细胞酶流至胞外,而活性炭对酶有吸附作用,因此在炭表面形成酶促中心,从而促进污染物分解,达到再生的目的。 生物法简单易行,投资和运行费用较低,但所需时间较长,受水质和温度的影响很大。微生物处理污染物的针对性很强,需就特定物质专门驯化。且在降解过程中一般不能将所有的有机物彻底分解成CO2和H2O,其中间产物仍残留在活性炭上,积累在微孔中,多次循环后再生效率会明显降低。因而限制了生物再生法的工业化应用。 1.3湿式氧化再生法 在高温高压的条件下,用氧气或空气作为氧化剂,将处于液相状态下活性炭上吸附的有机物氧化分解成小分子的一种处理方法,称为湿式氧化再生法4]。再生条件一般为200~250°C,3~7MPa,再生时间大多在60min以内。湿式氧化再生法处理对象广泛,反应时间短,再生效率稳定,再生开始后无需另外加热。但对于某些难降解有机物,可能会产生毒性更大的中间产物。同济大学环境学院以苯酚吸附等温线的变化为评价标准,系统地研究了活性炭湿式氧化再生过程中的主要影响因素,并从理论上探讨了其规律性;探讨了各主要因素之间的协同作用;考察了饱和炭多次循环再生的可能性;并对活性炭自身结构在湿式氧化过程中的变化情况进行了研究。实验获得的活性炭最佳再生条件为:再生温度230°C,再生时间1h,充氧pO20.6MPa,

【臭氧~生物活性炭工艺设计】的设计和运行管理

【臭氧- -生物活性炭工艺】的设计与运行管理 臭氧- 生物活性炭工艺的设计与运行管理 张金松, 范洁, 乔铁军 (深圳市水务〈集团〉有限公司, 深圳518031) 摘要: 针对臭氧—生物活性炭工艺设计和运行管理的重点问题,首先对工艺设计中的活性炭滤料选择、活性炭滤层结构设计、活性炭池型选择、臭氧系统选择、臭氧接触池优化设计和复合预氧化设计等内容进行了研究和总结,并且对工艺运行管理中存在的微生物安全、大型微生物控制、活性炭滤池初滤水管理及pH控制、预臭氧和主臭氧工艺的运行管理等问题,提出了相应的解决方案,以及今后应用中应重点注意的若干问题。 关键词: 臭氧活性炭; 设计; 运行管理; 微生物安全; 标准 深水集团所属梅林水厂和笔架山水厂的臭氧—生物活性炭工艺分别于2005 年和2006 年投入运行,对水厂进一步提高有机物、氨氮的去除效果,降低嗅味,全面改善水质发挥了重要作用。但在实际运行中,也陆续发现了一些国内外文献未曾报道过的新问题,如生物活性炭导致pH值大幅降低,出水有剑水蚤、线虫等微型动物检出等水质问题。因此,如何通过更好的设计和运行管理,从技术上解决这些问题,无论在理

论上还是在实践中均具有非常重要的意义。 1 工艺设计 1.1 活性炭性能指标的选择标准 根据制造原料不同,活性炭可分为木质炭、果壳炭和煤质炭等,其中煤质活性炭因其具有多孔性和高硬度的优点,且来源稳定和价格较低,在大规模水处理工程中得到广泛应用。 在水处理工程中,国外多采用不定型炭(主要是压块破碎炭) ,而国内柱状炭的应用最为广泛。近些年来,不定型炭(主要是柱状破碎炭)在国内得到越来越多的关注,并已经被应用在一些新建水厂中。 研究结果表明,活性炭滤池出水水质与活性炭性能指标之间具有某种相关性。根据分析结果和实际运行情况,并参考国内外活性炭选择的标准,制定了适合于我国南方地区饮用水中活性炭选择的性能指标,如表1所示。1.2 活性炭滤层结构活性炭滤层厚度一般不低于1. 2 m,根据要去除的不同污染物,接触时间在6~30 min之间,但在一些应用中可高于或低于这个范围。通常,以去除嗅味为主时,接触时间一般为8 ~10 min; 以去除CODMn为主时,接触时间一般为12~15 min。 研究结果表明,砂垫层对浊度有去除效果,但是去除率不高,当砂垫层进水浊度为0. 10 NTU时,浊度的平均去除率为6. 5%;石英砂垫层对高锰酸盐指数和氨氮基本没有去除作用。然而

