阿司匹林制备综述

阿司匹林制备综述
阿司匹林制备综述

阿司匹林

阿司匹林的简介

中文名称:阿斯匹林(解热镇痛药)阿司匹林(退热药)

中文俗名:醋柳酸、巴米尔、力爽、塞宁、东青等

英文名称:Aspirin

拉丁名称:Aspirin

化学普通命名法:乙酰水杨酸,acetylsalicylic acid

化学系统命名法:2-(乙酰氧基)苯甲酸

IUPAC命名法:2-ethanoylhydroxybenzoic acid

分子结构式为:C9H8O4

分子相对质量:180.16

用途:1.解热镇痛药,用于发热、疼痛及类风湿关节炎等。

2.是应用最早,最广和最普通解热镇痛药抗风湿药。具有解热、镇痛、抗炎、抗风温和抗血小板聚集等多方面的药理作用,发挥药效迅速,药效肯定,超剂量易于诊断和处理,很少发生过敏反应。常用于感冒发热,头痛、神经痛关节痛、肌肉痛、风湿热、急性内湿性关节炎、类风湿性关节炎及牙痛等。是《国家基本药物目录》列入的品种乙酰水杨酸也是其他药物的中间体。

3.乙酰水杨酸是制备杀鼠剂中间体4-羟基香豆素的原料。

4.杨酸与乙酸。微溶于水,溶于乙醇、乙醚、氯仿,也溶于氢氧化碱溶液或碳酸溶液,同时分解。常用的解热镇痛药。用于解热、镇痛、抗风湿,促进痛风患者尿酸的排泄,抗血小板聚集及胆道蛔虫治疗。

5.用于制造室外及有强光照射的结构件、器械部件,如汽车车身、农机部件、电表和电灯罩、道路标记等。

发展史:在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酸合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱赛介绍到临床,并取名为阿司匹林(Aspirin)阿司匹林于1898年上市,近年来发现它还具有抗血小板凝聚的作用,于是重新引起了人们极大的兴趣。将阿司匹林及其他水杨酸衍生物与聚乙烯醇、醋酸纤维素等含羟基聚合物进行熔融酯化,使其高分子化,所得产物的抗炎性和解热止痛性比游离的阿司匹林更为长效。以后又陆续制成了以乙酰水杨酸为主药的多种复方制剂,更是受到欢迎。如大家熟悉的复方阿司匹林、复方扑尔敏、扑尔感冒片、小儿退热片等药,都是阿司匹林“家族”中的成员。

阿司匹林的合成

通常阿司匹林用乙酸酐作酰化剂将水杨酸酰化而得,而选用的催化剂不同,对其合成产品的后处理、质量、产率、成本有着重要的影响。其反

应是如下:

1.浓硫酸催化合成

实验原理:在浓硫酸催化下由水杨酸与醋酸酐进行酯化反应得到。水杨酸可由水杨酸甲酯(即冬青油)水解制成。反应式如下:

主要试剂:水杨酸(CP),醋酸酐(CP),硫酸(AR),饱和碳酸氢钠溶液,冰蒸馏水。

实验步骤:(1)在干燥的锥形瓶中放入称量好的水杨酸(2g 0.045mol)、乙酐(5ml 5.4g 0.053mol),滴入5滴浓硫酸,轻轻摇荡锥形瓶使溶解,在80~90℃水浴中加热约15min,从水浴中移出锥形瓶,当内容物温热时慢慢滴入3~5mL冰水,此时反应放热,甚至沸腾。反应平稳后,再加入40mL水,用冰水浴冷却,并用玻棒不停搅拌,使结晶完全析出。抽滤,用少量冰水洗涤两次,得阿斯匹林粗产物。

(2)将阿斯匹林的粗产物移至另一锥形瓶中,加入25mL饱和NaHCO3溶液,搅拌,直至无CO2气泡产生,抽滤,用少量水洗涤,将洗涤液与滤液合并,弃去滤渣。先在烧杯中放大约5mL浓盐酸并加入l0mL水,配好盐酸溶液,再将上述滤液倒入烧杯中,阿斯匹林复沉淀析出,冰水冷却令结晶完全析出,抽滤,冷水洗涤,压干滤饼,干燥。

注意事项:乙酰水杨酸受热后已发生分解,分解温度为128~135 C,因此重结晶时不宜长时间加热,控制水温,产品采取自然晾干。

阿司匹林的传统合成方法是用浓硫酸或浓磷酸作催化剂,以水杨酸和乙酸酐反应合成。此法副产物多,设备腐蚀严重,污染环境。

2.碳酸钾催化合成

实验原理:用碳酸钾代替浓硫酸或浓磷酸作催化剂合成阿司匹林。

实验步骤:(1)将0.029mol(2g)水杨酸.一定量的乙酸酐和无水K2CO 催化剂加到50mL干燥的锥形瓶中,水浴加热搅拌惫时间。反应结束后,加入pH值为3~4的40mL冰水。然后将锥形瓶置于冰水中冷却,使结晶完全,减压过滤,用少量冰水洗涤结晶2次,即得粗产品阿司匹林。

(2)将粗产品转移至烧杯中,在搅拌下加入饱和碳酸氢钠溶液,直至无CO:气体产生。减压过滤,除去不溶白色聚合物,将滤液倒入盛有浓盐酸的烧杯中,搅拌,有白色产物析出。将此烧杯置于冰水中冷却,使结晶完全,过滤,少量冷水洗涤结晶2~3次,真空干燥,得阿司匹林产品。