椰壳活性炭国家实用实用标准

供应活性炭网,椰壳活性炭国家标准 椰壳活性炭用途:目前椰子壳活性炭是用于饮用水的净化、除氯、除藻、吸氧、催化载体方面效果最好的一种活性炭,可用于净水器、虑芯填充物等净水设备;可用于碳浆法,堆浸法和黄金提取以及冶金工业中贵金属的分离和提取,也可用于水质净化。果壳活性炭,椰壳活性炭性能:产品选用优质椰子壳为原料,具有比表面积大,强度高,吸附性能高等优点,产品规格齐全,有不规则破碎和小颗粒等几个大类果壳活性炭,椰壳活性炭注意事项:1、活性炭在运输过程中,防止与坚硬物质混状,不可踩、踏,以防炭粒破碎,影响质量。2、储存应储存于多孔型吸附剂,所以在运输储存和使用过程中,都要绝对防止水浸,因水浸后,大量水充满活性空隙,使其失去作用。3、防止焦油类物质在使用过程中,应禁止焦油类物质带入活性炭床,以免堵塞活性炭空隙,使其失去吸附作用。最好有除焦设备净化气体。4、防火活性炭在储存或运输时,防止与火源直接接触,以防着火、活性炭再生时避免进氧并再生彻底,再生后必须用蒸汽冷却降至80℃以下,否则温度高,遇氧,活性炭自燃。 果壳活性炭,椰壳活性炭在废气处理中的应用 一、果壳活性炭椰壳活性炭用于精制气体的用例还很多,例如防毒面具、过滤嘴、冰箱除臭器、汽车尾气处理装置等,都是利用活性炭卓越的吸附性能,将精彩文档

气体中有毒成分、对人体不利的成分或有臭味的成分除去。例如,在过滤嘴中加入100~120ng活性炭以后,见表3-6-2,就能将烟气中对人体有害的成分除去很大一部分。 二、、化工厂、皮革厂、造漆厂以及使用各种有机溶剂的工程排出的气体中,含有各种有机溶剂、无机及有机硫化物、烃类、氯气、油、汞及其他对环境有害的成分,可以用活性炭进行吸附以后再排放。原子能设施中排出的气体中,含有放射性的氪、氙、碘等物质,必须用活性炭将它们吸附干净以后再行排放。煤、重油燃烧生成的烟气中,含有二氧化硫及氮氧化物,它们是污染大气、形成酸雨的有害成分,也可以用活性炭将它们吸附除去。 三仪器室、空调室、地下室及海底设施中的空气,由于外界污染或者受密闭环境中人群活动的影响,常含有体臭、吸烟臭、烹饪臭、油、有机及无机硫化物、腐蚀性成分等,造成精密仪表腐蚀或影响人体健康。可用活性炭进行净化,除去杂质成分。 四、气相吸附中常使用颗粒活性炭,通常是让气流通过活性炭层进行吸附。根据吸附装置中活性炭层所处状态的不同,吸附层有固定层、移动层和流动层几种。但是,在电冰霜和汽车内的脱臭器之类小型吸附器中,依靠气体的对流和扩散进行吸附。除了颗粒活性炭以外,活性炭纤维和活性炭成型物也正在气相吸附中得到日益广泛的应用。 椰壳活性炭技术指标 粒度6-50目任选碘吸附值mg/g 950-1100 强度℅≥90 干燥减度℅≤10 灰份%≤10 精彩文档

活性炭改性方法及其在水处理中的应用

活性炭改性方法及其在水处理中的应用 活性炭是用生物有机物质(包括煤、石油和沥青等在内)经过炭化、活化等过程制成的一种无定形炭。它具有多孔结构、巨大的比表面积、吸附容量大、速度快和饱和可再生等特点,能够有效地去除水中的臭味、天然和合成溶解的有机物、微污染物以及一些大气中的污染气体等,但是普通活性炭比表面积小、孔径分布不均匀和吸附选择性能差,故普通活性炭需要进一步的改性,满足实验和工程需要。现在常采用工艺控制和后处理技术对活性炭的孔隙结构进行调整,对表面化学性质进行改性,进而提高其吸附性能。 标签:活性炭;改性方法;水处理 活性炭是一种吸附性很强的环境友好型吸附剂,有很好的吸附性能和催化性能。活性炭的原料来源广泛并且具有很高的安全性和稳定性,具有耐酸碱、耐热、易再生等特点。实践表明,活性炭对水中溶解的有机溶剂有很好的吸附性能,对水质浑浊有明显的澄清作用,并且能够去除水中的异味、臭味等,还能够过滤水中的微生物,因此在水处理行业中有着非常广泛的应用。本文就活性炭的改性方法和其在水处理方面的应用进行了简述,旨在为活性炭及其改性产物在水处理行业中的应用提供一定参考。 1、活性炭的改性方法 1.1表面氧化改性 表面氧化改性是通过氧化剂对活性炭进行处理,从而使活性炭表面的官能团发生氧化,提高含氧的官能团(羧基、酚羟基、酯基等)数量,增强活性炭的亲水性能,即极性,增强对极性物质的吸附能力的改性方法,常用的氧化剂主要是双氧水、硝酸、臭氧、高氯酸等。其中硝酸的氧化性最强,能够产生许多的酸性基团,其他氧化剂则相对温和,可以用于调整活性炭的表面酸性。氧化改性后的活性炭材料表面几何形状更加均匀,并且使用不同的氧化剂能够得到韩阳官能团数量和极性不同的活性炭材料,其中,酸性含氧官能团含量的多少与氧化程度有很大的关系。 1.2 活性炭表面化学性质的改性方法 活性炭表面化学性质的改变主要是通过一定的方法改变活性炭表面的官能团以及表面负载的离子和化合物,从而改变其表面的化学性质达到活性炭的吸附能力的提高。活性炭表面化学性质改性方法可分为:表面氧化法、表面还原法、负载原子和化合物法、酸碱法等。在改性过程中常常联合不同的改性方法对活性炭进行改性,从而达到更好的改性效果。 1.2.1 表面氧化法

生物活性炭滤池的反冲洗方式研究

生物活性炭滤池的反冲洗方式研究

生物活性炭滤池的反冲洗方式研究 在臭氧—生物活性炭深度处理技术应用中,生物活性炭(BAC)滤池的反冲洗问题非常棘手又亟需解决。随着BAC滤池运行时间的延长,炭粒表面和滤床中积累的生物和非生物颗粒量不断增加,导致炭粒间隙减小,影响滤池的出水水质和产水量[1]。反冲洗方式与相关参数直接影响BAC滤池的运行效果和成本。有研究表明[2],采用单独水冲的滤池出水中生物可同化有机碳(AOC)和细菌量高于采用气水联合反冲的滤池,而充分去除过量的生物膜是保证滤池成功运行的重要前提。国外对生物滤池反冲过程中的颗粒脱附机理进行了研究[3],但关于其程序及相关参数选取的报道较少,而这又恰是指导生产所必须解决的重要问题。国内对此方面的研究起步较晚,个别采用生物活性炭技术的水厂只能直接参照国外经验,如昆明、北京水司均采用单独水冲(滤层膨胀率为25%)。 1 试验方法 1.1 工艺流程及装置 中试的工艺流程为预臭氧化→混凝、沉淀、过滤→臭氧—生物活性炭,试验装置包括常规处理、臭氧化和BAC滤池处理系统。 BAC滤池横断面尺寸为500 mm×500 mm,高度为4.92 m,内部均分为两格,采用小阻力配水系统。池内装填ZJ-15型柱状活性炭,其碘值和亚甲蓝吸附值分别为961、187 mg/ g。运行之前采用未加氯的砂滤出水先浸泡活性炭1周,再反洗清洁。

试验期间,臭氧化与常规处理工艺参数基本恒定。预臭氧化的接触时间和投量分别为4.5min和1.5 mg/L左右;主臭氧化的接触时间和投量分别为16 min和2.0mg/L左右。常规处理水量为3~3.5m3/h,混合时间为6~6.5s,反应时间为23.2~19.9 min,沉淀池清水区上升流速为1.39~1.62 mm/s、斜管内上升流速为1.60~1.87mm/s,滤池滤速为6.49~7. 57 m/h。混凝剂和pH值调节剂分别采用液态碱铝和氢氧化钠,投加浓度分别为2.5、6 mg/L左右。 1.2 反冲方式 第一阶段单独水反冲试验的炭床高度分别为2.0、2.5 m,冲洗强度分别为12、14、18L/(m2·s),冲洗历时约为10 min。第二阶段气水联合反冲洗试验的炭床高度为2.0 m,气冲强度分别为8、11、14L/(m2·s),气冲历时分别为3、5min;水冲强度分别为6、8、10、1 2、14L/(m2·s),水冲历时约为10 min。 试验期间BAC滤池进水水温较高(平均为29 ℃),采用自然挂膜(生物膜成熟时间约为15d),其反冲洗周期一般为7d。 2 结果与分析 水中生物颗粒的相对含量以浊度表示,其微生物最低检测浓度为3.7×105个/mL[4]。BAC滤池反冲废水中微生物浓度(个/mL)的数量级一般不低于105[2、3],故以反冲废水的浊度作为一项主要检测指标。 2.1 水反冲 ①冲洗强度

活性炭标准大全

活性炭标准大全 发布日期:2010-12-07 来源:活性炭无论日常生活还是工业行业应用非常广泛国家标准制定了不少法规和标准1 GB/T 7702.10-2008 煤质颗粒活性炭试验方法苯 活性炭无论日常生活还是工业行业应用非常广泛 国家标准制定了不少法规和标准 1 GB/T 7702.10-2008 煤质颗粒活性炭试验方法苯蒸气氯乙烷蒸气防护时间的测定 2 GB/T 7702.6-2008 煤质颗粒活性炭试验方法亚甲蓝吸附值的测定 3 GB/T 7702.7-2008 煤质颗粒活性炭试验方法碘吸附值的测定 4 GB/T 7702.8-2008 煤质颗粒活性炭试验方法苯酚吸附值的测定 5 GB/T 7702.9-2008 煤质颗粒活性炭试验方法着火点的测定 6 GB/T 20449-2006 活性炭丁烷工作容量测试方法 7 GB/T 20450-2006 活性炭着火点测试方法 8 GB/T 20451-2006 活性炭球盘法强度测试方法 9 GB/T 13803.2-1999 木质净水用活性炭 10 GB/T 13803.1-1999 木质味精精制用颗粒活性炭 11 GB/T 13803.3-1999 糖液脱色用活性炭 12 GB/T 12496.4-1999 木质活性炭试验方法水分含量的测定 13 GB/T 12496.5-1999 木质活性炭试验方法四氯化碳吸附率(活性)的测定 14 GB/T 12496.16-1999 木质活性炭试验方法氯化物的测定 15 GB/T 17665-1999 木质颗粒活性炭对四氯化碳蒸气吸附试验方法 16 GB/T 12496.12-1999 木质活性炭试验方法苯酚吸附值的测定 17 GB/T 13803.4-1999 针剂用活性炭