分析及比较:(1)K2CO,作为催化剂合成阿司匹林具有较好的催化效果.克服了浓酸作催化剂时对设备的腐蚀,造成环境污染等缺点。

(2)本实验最佳条件是:水杨酸0.029mol,反应物料的量比n(水杨酸):

n(乙酸酐)=1:1.75,反应温度60℃,反应时间30min,催化剂用量为1.45mmol,产率达78.8%,实验重现性好,

产品质量佳。

(3)在此合成实验中,乙酸酐量少,反应速度慢,且不完全,产率低;乙酸酐量过大,可能会溶解阿司匹林和消耗催化剂。从而影响催化效果和降低产率。

3.三氯稀土催化合成

实验原理:以三氯稀土作为路易斯酸,可溶性强,对设备腐蚀性低,以它为催化剂,产率可高达90%。

实验步骤:加入25g水杨酸和35ml新蒸乙酸酐和0.4g的三氯稀土在三颈漏斗,瓶口分别装温度计,带CaCl2的干燥管的冷凝回流管。沸水浴上回流一段时间。加水200ml,

并置于冰水浴中冷却,使结晶完全。用布氏漏斗抽滤析出产品,

用少量冷水洗涤数次。抽干,得到粗产品。然后纯化,最后在恒温箱中干燥。方法分析及比较:此方法反应的最佳条件是水杨酸与乙酸酐的物质的量之比为1∶2.0.以三氯稀土作催化剂,其催化效果与浓硫酸作催化剂相当,但是它克服了硫酸腐蚀设备的缺点,三氯稀土和水可以回收,在稀土三氯化物中,效果最好的是YCl3 。只是成本较高,且作为药物合成对于其毒性要慎重考虑.

4.活性炭固载SnC1 ·5H:0催化剂合成

通过用活性炭固载SnCl ·5H:0作为催化剂催化合成阿司匹林,当水杨酸2.5 g,乙酸酐5 mL,反应时间16 min,反应温度8O一85℃,活性炭固载SnC1 ·5H:0的量为1.5 g时取得很好的催化合成效果,产率高达88.4%。该催化剂具有催化活性高、反应时间短、易分离、无污染的特点,符合绿色生产的要求,且具有较高的实用价值,可代替其它催化剂。其催化效果良好,不仅改善了传统用的催化剂硫酸带来的腐蚀设备,环境污染等缺点,而且比活炭固载A1C1,催化的产率高[1引。该催化剂还可以通过简单的操作便可回收利用,符合绿色生产的要求,具有投入工业生产的价值。

还可以用强酸树脂环境友好催化合成

阿司匹林含量分析测定

阿司匹林及阿司匹林制剂的含量测定有多种方法,其中包括药典所载的酸、碱中和滴定法及紫外分光光度法,高效液相法,荧光法测定等。

1.阿司匹林酸碱滴定法测定

直接滴定方法:取本品0。4g,精密称定,加中性乙醇20ml,溶解,加酚酞指示3d,用氢氧化钠滴定液(0.1mol/l)滴定。每1ml滴定液相当于18。02mg 的C9H8O4水解后剩余滴定:方法:取本品1.5g,精密称定加氢氧化钠滴定液(0.5mol/l)50.0ml,混合,缓缓煮沸10min,放冷,加酚酞指示液,用硫酸滴定液(0.25mol/l)滴定剩余的氢氧化钠。

一.简介 非甾体抗炎药( no n- steroidal ant i- inf lammatory dr ug s, NSAIDs) 是指具有解热、镇痛和消炎作用而非类固醇结构的药物。临床应用极为广泛, 是仅次于抗感染药的第二大类药物1。非甾体抗炎药是急、慢性风湿性疾病的非类固醇一线治疗药物, 具有抗炎、止痛和解热等作用, 主要用于炎症免疫性疾病的对症治疗, 能有效缓解肌肉、关节及炎症免疫性疾病的局部疼痛、肿胀等, 广泛用于腰背痛、牙痛、痛经、急性痛风、外伤或手术后疼痛、癌痛等的治疗, 且无成瘾性和依赖性的特点。据不完全统计, 全世界大约有1亿多人在服用NSA ID s, 其中有一半以上是老年患者。每天约有3 0 0 0 万关节炎患者服用NSAIDs,在我国最保守估计每年至少有500 万OA患者和4 2 0 万R A 患者在服用N S A I D s 。在中国由于各种原因引起的急慢性疼痛的患者约占门诊总人数的1/ 5~ 1/ 4, 因此, 可以说N SA ID s 是临床医师特别是骨科大夫应用较多的药物之一2。随着此类药物的研究进展, 其临床使用范围在不断扩展。 二.发展简史 以阿司匹林为代表的N S A I D s ,具有神奇的、源远流长的历史。追溯到公元前约460 年至377 年希波克拉底曾经使用柳树皮来治疗骨骼肌肉疼痛;1 7 6 3 年的英国传教士爱德蒙特·斯通(E d m a n dS t o n e )第一次比较科学的描述将柳树叶煎液作为一种抗炎药;1828 年德国慕尼黑药学教授约翰·布赫勒(Johann Buchner)提取出柳树皮中的有效成分水杨苷,次年汉立·里劳西(Henri Leroux)获得其结晶;水杨酸则是意大利化学家雷非·皮立亚(Raffaele Piria)首次从水杨苷中获得,1859年德国化学家赫尔曼·柯比(Hermann Kolbe)完成了鉴定及合成其化学结构的工作,1 8 7 4 年水杨酸开始生产;鉴于水杨酸的胃肠道刺激性和不适的口感,1 8 9 7 年德国拜耳公司的化学家霍夫曼(H o f f m a n n )成功合成了乙酰水杨酸;随后拜耳公司的首席药理学家海里希·狄里舍(H e i n r i c hDresser)通过自身实验和随后的动物实验证明乙酰水杨酸具有良好的抗炎和镇痛作用,并于1899 年注册了商品名为阿司匹林(Aspirin)。此后的100 多年来,阿司匹林深受医生和患者的青睐,作为NSAIDs的原形药并成为药物史上的一颗“常青树”3。 1898 年, 由德国拜尔药厂首先合成的阿司匹林是最早用于风湿热及关节炎的治疗药物。由于其在大剂量时才能发挥消炎止痛作用并伴随明显的胃肠道副作用, 逐渐被新上市的NSAID 所取代。1952 年, 保泰松( 苯丁唑酮) 问世, 为第一个被命名的非甾体抗炎药。因其强大的抗炎镇痛效应而广泛用于风湿病的治疗长达30 多年。至20 世纪80 年代, 因相关的不良反应, 如粒细胞和血小板减少, 甚至再生障碍性贫血等不断出现而逐渐被限制使用或禁用。1963 年, 吲哚乙酸类NSAID 的代表药物消炎痛( 吲哚美辛) 上市, 虽然其抗炎、镇痛和解热作用较强, 但因胃肠道、肝脏和肾脏等毒副作用仍然很严重而逐渐少用。1969 年, 1姜爱霞.非甾体抗炎药的研究[ J].潍坊学院学报.2010,10(6):96-98 2刘红,李国珍,葛泉丽.非甾体抗炎药的作用机制及进展[J ].实用医技杂志.2003,10(4):401-402 3李梦涛,曾小峰.非甾体类抗炎药的过去、现在与将来[J ].继续医学教育.2006,20(28):24-29