活性炭质量标准

1. 目的: 制定活性炭质量标准。 2. 范围: 化验室。 3. 职责: QA/QC 负责人、化验员。 4. 内容: 质量标准:(企业内控标准) 检测方法 1 性状: 1.1 仪器与用具:培养皿、玻璃试管、电子天平、量杯 1.2 操作方法:称取本品1~2g ,置培养皿内,观察为黑色粉末,无臭,无味;称取本品适量,置

25ml洁净试管中,做溶解性试验,本品不溶于一般溶剂。 2 亚甲基蓝吸附量 2.1 仪器与用具:培养皿、玻璃试管、电子天平、量杯 2.2 操作方法:称取0.2g测定干燥失重后的样品,加入下列数量的1g/L亚甲基蓝溶液(分析纯30.0ml;化学纯24.0ml),用力振摇15min,放置20min,过滤,滤液颜色不得深于同体积标准对照溶液颜色(取1g/L亚甲基蓝溶液1ml,稀释至1000ml,取与滤液相同的体积比色)。 3 酸度 3.1 仪器与用具:电子天平、烧杯、酸度计、磁力搅拌器 3.2 试剂与试液:苯二甲酸盐标准缓冲液、磷酸盐标准缓冲液 3.3 操作方法:称取2.5g样品,加50ml水,煮沸5min,冷却,过滤,用水洗涤合并滤液及洗液,加水稀释至50ml。取30ml,照SOP?08?0015测定,pH值应为2.0~ 4.0。 4 干燥失重 4.1 仪器与用具:电子天平、称量瓶、真空泵、真空恒温干燥箱、干燥器 4.2 操作方法:称取本品1.0g,在105℃恒温干燥至恒重,减失重量不得过10.0% (照SOP?08?0011测定)。 5 灼烧残渣 5.1 仪器与用具:电子天平、坩埚、干燥器、电阻炉、电炉、通风柜、移液管 5.2 试剂与试液:硫酸 5.3 操作方法:精密称取本品0.5g,照SOP?08?0013测定,遗留残渣不得过7.0%。 6 氯化物 6.1 仪器与用具:纳氏比色管、量杯、移液管 6.2 试剂与试液:稀硝酸、硝酸银试液(具体配制分别见SOP?08?0041、SOP?08?0026) 6.3 操作方法:取酸度项下的滤液10ml,加水稀释成200ml,摇匀;分取20ml,再加稀硝酸10m1,再加水使成约40m1,摇匀,即得供试溶液;与标准氯化钠溶液10.0ml同法制成的对照液分别加入硝酸银试液1.0ml,用水稀释使成50m1,摇匀,在暗处放置5分钟,同置黑色背景上,从比色管上方向下观察,比较所产生的浑浊,不得更浓(0.2%)。 参考标准:GB/T 12496-1999

煤质活性炭生产工艺

煤质活性炭生产工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

煤质活性炭生产工艺 无烟煤活性炭采用优质无烟煤为原材料,成品无烟煤活性炭从外观上一般分为颗粒活性炭、柱状活性炭、蜂窝活性炭、粉末活性炭等,有时可根据客户需求另行加工。 一、活性炭生产过程表述: 1.原料初选: 选用优质无烟煤,用螺旋洗料机将原材料进行反复水洗,去除材料中杂质,将水洗过的原材料经过晴天晾晒,为炭化作准备; 2.炭化阶段: 生产活性炭一般需要2台回转炉,一台炭化用,一台活化用。先将炭化炉升温,温度达到达到150℃左右,材料内的水分几乎蒸发完毕;炭化炉温度达到400℃时,木质材料有机物急剧地进行热分解,炉温达到在500-700℃左右时为高温煅烧阶段,煅烧过程中生成液体产物已经很少,排出残留在木炭中的挥发性物质,高温煅烧是炭化阶段最重要的环节,直接决定了木炭的固定碳含量,优良的炭化料固定碳含量一般在85%以上。炭化料出炉初步进行生化检测,检测其水分、固定炭含量、灰分与碘值等, 3.活化阶段: 将活化炉升温,将炭化过的原料进入到活化炉,高压注入水蒸汽、二氧化碳、空气(主要是氧)或它们的混合物(烟道气)为活化介质,在高温下(600~900℃左右,活化段温度)进行活化,炉内温度为电脑显示控制,活化的温度与时间长

短会对活性炭的碘值有直接的影响。活性炭活化阶段是生产活性炭最关键的一环,直接决定了活性炭的品质,即碘值。 4.活化好的炭避免与空气接触,直接进入经冷却塔冷却,待活性炭的温度降到100摄氏度左右为冷却完毕,此时可表观活性炭的成色,以质地均匀,乌黑密实的炭为上乘,此时进行生化指标检测,根据活性炭的国家标准检测方法检测,确定活性炭成品的质量指标。 5.用皮带输送机送往破碎机粉碎,利用排风机的吸力将输送带上活化料吸入破碎机中,重量较大的沙石等杂质留在除杂机上被除去,粉碎后的细炭由风力吸入分离器中,粗炭由分离器返回破碎机中再碎,合格炭随风力送往旋风或震动筛中分离,旋风分离器排出的气体再经袋滤器捕集细炭粉之后排空,由旋风分离器与振动筛分离的炭,可直接作为成品出售。若用户对活性炭纯度要求较高,则上述所收集的活性炭,还必须经过酸洗、水浇和脱水处理,以除去活性炭中铁盐和灰分等杂质,然后活性炭还需烘干,使含水率降至≥10%,即为活性炭成品。 二.以下是我公司生产工艺图 三.以下是我公司生产设备图