论阿司匹林催化剂使用情况 摘要:阿司匹林的传统合成方法是用醋酸酐和水杨酸为起始原料,以浓硫酸为催化剂,经酯化反应而制得。这一生产方法已使用多年,其工艺较为成熟,但是收率较低,一般在70%左右,容易发生副反应,产品成色较差,浓硫酸为催化剂对设备有较强的腐蚀作用,更为严重的是采用该方法生产阿司匹林时会产生大量的废酸液体,对环境的污染较大。本文旨在介绍使用各种催化剂对阿司匹林生产的影响,并在最后写出了一篇离子液体【bmim】H2PO4催化合成阿司匹林的实验报告。以此来论证离子液体型催化剂在阿司匹林制备过程中的优点。 关键词:阿司匹林催化剂合成 一、阿司匹林合成的历史意义 1、阿司匹林认识过程 阿司匹林(aspirin):化学名为2-(已酰氧基)苯甲酸(2-(acetyloxy)benzoic acid)。又名乙酰水杨酸。本品为白色结晶或结晶粉末;无臭或微带乙酸臭,味微酸;遇湿气即缓缓水解。在乙醇中易溶,在三氯甲烷或乙醚中溶解,在水或无水乙醚中微溶,在氢氧化钠溶液或碳酸钠溶液中溶解,但同时分解。mp. 135~140℃。 人们对阿司匹林的认识可追溯到古埃及法老时代。当时通过浸泡柳树皮获取了一种物质并被记载于公元前1550年汇集的医疗处方之中。哥伦布发现新大陆之前美洲人经常使用金鸡纳树的树皮作镇痛药。西班牙人来到那里以后发现这种树的树皮还可以降低病人的体温;

1800年人们才从柳树皮中提炼出了具有解热镇痛作用的有效成分――水杨酸;1898年德国化学家Dr. Felix Hoffmann用水杨酸与醋酸酐反应合成了乙酰水杨酸;1899年3月6日德国拜仁药厂正式生产这种药品取商品名为Aspirin。迄今为止,阿司匹林已经阿司匹林已应用百年,成为医药史上三大经典药物之一①,至今它仍是世界上应用最广泛的解热、镇痛和抗炎药,也是作为比较和评价其他药物的标准制剂。 2、阿司匹林药理作用 阿司匹林为解热镇痛药,用于治疗伤风、感冒、头痛、发烧、神经痛、关节痛及风湿病等。近年来又证明它在体内具有抗血栓的作用,它能抑制血小板的释放反应,抑制血小板的聚集,其治疗范围又进一步扩大到预防血栓形成治疗心血管疾患。本品长期服用会引起胃肠道出血,这主要是由于前列腺对胃黏膜具有保护作用,而本品抑制了前列腺素的生物合成,使得黏膜易于受到损伤;另外,由于前列腺素E 对支气管平滑肌有很强的收缩作用,本品的前列腺素合成抑制作用还会导致过敏性哮喘的发生。 二、阿司匹林催化剂 1、阿司匹林催化剂使用现状分析 在过百年的发展过程中,阿司匹林的合成不断经历着历史的变革和考验。迄今为止,阿司匹林主要以水杨酸、乙酸酐为原料,通常通过以下3种途径合成:酸催化、碱催化和新型催化。合成方法如下:①医药史上三大经典药物:阿司匹林、青霉素、安定