生物活性炭(PACT)工艺研究

生物活性炭(PACT)工艺研究 1 引言 生物活性炭法(PACT)是指将粉末活性炭投加到好氧系统的回流污泥中,通过含炭污泥中粉末活性炭(PAC)与活性污泥中微生物的相互作用,提升对废水中污染物的去除效果.目前较多应用在印染废水、化工废水、垃圾渗滤液的处理中.研究表明,PACT工艺的促进机理主要在于系统内“吸附-降解-再生-再吸附”的协同作用,涉及到复杂的吸附与生物降解同步作用过程,因此在具体微观机理和动力学模型方面仍有研究空间.此外,对PACT工艺的宏观生物强化效果,也缺乏全方位的表征,使得PACT工艺在实际运行中缺乏相应的针对性. 本文以印染园区实际综合废水为处理对象,主体处理工艺为水解酸化+A2/O工艺,通过平行对比A2/O与A2/O(PACT)中试运行效果,从常规处理指标(尤其是低温运行条件下)入手对比PACT工艺的强化作用,再通过毒性、重金属指标、GC-MS、紫外-可见光光谱等表征手段,重点研究PACT系统的生物强化特性,探讨PACT工艺的主要作用目标和规律.本研究对深入理解PACT工艺作用机理、提高PACT作用效率以及实现园区综合废水的有效处理,具有较大的借鉴意义. 2 材料与方法 2.1 实验水样及材料 实验以苏南某印染废水为主(印染废水占85%,化工废水占10%,生活污水占5%左右)的园区集中污水处理厂水解酸化处理出水为试验对象(进水).由于进水水质不尽相同,因此其具体水质指标见相应实验结果. 粉末活性炭为100目木质炭(溧阳东方活性炭厂),经检测(ASAP2010,Micromeritics,美国),该粉末活性炭的内部性质为:BET 比表面积532.26 m2 · g-1,微孔(<2 nm)体积0.1 cm3 · g-1,中孔(2~50 nm)体积0.449 cm3 · g-1,平均孔径3.8 nm. 2.2 实验装置及运行条件 本研究的实验装置如图 1所示. 图 1 实验装置结构图 中试实验装置含A2/O反应器以及二沉池,其中A2/O反应器有机玻璃材质,有效容积为1.0 m3. 二沉池为竖流式沉淀池,表面负荷0.63 m3 · m-2 · h-1. A2/O反应器实验装置

活性炭技术参数定义说明

技术参数说明 一、活性炭吸附力的作用指标: 1.碘值(400~1300):是指活性炭在0.02N12/KL水溶液中吸附的碘的量。碘值 与直径大于10A的孔隙表面积相关联。 活性炭价格高低,碘值是判断的标准之一。 2.丁烷值:丁烷值是饱和空气与丁烷在特定温度和特定的压力下通过炭床后,每 单位重量的活性炭吸附的丁烷数量。 3.灰粉(6-16):活性炭的灰粉有两种,一种是表面灰粉,另外一种是内在灰粉, 平时说的活性炭的灰粉是指内在灰粉。 4.水分(<5):是测量碳所含水的多少,即活性炭中被吸附的水的重量的百分比。 5.硬度:硬度值是指颗粒活性炭在RO-TAP仪器中对钢球衰变运动的阻力。硬度 是测量活性炭机械强度的指标。 6.四氯化碳CTC(%):四氯化碳值是总孔容的指示器,是用饱和的零摄氏度的 CCI4气流通过25度的炭床来测量的。即活性炭吸附功能靠的是四氯化碳值,测定方法是用活性炭吸附四氯化碳,测量出来的结果就是活性炭的吸附率。一般活 性炭四氯化碳值最高是80.北京和河北的活性炭厂家有80%以上能够达到60%。 7.糖蜜值 糖蜜值是测量活性炭在沸腾糖蜜溶液的相对脱色能力的方法。糖蜜值被解读为孔 直径大于28A的表面积。因为糖蜜是多组分的混合物,必须严格按照说明测试 本参数。糖蜜值是用活性炭标样和要测试的活性炭的样品处理糖蜜液,通过计算过滤物的光学密度的比率而得。 8.堆积重(400-600):堆积重是测量特定量炭的质量的方法。通过逐渐把活性炭 添加一个有刻度圆桶内至100cc,并测量其质量。该值被用于计算填充特定吸附 装置所需活性炭数量。简单地说,堆积重是活性炭每单位体积的重量。 9.颗粒密度 颗粒密度是每单位体积颗粒炭的重量,不包括颗粒以及大于0.1mm裂隙间的空 间。 10.亚甲蓝(100-300) 亚甲蓝值是指 1.0克炭与1.0mg/升浓度的亚甲蓝溶液达到平衡状态时吸收的亚

新型碳材料及其应用

谈谈新型碳材料及其应用

谈谈新型碳材料及其应用 碳材料是一种古老而又年轻的材料,即有古老的产品也有现代科学技术进步所创新的产品,而新型碳材料就是由传统的碳材料经过一系列的加工工艺而制的一种新型材料。新型碳材料主要有活性炭、碳纤维、石墨烯、石墨、纳米碳管、金刚石、富勒烯、其他新型碳材料。新型碳材料具有密度小、强度大、刚性好、耐高温、抗化学腐蚀、抗辐射、抗疲劳、高导电、高导热、耐烧蚀、热膨胀小、生理相容性好登一系列优异的特性,是军民两用的新材料,被称为是第四类工业材料。应用于冶金、化工、机械、汽车、医疗、环保、建筑日常生活等领域。特别是航天和核工业部门不可缺少的工程结构材料。新型碳材料的发展和应用对提高军事实力和工业产品是竞争力都是至关重要的,已经成为衡量一个国家科技水平、军事和经济实力是标志之一。 活性炭是被其广泛使用的一种新型碳材料,其又称活性炭黑,是黑色粉末状或颗粒状的无定形碳,活性炭主成分除了碳以外还有氧、氢等元素,活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大。在石化行业,活性炭在无碱脱臭乙烯脱盐水工艺中起到了关键的作用;在电力行业,活性炭被用于电厂水质处理及保护;在化工行业活性炭用于化工催化剂及载体、气体净化、溶剂回收、及油脂等的脱色、精制过程中;在食品行业,它被用于饮料、酒类、味精母液及食品的精制、脱色、提纯、除臭,在黄金行业,在黄金提取和尾液回收起到至关重要的作用;环保行业,被用于污水处理、

废气及有害气体的治理、气体净化,总之活性炭被其广泛的用于各行各业中。 碳纤维是新型碳材料家族中的又一个典型代表,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。不仅杨氏模量大,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性也出类拔萃。碳纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,可以构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。总之碳纤维是被广泛用于民用,军用,建筑,化工,工业,航天以及超级跑车领域的。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。在纳电子器件方面,利用石墨烯加入电池电极材料中可以大大提高充电效率,并且提高电池容量;也可以应用于许多其他潜在的能源存储领域如超级电容器、电磁炮等。石墨烯可以代替硅生产超级计算机;在光子传感器、基因电子测序和隧穿势垒材料也有重要的用途。 纳米碳管,管状的纳米级石墨晶体,是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,每层的C是sp2杂化,形成六边形平面的圆柱面。各国都加紧了碳纳米管的应用研究,研制出具备良好储氢性能的碳纳米管和具备初步显示功能的碳纳米管显

活性炭的制备

活性炭的制备 1 活性炭的制备原料 (1) 2 活性炭的制备方法 (1) 3 煤基活性炭的制备方法 (2) 4 煤基活性炭中的粘结剂 (3) 1 活性炭的制备原料 活性炭的结构特性依赖于前躯体的性质、原料的炭化、活化和化学的调整条件[22]。选择合适的原料是影响活性炭性质的一个重要因素,活性炭可用各种类型的碳质材料来制备,来源非常广泛,大体可以分为以下几类: ①有机高分子聚合物,如萨兰树脂、酚醛树脂、聚糖醇等; ②植物类,主要是利用植物的坚果壳或核,如核桃壳、杏核、椰壳等; ③煤及煤的衍生物,如各种不同煤化度的煤及其混合物。 原料的选择一般以低灰分、高含碳量以及尽可能低的挥发分为最佳。较好的原料主要是煤(褐煤、长焰煤、烟煤、无烟煤)、木材、果壳。由于煤来源广泛、价格低廉、制备工艺相对简单而应用较多。煤的主要成分是碳,表面化学性质活泼,孔隙率高、比表面积大,其多孔结构有利于制成活性吸附材料。在以煤为原料制备活性炭的技术开发方面,德国、日本、美国、俄罗斯和中国已做了大量的研究工作,并取得了一定成果。 2 活性炭的制备方法 活性炭的制备方法主要可以分为:碳化法、活化法、碳沉积法、热收缩等方法。碳化法是将碳质原料置于惰性气氛中,以适当的热解条件得到碳化产品的方法。其基本原理是基于加热过程中各基团、桥键、自由基和芳环等复杂的分解聚合反应,表现为碳化产物的孔隙发展、孔径的扩大和收缩。在碳化过程中,碳质原料中的热不稳定组分以挥发分形式脱出,从而在半焦上留下孔隙。碳化法适用于高挥发分原料,是所有其他方法的基础。影响碳化过程的主要因素是升温速率、碳化温度与恒温时间。采用的升温速率一般在5~15°C/min,碳化温度多在500~

活性炭生产工艺简介

1.煤质活性炭主流生产工艺及产污分析 (1)生产工艺流程 煤质活性炭生产工艺主要工序为破碎磨粉、成型、炭化、活化、成品处理等。 回转炉炭化、斯列普炉活化工艺流程是国内煤质活性炭生产的主流工艺,主要分布在宁夏、山西,约占全国煤质活性炭生产企业总数的72%。 图1 活性炭生产工艺流程图 合格的原料煤入厂后,被粉碎到一定细度(一般为200目),然后配入适量黏结剂(一般为煤焦油)在混捏设备中混合均匀,然后在一定压力下用一定直径模具挤压成炭条,炭条经炭化、活化后,经筛分、包装制成成品活性炭。 (2)生产过程中的排污节点、污染物排放种类、排放方式