阿司匹林的合成路线介绍 阿司匹林是世界最重要的解热镇痛药之一。目前全世界阿司匹林原料药产量已达5万吨左右,年产片剂1千多亿片。多年来,阿司匹林一直是我国解热镇痛药的支柱产品之一,年产量达1万多吨,也是我国医药原料药出口的大宗产品,2005年的出口量为7522吨,出口金额达到2055万美元。 1 . 采用乙酸酐为酰化剂的工艺路线 催化剂类别 需用原料及配方实例 原料名称规格组分比(份) 酚甲酸98.5% 25 乙酸酐98.5% 27 制备工艺: 混料投入带配有冷凝器的烧瓶中,在油浴上控温于150~160℃,反应约3小时,于减压下蒸去过量之乙酸酐及反应中生成的乙酸,其蒸出物重约16份,余品重为31份。再用2倍重量的苯重结晶,可得18份纯品。若将余液浓度增高,还可收得10份纯品。 经过几十年的生产实践,阿司匹林的生产形成了一套十分成熟的工艺:以苯酚为原料,经过和二氧化碳的羧化反应,生成水杨酸,经升华后得到升华水杨酸,再采用醋酐-醋酸法。由于此生产工艺不复杂,收率、成本等也较为理想,几十年来,国内外生产企业基本按照这条工艺路线进行生产。故该工艺较为成熟。由于长期以来,国内外科研机构、生产厂商对其生产工艺进一步深入研究的工作做得不多,所以这方面的专利以及研究论文也较为少见。 工艺探索不断 在传统的阿司匹林生产中,由水杨酸和醋酐反应生成阿司匹林的过程需要加温,使反应在80℃~90℃温度下进行,反应时间2小时左右,耗能量较大。近年来,由于基本能源价格不断上涨,反应时间越长则能耗越大,成本越高。从近几年的研究趋势看,研究的重点主要集中在水杨酸和醋酐反应过程中,通过添加不同的催化剂,使得反应更易进行,时间更短,耗能更少,产品质量更好。 1.1 水杨酸与醋酸酐法加入氧化钙或氧化锌 美国专利局2001年8月公开了Handal-Vega等人的“阿司匹林工业生产合成方法”的发明专利,该专利提出了一个水杨酸和醋酐合成阿司匹林的新方法:在水杨酸和醋酐反应中按一定比例加入氧化钙或氧化锌,得到一种乙酰水杨酸和醋酸钙或醋酸锌以及最大为2%游离水杨酸的混合物。此反应十分快速,属于放热反应,也是一锅反应,且无污染物,不需要排放残渣酸,也不需要任何有机溶剂,产物不需要再结晶。因产物是固体,合成完成后可以马上和普通药物制剂辅料混合压片,成阿司匹林片。 1.2 用一水硫酸氢钠作催化剂 肖新荣等人在《精细化工中间体》杂志上发表文章认为,水杨酸乙酸酐反应合成阿司匹林中,用一水硫酸氢钠为催化剂,反应时间约40分钟,反应温度80~90C,收率约为86.7%。硫酸氢钠为一价廉易得,使用安全的物质,其催化合成阿司匹林效果较好,因其难溶于有机溶剂,易于分离回收重用。

阿司匹林(Aspirin)又名乙酰水杨酸(Acetylsalicylic acid),化学名.(/乙酰氧基)苯甲酸,系白色结晶或结晶性粉末,熔点135-140℃,无臭或略带醋酸味,水中微溶,乙醇中易溶,氯仿或乙醚中溶解,遇湿气缓慢水解生成水杨酸,具弱酸性,最稳定ph值2.5。阿司匹林可由水杨酸(邻羟基苯甲酸)与乙酸酐经酰化制得。在生成阿斯匹林的同时,水杨酸分子之间发生缩合反应,生成少量的聚合物。副产物不溶于碳酸氢钠溶液,由此可提纯阿斯匹林。实验过程中,阿斯匹林产量少,并且不易结晶析出,常常须采用摩擦杯壁、加入晶种、浓缩溶液等办法才析出晶体,实验现象成功率低,同时需要较长的处理及静置时间。 阿司匹林的制备 实验室制备阿司匹林 本实验以浓硫酸为催化剂,使水杨酸与乙酸酐发生酰化反应,制取阿斯匹林。由于水杨酸中的羟基和羧基能形成分子内氢键,反应必须加热到150~160℃。不过,加入少量的浓硫酸或浓磷酸过氧酸等来破坏氢键,反应温度也可降到60~80℃,而且副产物也会有所减少。原理如下: 水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物: 酰化反应 在100 mL干燥的园底烧瓶中加入4 g水杨酸、10 mL乙酸酐和10滴浓硫酸,采用搅拌使水杨酸尽量溶解,然后在水浴上加热,水杨酸立即溶解。如不全溶解,则需补加浓硫酸和乙酰酐。保持锥形瓶内温度在70℃左右。安装回流装置水浴加热,控制温度在80~85℃,同时保持低速匀速搅拌, 20 min后停止加热。反应液稍微冷(50℃以下)却缓慢加入15 mL冰水用来水解过量的乙酸酐,冷却至室温,再将反应液倒入50mL冰水的锥形瓶,即有乙酰水杨酸析出,将锥形瓶置于冰水浴中冷却,使结晶完全析出。 产品的提纯 减压过滤:用滤液淋洗锥形瓶,直至所有晶体被收集到布氏漏斗,每次用少量冷水洗涤结晶3次,减压过滤,即得到粗产物。产品重结晶:将粗产物转移至烧杯,在搅拌下加入饱和碳酸氢钠溶液,直至无二氧化碳产生。减压过滤,用少量水冲洗漏斗,除去少量的白色聚合物,合并滤液,倒入预

阿司匹林的合成及临床研究 摘要 阿司匹林(Aspirin)又名乙酰水酸,其化学名为2-乙酰氧基苯甲酸,是一种解热镇痛药,问世于1899年,已有百余年历史,为医药史上三大经典药物之一,是至今为止临床应用最广泛的解热、镇痛和抗炎药物。本文对不同催化剂合成阿司匹林的工艺进行了简要的综述,简述了阿司匹林的药理作用,分析了阿司匹林在临床上的应用以及发展前景,并提出了我国阿司匹林发展的建议。 关键字:阿司匹林;合成;药理作用;临床应用

Abstract Aspirin is also known as acetyl salicylic acid, its chemical name is 2-acetoxy benzoic acid, is a kind of antipyretic analgesics, published in 1899, has more than 100 years of history, is one of the three classical drug in history of medicine and it is the most widely used clinical antipyretic, analgesic and anti-inflammatory drugs by far. The process of synthesis of aspirin with different catalysts were reviewed, the pharmacological effect of aspirin, analyzes the application of aspirin in clinical practice and development prospect and puts forward some suggestions for the development of our country of aspirin.

阿司匹林的综述 “假如我将身处荒岛,如果选择随身携带某种药物的话,那么可能首先想到的就是她——阿司匹林(aspirin)” ——John A. Baron教授,Dartmouth医学院 早在大约公元前1550,人们就已经知道柳树的叶子也可以止痛。古希腊名医希波克拉底在他的著作中也提到过用柳叶汁来镇痛和退热。1763年4月25日,英国牛津郡的牧师爱德华~斯通给伦敦皇家学会主席写了一封信,报告了他应用柳树皮治疗热病的情形。信中说,他五年里总共大约50例病人服用这种树皮的粉末,几乎从未失败过…1874年,苏格兰医生麦克拉根用柳树皮提取物成功地降低了风湿病患者的体温,并缓解了患者的疼痛和浮肿。两年后,他的实验报告发表在了医学杂志《柳叶刀》上。后来,其他科学家从柳树皮中分离出水杨苷,并制备出水杨酸钠,也证明了它有退热、止痛和消炎的作用。从此,水杨酸就一直用于热病、风湿病和痛风的治疗。不过水杨酸钠的味道比较苦,而且服后人会感到胃十分不舒服。1897年,在拜耳公司工作的德国化学家费力克斯·霍夫曼,为他患有严重风湿病的父亲,改造水杨酸钠。很快,他找到了制成纯净乙酰水杨酸的方法。随后,拜耳公司工业药品实验主任、药物学先驱之一赫尔曼·德莱泽对水杨酸进行了缜密的研究,肯定了水杨酸的药理功效。于是,拜耳公司在1899年2月以“阿司匹林(Aspirin)”的名字

给此药注册。 关于阿司匹林的合成发展及目前努力方向。阿司匹林的经典制备方法是使用乙酸酐或者乙酰氯在浓硫酸催化下对水杨酸进行酰化制得,工艺比较成熟,产率在60%左右。但该方法容易发生副反应,产品成色较差且不利于提纯,浓硫酸为催化剂对设备有较强的腐蚀作用,更为严重的是采用该方法生产阿司匹林时会产生大量的废酸液体,对环境的污染很大。因此,阿司匹林的合成发展中,优选高效价廉的催化剂及采用先进的合成技术是关键。 文瑞明等评述了硫酸、磷酸、对甲苯磺酸、草酸、强酸性阳离子交换树脂、无水碳酸钠、碳酸氢钠、吡啶、无水乙酸钠、苯甲酸钠、氧化锡、三氯化铝、稀土氯化物、复合无机离子交换剂、氟化钾/氧化铝、磷酸二氢钠、一水硫酸氢钠、酸性澎润土、固体超强酸、杂多酸、分子筛和维生素C等催化剂催化合成阿司匹林的方法。比较了酸、碱、无机氧化物和盐类、固体超强酸、杂多酸、分子筛和维生素C等是催化合成阿司匹林的适宜催化剂,而微波辐射可以大大加快合成阿司匹林的反应速度,值得进一步研究。郭有刚、李慧敏等分别通过对合成阿司匹林催化剂的催化效果分析发现,酸性催化剂催化阿司匹林的产品收率大都高于碱性催化剂催化,微波技术,超声辐射技术等强化方式辅助合成阿司匹林既可以提高反映收率,又可以节约反应时间,认为阿司匹林合成的研究方向是寻求性能更优越的催化剂,既要实现生产过程的绿色环保、节约资源、降低成本,又要实现阿司匹林产品本身质量更优,减少阿司匹林的溶剂残留,重金属残留

阿司匹林含量测定的综述 【结构】 【性状】本品为白色结晶或结晶性粉末;无臭或微带醋酸臭,味微酸;遇湿气即缓缓水解。本品在乙醇中易溶,在三氯甲烷或乙醚中溶解,在水或无水乙醚中微溶;在氢氧化钠溶液或碳酸钠溶液中溶解,但同时分解。 【鉴别】(1)取本品约0.1g,加水10ml,煮沸,放冷,加三氯化铁试液1滴,即显紫堇色。 (2)取本品约0.5g,加碳酸钠试液10ml,煮沸2分钟后,放冷,加过量的稀硫酸,即析出白色沉淀,并发生醋酸的臭气。 (3)本品的红外光吸收图谱应与对照的图谱(光谱集209图)一致。 【检查】(1)溶液的澄清度取本品0.50g,加温热至约45℃的碳酸钠试液10ml溶解后,溶液应澄清。 (2)游离水杨酸取本品0.10g,加乙醇1ml溶解后,加冷水适量使成50ml,立即加新制的稀硫酸铁铵溶液〔取盐酸溶液(9→100)1ml,加硫酸铁铵指示液2ml后,再加水适量使成100ml〕1ml,摇匀;30秒钟内如显色,与对照液(精密称取水杨酸0.1g,加水溶解后,加冰醋酸1ml,摇匀,再加水使成1000ml,摇匀,精密量取1ml,加乙醇1ml、水48ml与上述新制的稀硫酸铁铵溶液1ml,摇匀)比较,不得更深(0.1%)。 (3)易炭化物取本品0.5g,依法检查(附录ⅧK),与对照液(取比色用氯化钴液0.25ml、比色用重铬酸钾液0.25ml、比色用硫酸铜液0.40ml,加水使成5ml)比较,不得更深。 (4)炽灼残渣不得过0.1%(附录ⅧN)。