破碎磨粉工序排放颗粒物(煤尘),排放方式主要是有组织排放。 成型工序排放颗粒物(煤尘)、挥发性有机物,多以无组织形式逸散。 炭化、活化工序排放的主要污染物为颗粒物、SO2、NO X、苯并[a]芘(B aP)、苯、非甲烷总烃(NMHC)及氰化氢(HCN),排放方式为有组织排放。具体详见下表。 表1煤质活性炭污染物排放方式、排放种类、行业特征污染物 (3)无组织排放 煤质活性炭工业生产过程无组织排放节点有混捏成型工序、煤焦油储罐区、炭化工序车间门窗处、成型料晾晒场等。排放的污染物为挥发性有机物和一氧化碳。 污染末端治理 (1)磨粉、混捏、成品筛分包装工序粉尘治理 活性炭行业磨粉、混捏、成品筛分包装工序产生粉尘污染,磨粉工序生产设备内产生的粉尘经旋风除尘器及布袋除尘器收集,并作为原料回用,除尘效率98%以上。新建和大型企业成品筛分包装工序有回收设施回收,规模较小企业存在无组织排放现象。混捏工序无组织废气无处理措施,通过标准制定,引导企业

臭氧生物活性炭各工艺阶段的特点及应用

臭氧生物活性炭各工艺阶段的特点及应用 宋文涛1 ,胡志光1 ,常爱玲1 ,潘晓丽2 1华北电力大学环境科学与工程学院(071003) 2北京国电富通科技发展有限责任公司(100055) E-mail:swt305@https://www.360docs.net/doc/e113972086.html, 摘要:针对日益恶化的饮用水水源水质,臭氧生物活性炭饮用水深度处理方法受到人们的广泛关注。本文论述了臭氧生物活性炭工艺中的臭氧发生系统、臭氧尾气破坏系统、臭氧预氧化及后氧化、生物活性炭滤池的应用现状及特点,并对其发展前景作了展望。 关键词:饮用水;深度处理;臭氧氧化;生物活性炭 1.引言 随着饮用水水源污染的日益加剧和居民环保意识的不断增强、生活水平的不断提高,饮用水水质标准要求亦将愈来愈高,常规的絮凝、沉淀、过滤、消毒净水工艺已难以满足水质不断提高的要求,饮用水深度处理技术受到人们的广泛关注,对深度处理技术研究和应用在我国已呈现出蓬勃发展的形式。 臭氧生物活性炭饮用水深度处理方法是集臭氧氧化、活性炭吸附和生物降解于一体,以去除污染的高效性成为当今世界各国进行饮用水深度处理的主流工艺,现已广泛地应用于欧洲,美国,日本等上千座水厂中[1]。该项技术在我国正在逐步推广应用,目前在昆明、北京、常州、深圳、杭州、上海等城市已有应用[2]。本文对臭氧生物活性炭工艺中的臭氧发生系统、臭氧尾气破坏系统、臭氧预氧化及后氧化、生物活性炭滤池的应用现状及特点进行了详细论述。 2. 臭氧发生系统 传统臭氧发生器以空气为原料,其优点是原料为空气,不需成本。但是其不足之处很多:需要对空气进行除尘,脱湿的预处理;臭氧产量低,通常国产臭氧发生器的臭氧质量分数为1%左右;能耗高;设备庞大,增加占地等。当前水厂使用的臭氧发生器多以氧气为原料,其优点是:提高臭氧浓度,增加臭氧产量,通常臭氧质量分数为6%左右;降低电耗;简化设备,减少设备体积和占地面积;加快氧化速度[3]。 对臭氧发生系统而言,臭氧浓度低则臭氧发生器的能耗也低,但臭氧发生器所消耗的氧气量大;臭氧浓度高则臭氧发生器的能耗也高,但臭氧发生器所消耗的氧气量小。因此,究竟采用多大臭氧浓度应根据当地的电价和氧气价格,在进行总成本经济核算后才能确定。如何使臭氧发生系统进一步降低基建投资和运行费用,改进臭氧发生器的臭氧发生技术将成为今后的研究重点。 3. 臭氧尾气破坏系统 从臭氧接触池排出的尾气中仍含有一定数量的臭氧,如果直接排入大气,会造成大气环