(5)重金属取本品1.0g,加乙醇23ml溶解后,加醋酸盐缓冲液(pH3.5)2ml,依法检查(附录ⅧH第一法),含重金属不得过百万分之十。 【含量测定】 1.直接碱滴定法 取本品约0.4g,精密称定,加中性乙醇(对酚酞指示液显中性)20ml 溶解后,加酚酞指示液3滴,用氢氧化钠滴定液(0.1mol/L)滴定。每1ml 氢氧化钠滴定液(0.1mol/L)相当于18.02mg的C9H8O4。 参考文献:2005年版《中国药典》二部-283 阿司匹林肠溶胶囊-阿司匹林-高效液相色谱法 应用范围:本方法采用高效液相色谱法测定阿司匹林肠溶胶囊中阿司匹林的含量。 方法原理:供试品经1%冰醋酸无水甲醇溶液溶解并稀释,进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长280nm处检测阿司匹林的峰面积,计算出其含量。 试剂:1. 1%冰醋酸溶液2. 甲醇3. 1%冰醋酸无水甲醇溶液仪器设备:1. 仪器1.1 高效液相色谱仪1.2 色谱柱十八烷基硅烷键合硅胶为填充剂,理论塔板数按阿司匹林峰计算应不低于1500。1.3 紫外吸收检测器 2.色谱条件2.1 流动相:1%冰醋酸溶液:甲醇=50 :50 2.2 检测波长:280nm 2.3 柱温:室温 试样制备:1. 对照品溶液的制备精密称取阿司匹林对照品适量,用1%冰醋酸无水甲醇溶液溶解并定量稀释制成每1mL中约含50µg的溶液,即为对照品溶液。

实验一-乙酰水杨酸的合成

实验一、乙酰水杨酸(阿司匹林)的合成、鉴定与含量的测定 一、实验目的 (1) 学习O-酰化(酯化)单元反应的特点和基本知识。 (2) 了解阿司匹林的性质和工业制法,掌握O-酰化制备阿司匹林的实验方法。 (3) 掌握水杨酸酰化反应的原理及实验操作以及乙酰水杨酸的鉴定、提纯及含量测定的方法。 (4)了解紫外光谱法、红外光谱法、核磁共振法在有机合成中的应用,掌握紫外-可见分光光度法定量分析的基本原理和实验技术。 (5) 进一步熟悉基础化学实验的重结晶及熔点测定等基本操作。 二、实验原理 乙酰水杨酸(acetyl Salicylic acid ),通常也称为阿司匹林(aspirin),是由水杨酸(邻羟基苯甲酸)和乙酸酐合成的。早在18世纪,人们已从柳树皮中提取了水杨酸,并注意到它可以作为止痛、退热和抗炎药,不过对肠胃刺激作用较大。19世纪末,人们成功地合成了乙酰水杨酸,直到目前,阿司匹林仍然是一个广泛的具有解热镇痛作用的药物。水杨酸是一个具有酚羟基和羧基双官能团化合物,能进行两种不同的酯化反应,当与乙酸酐作用时,可以得到乙酰水杨酸(即阿司匹林);如与过量的甲醇反应,生成水杨酸甲酯,它是第一个作为冬青树的香味成分被发现的,因此通称为冬青油。本实验将进行前一个反应的试验。 反应式: COOH OH +(CH 3CO)2O H SO COOH OCCH 3 +CH 3COOH 在生成乙酰水杨酸的同时,水杨酸分子之间可以发生酯化反应,生成少量的聚合酯: COOH OH n H +C O O O C O O C O O +H 2O 乙酰水杨酸能与NaHCO 3反应生成水溶性钠盐,而副产物聚合酯不能溶于NaHCO 3,这种性质上的差别可用于阿司匹林的纯化。 可能存在于最终产物中的杂质是水杨酸本身,这是由于乙酰化反应不完全或由于产物在分离步骤中发生水解造成的。它可以在各步纯化过程和产物的重结晶过程中被除去,与大多数酚类化合物一样,水杨酸可与FeCl 3,形成深色配(络)合物,而阿司匹林因酚羟基已被酰化,不再与FeCl 3发生颜色反应,因而未作用

阿司匹林的制备 一、实验目的: 1、了解阿司匹林制备的反应原理和实验方法。 2、通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。 3、巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。 4、了解合成中的副产物以及相应的除杂方法。 5、了解阿司匹林合成中可使用的催化剂 二、实验原理: 阿司匹林的合成原理是在催化剂作用下,以醋酐为酰化剂, 与水杨酸羟基酰化成酯。传统的合成阿司匹林的催化剂为浓硫酸,它存在如下缺点: 1)收率较低(65%~70%),腐蚀设备,有排酸污染; 2)操作条件要求严格。浓硫酸具有强氧化性, 反应要严格控制其加入速度和搅拌速度, 否则会导致反应物碳化; 3)粗产品干燥时,由于硫酸分离不完全而导致部分产品氧化, 引起产品成色不好;4)产品不能加热干燥, 否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。 因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸必要的,改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基, 即完成乙酰水杨酸的合成。催化剂酸性越强, 氢质子流动性越好, 越易于催化酯基的生成, 但在乙酰水杨酸的合成中, 催化剂酸性太强, 也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础, 人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究, 取得了可喜成果。酸性催化剂包括路易斯酸、固体酸、有机酸、 酸性无机盐、酸性膨润土等。

阿司匹林的制备

阿司匹林的制备 默认分类2009-05-0410:25:27阅读517评论0字号:大中小订阅 壹、目的要求 1、熟悉酚羟基酰化反应的原理,掌握阿司匹林的制备方法。 2、掌握抽滤装置的安装和操作。 3、学会利用重结晶纯化固体有机物的操作技术。 二、实验原理 阿司匹林学名为乙酰水杨酸,是白色晶体,易溶于乙醇、氯仿和乙醚,微溶于水。因具有解热、镇痛和消炎作用,可用于治疗伤风、感冒、头痛、发烧、神经痛、关节痛及风湿病等,也用于预防心脑血管疾病。常用退热镇痛药APC中A即为阿司匹林。实验室通常采用水杨酸和乙酸酐于浓硫酸的催化下发生酰基化反 应来制取。反应式如下: 生成的阿司匹林粗品,用35%的乙醇溶液进行重结晶将其纯化。 三、仪器和药品 锥形瓶(100mL)、量筒(10mL,25mL)、温度计(100℃)、烧杯(200mL,100mL)、吸滤瓶、布 氏漏斗、水泵、水浴锅、电炉 水杨酸、乙酸酐、硫酸(98%)、乙醇水溶液(35%) 四、实验步骤 1、酰化 于干燥的锥形瓶(若制备阿司匹林的量较大,可采用带电动搅拌器的回流装置,三颈瓶中口安装电动搅拌器,壹侧口安装球形冷凝管,另壹侧口安装温度计)中加入4.3g水杨酸和6mL乙酸酐,再滴入7滴浓硫酸(水杨酸分子内存于氢键,阻碍酚羟基的酰基化反应。反应需加热至150~160℃才能进行。若加入少量浓硫酸,可破坏水杨酸分子内氢键,使反应温度降低到80℃左右,从而减少副产物的生成),立即配上带

有100℃温度计的塞子(温度计插入物料之中)。混匀后置于水浴中加热,于充分振摇下缓慢升温至75℃。保持此温度反应15min,期间仍不断振摇。最后提高反应温度至80℃,再反应5min,使反应进行完全。 2、结晶抽滤 稍冷后拆下温度计。于充分搅拌下将反应液倒入盛有100mL水的烧杯中,然后冰水冷却,待结晶完全析出后,进行抽滤。用少量冷水洗涤滤饼俩次,压紧抽干后转移到100mL烧杯中。 3、重结晶 于盛有粗产品的烧杯中加入25mL35%乙醇,置于45~50℃水浴中加热,使其迅速溶解(溶解时,加热时间不宜太长,温度不宜过高,否则阿司匹林发生水解)。若产品不能完全溶解,可酌情补加35%的乙醇溶液。然后静置到室温,冰水冷却,待结晶完全析出后,进行抽滤。用少量冷水洗涤滤饼俩次,压紧抽干。 将结晶转移至表面皿中,自然晾干后称量,计算产率。 五、注意事项 1、酰化反应时,要用手压住瓶塞,以防反应蒸气冲出。且不断振摇,确保反应进行完全。 2、控制好酰化反应温度,否则将增加副产物的生成。 3、将反应液转移到水中时,要充分搅拌,将大的固体颗粒搅碎,以防重结晶时不易溶解。 4、乙酸酐具有强烈刺激性,要于通风橱内取用,且注意不要粘于皮肤上。 实验八阿司匹林的制备 【目的要求】 ⑴熟悉酚羟基酰化反应的原理,掌握阿司匹林的制备方法; ⑵掌握抽滤装置的安装和操作; ⑶学会利用重结晶纯化固体有机物的操作技术。

阿司匹林 阿司匹林的简介 中文名称:阿斯匹林(解热镇痛药)阿司匹林(退热药) 中文俗名:醋柳酸、巴米尔、力爽、塞宁、东青等 英文名称:Aspirin 拉丁名称:Aspirin 化学普通命名法:乙酰水杨酸,acetylsalicylic acid 化学系统命名法:2-(乙酰氧基)苯甲酸 IUPAC命名法:2-ethanoylhydroxybenzoic acid 分子结构式为:C9H8O4 分子相对质量:180.16 用途:1.解热镇痛药,用于发热、疼痛及类风湿关节炎等。 2.是应用最早,最广和最普通解热镇痛药抗风湿药。具有解热、镇痛、抗炎、抗风温和抗血小板聚集等多方面的药理作用,发挥药效迅速,药效肯定,超剂量易于诊断和处理,很少发生过敏反应。常用于感冒发热,头痛、神经痛关节痛、肌肉痛、风湿热、急性内湿性关节炎、类风湿性关节炎及牙痛等。是《国家基本药物目录》列入的品种乙酰水杨酸也是其他药物的中间体。 3.乙酰水杨酸是制备杀鼠剂中间体4-羟基香豆素的原料。 4.杨酸与乙酸。微溶于水,溶于乙醇、乙醚、氯仿,也溶于氢氧化碱溶液或碳酸溶液,同时分解。常用的解热镇痛药。用于解热、镇痛、抗风湿,促进痛风患者尿酸的排泄,抗血小板聚集及胆道蛔虫治疗。 5.用于制造室外及有强光照射的结构件、器械部件,如汽车车身、农机部件、电表和电灯罩、道路标记等。 发展史:在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酸合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱赛介绍到临床,并取名为阿司匹林(Aspirin)阿司匹林于1898年上市,近年来发现它还具有抗血小板凝聚的作用,于是重新引起了人们极大的兴趣。将阿司匹林及其他水杨酸衍生物与聚乙烯醇、醋酸纤维素等含羟基聚合物进行熔融酯化,使其高分子化,所得产物的抗炎性和解热止痛性比游离的阿司匹林更为长效。以后又陆续制成了以乙酰水杨酸为主药的多种复方制剂,更是受到欢迎。如大家熟悉的复方阿司匹林、复方扑尔敏、扑尔感冒片、小儿退热片等药,都是阿司匹林“家族”中的成员。 阿司匹林的合成 通常阿司匹林用乙酸酐作酰化剂将水杨酸酰化而得,而选用的催化剂不同,对其合成产品的后处理、质量、产率、成本有着重要的影响。其反

阿司匹林的生产技术及国内外市场分析 摘要 阿司匹林是一种常用的药物,从催化剂对阿司匹林生产工艺的改进作了简要综述,分析国内外阿司匹林的生产消费现状及发展前景,提出我国阿司匹林的发展建议。 关键词:阿司匹林;生产;消费;市场需求分析

Abstract Aspirin was a commonly used drug. The current development and methods in the preparation of aspirin were reviewed briefly, including improved catalysts. The production and consumption situation of aspirin and its development prospect at home and abroad were analyzed. According to the status and existed problems in the production of aspirin in China, suggestions for the development of aspirin in China were put forward. Key words: Aspirin; production; consumption; market demand analysis