活性炭的选择和使用

接触的生产中大部分产品脱色用活性炭都是一个牌号的针用活性炭。活性炭脱色一般使用极性溶剂,可以吸附分子而不吸附离子。在有机化学论坛看到一篇关于选择和使用的文献,还有不少学问。摘录如下: 影响活性炭吸附性能的因素 1.选择的活性炭质量达不到要求标准 1.1 当前社会,只有不合适的活性炭,已经很少有不合格的活性炭的!主要责任还在使用者,没有选择合适的活性炭。如果你要是说别人的活性炭不合格,你拿着活性炭去仲裁,胜的几率非常少!因为所谓的合格肯定有标准,当前的标准多如牛毛,有在具体行业有国标,有行标,还有企业标准,在fda,jfc(过年中,有点模糊)等等国家还有不同的标准。因此我不打算就活性炭不合格专门说明:一般来说,活性炭不合适会造成一下集中影响,首先是杂质不合适,你是制药,偏偏选择化工用炭,或者食品用炭,结果是颜色也许可以合格,但是杂质含量较高,叫做指标差,也是为什么有针剂用炭等等国标的原因,不是说他们的吸附能力多强,主要是杂质少,纯度高。如果是粉炭,当然是粒度越细越好,因为单纯看,表面积越大,吸附能力越强,而且吸附速度越快,因为根据活性炭吸附时间段进行分析,关键吸附时间是杂质从活性炭表面到内部的时间,也就是穿刺时间,当然粒度越小越好了。在这里要求的是活性炭的均匀度,也就是活性炭的粒度越匀越好。而且活性炭的过滤主要靠自身来过滤(滤饼),而且无论多好的活性炭,在使用过程中,不可避免的会出现碎炭。 单纯就活性炭的漏炭,我可以就个例进行大概的分析,这里暂不进行详述。需要的话,可以提醒我。 1.2 活性炭中锌盐、铁盐不合格,如铁盐含量较高,可使输液中某些药物如维生素c、对氨基水杨酸钠等变色。(但就上面几种药物,我无话可说,因为我不知道,可能会出现络合的情况出现。大多情况下,还是增加杂质,要是产色,也可能是活性炭的大比表面积配上一定的金属杂质或者重金属杂质,会形成活性炭担载催化剂的出现,在一定的脱色温度下,会产生反应,好多时候,脱色后会出现莫名的杂质,据估计可能就是这中情况(业界内没见到准确的说法)。当然杂

活性炭的应用及发展过程

官网地址:https://www.360docs.net/doc/e113972086.html, 活性炭的应用及发展过程 活性炭是含碳的物质经过炭化和活化制成的多孔性人造炭质吸附剂。它具有发达的孔隙结构和巨大的比表面积,可用作吸附剂,催化剂和催化剂载体。 活性炭作为人造材料,是在1900年到1901年发明的,其发明者是拉费尔·王·奥斯特莱科,他采用化学活化法和物理活化法制造活性炭而获得专利。1911年,门高德博士在维也纳附近的工厂首次将活性炭工业化生产。当时的产品是粉状活性炭,这是世界上第一家工业化生产工厂。 回顾世界活性炭的发展历史,有两个主要的事件推动了活性炭事业的发展,一是第一次世界大战化学武器的应用;二是1927年发生在美国芝加哥自来水厂的饮用水恶臭事件。 1914年欧洲爆发了第一次世界大战,1915年4月22日,德国军队在欧洲战场伊普番河上使用了毒气;5月18日,在华沙附近的拉夫卡河又向俄国军队施放了毒气。1915年德军在比利时对毫无准备的英法联军使用6000个钢瓶施放化学毒气氯气18万公斤,造成士兵伤15000余人,其中约5000人丧生。 有“矛”必然会发明“盾”,有化学毒气必然会发明防毒武器。两个星期后,军事科学家就发明了防护氯气武器,他们给前线的每个士兵发了一种特殊的口罩,这种口罩里有用硫代硫酸钠和碳酸钠溶液浸过的棉花。 这两种药品都有除氯的功能,能起到防护的作用。但是如果敌方改用第二种毒气,这种口罩就无用武之地了。事实也是如此。此后不到一年,双方已经用过几十种不同的化学毒气,包括人们现今熟知的介子毒气及氢氰化合物。

官网地址:https://www.360docs.net/doc/e113972086.html, 因此人们一直在寻找一种能使任何毒气都失去毒性的物质才好。这种百灵 的解毒剂在1915年才被科学家找到,它就是活性炭。到1917年,交战双方的 防毒面具里都装上了活性炭,毒气对交战士兵的危害程度就大大降低了。 第二次世界大战中德国首次利用介子气引发了毒气战争,人们就开始寻求 避免受到毒气侵害的方法,而活性炭正是因为其能高效防止毒气的侵害,被广 泛应用于战争。这样就刺激了世界各国对活性炭的研究和生产。 1927年美国芝加哥自来水厂发生了广大居民难以接受的自来水恶臭事件。 这是由于原水中苯酚和消毒用的氯发生异臭所致。后来,德国等地的自来水厂 也发生了同样的事件,而这些事件都是用活性炭处理解决的。从此以后,环境 保护日益受到重视,政府的法令也日趋严格,不仅在净水方面,在其他领域也 得到广泛应用,由此,活性炭进入全面发展阶段。 50年代以前, 我们国家还没有活性炭的加工企业,每年进口30-50t;50年 代到1981年,国产活性炭开始上市,特别是1966年,从苏联引进斯列普活化 炉后有了规模化生产,国内生产能力逐步提升至10000t/a; 80年代末期到90年代末期,进入改革开放以后,国内开始建设大量的活 性炭厂,其规模也飞速发展,生产能力逐步从10万t/a发展到12万t/a;2000 年到2008年,生产能力持续增长,现已达到每年20余万t。

相关文档
最新文档