前言 阿司匹林又名乙酰水杨酸,白色针状或板状结晶或粉末,无气味,微带酸味,在干燥空气中稳定,在潮湿空气中缓缓水解成水杨酸和乙酸。在乙醇中易溶,在乙醚和氯仿溶解,微溶于水,在氢氧化钠溶液或碳酸钠溶液中能溶解,但同时分解。该品1g能溶于300mL水5mL醇10~15mL醚或17mL氯仿。阿司匹林是一种历史悠久的解热镇痛药,用于治感冒、发热、头痛、牙痛、关节痛、风湿病,还能抑制血小板聚集,用于预防和治疗缺血性心脏病、心绞痛、心肺梗塞、脑血栓形成,应用于血管形成术及旁路移植术也有效[1]。 1 生产工艺 经过几十年的生产实践,阿司匹林的生产形成了一套十分成熟的工艺:以苯酚为原料,经过和二氧化碳的羧化反应,生成水杨酸,经升华后得到升华水杨酸,再采用醋酐-醋酸法,将水杨酸和醋酐进行酰化反应,最终得到乙酰水杨酸也即阿司匹林,多年来,这套生产工艺基本没有什么变化。进入新世纪以后,在其生产工艺的突破方面,优选高效价廉的催化剂以及采用先进合成技术变成了关键。 1.1 催化剂改进研究 阿司匹林的传统合成方法是用醋酸酐和水杨酸为起始原料,以浓硫酸为催化剂,经酯化反应而制得,这一生产方法已使用多年,其工艺较为成熟,我国企业多年来一直采用该方法生产阿司匹林。但是该方法也有不少缺点,如收率较低,一般在70%左右,容易发生副反应,产品成色较差,浓硫酸为催化剂对设备有较强的腐蚀作用,更为严重的是采用该方法生产阿司匹林时会产生大量的废酸液体,对环境的污染较大。因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸已成为人们研究的新课题。综合文献分析可知,改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 1.1.1 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基,即完成乙酰水杨酸的合成。催化剂酸性越强,氢质子流动性越好,越易于催化酯基的生成,但在乙酰水杨酸的合成中,催化剂酸性太强,也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础,人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究,取得了可喜成果。酸性催化剂包括路易斯酸、固体酸、有机酸、酸性无机盐、酸性膨润土等[2]。 1.1.2 碱性化合物为催化剂

阿司匹林制备中催化剂的比较研究 【摘要】阿司匹林是一种常用的药物, 从催化剂和合成技术方面对阿司匹林生产工艺的改进作了简要综述。评价了各种工艺的优缺点, 认为对甲苯磺酸、硫酸氢钠、苯甲酸钠和维生素C等可望成为较好的能取代液体浓硫酸并对环境友好的固体酸催化剂。 【关键词】阿司匹林; 催化剂; 绿色合成; 酯化 阿司匹林也叫乙酰水杨酸,是一种历史悠久的解热镇痛药,诞生于1899年3月6日。用于治感冒、发热、头痛、牙痛、关节痛、风湿病,还能抑制血小板聚集,用于预防和治疗缺血性心脏病、心绞痛、心肺梗塞、脑血栓形成,也可提高植物的出芽率[1],应用于血管形成术及旁路移植术也有效。临床上用于预防心脑血管疾病的发作。阿司匹林(Aspirin)是临床应用近百年的解热镇痛药,经典制备方法是用乙酸酐或乙酰氯在硫酸催化下对水杨酸酰化制得[2]。其生产工艺的突破、优选高效价廉的催化剂以及采用先进合成技术是关键。 1 催化剂改进研究 阿司匹林的合成原理是在催化剂作用下, 以醋酐为酰化剂, 与水杨酸羟基酰化成酯。传统的合成阿司匹林的催化剂为浓硫酸, 它存在如下缺点:1)收率较低(65%~ 70% ), 腐蚀设备, 有排酸污染。2)操作条件要求严格。浓硫酸具有强氧化性, 反应要严格控制其加入速度和搅拌速度, 否则会导致反应物碳化。3) 粗产品干燥时, 由于硫酸分离不完全而导致部分产品氧化, 引起产品成色不好。4)产品不能加热干燥, 否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸已成为人们研究的新课题。综合文献分析可知, 改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 1. 1 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基,即完成乙酰水杨酸的合成。催化剂酸性越强,氢质子流动性越好,越易于催化酯基的生成,但在乙酰水杨酸的合成中,催化剂酸性太强,也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础,人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究,取得了可喜成果。酸性催化剂包括路易斯酸、固体酸、有机酸、酸性无机盐、酸性膨润土等。 1.1.1膨润土是以蒙脱石为主要矿物成分的非金属矿产资源,具备二维通道和大孔分子筛的性质,用酸处理后所得的酸性膨润土催化酯化反应最大优点是收率高,催化剂经热过滤与产品分离后,再经干燥、净化、活化处理,可反复使用,成本低,不污染环境,是一种绿色催化剂。该方法消除了环境污染,产品质量但收率中等[3]。 1.1.2对甲苯磺酸为固体有机酸,经济易得、污染少、收率高、操作方便,具有较好的工业化前景。对甲苯磺酸具有催化活性高,选择性好,操作方便,污染少等显著优点。 1.1.3活性二氧化锡性质稳定,操作安全,所得产品容易分离,回收的二氧化锡除去少量杂质可重复使用[4]。 1.1.4 NaHSO4催化通过正交实验,其催化合成乙酰水杨酸的产率与浓硫酸相当。用硫酸氢钾催化合成乙酰水杨酸,具有催化剂在反应过程保持固态,反应完毕经热过滤即可与产品分离、不溶于反应体系、易回收等特点,克服了浓硫酸对设备的强腐蚀性、对环境的污染等缺点,符合绿色化学的发展方向,具有工业应用的前景[5]。 1.2碱性化合物 碱性化合物为催化剂基于碱性化合物能与水杨酸反应、能破坏水杨酸分子内氢键、活化水杨

一、实验目的和要求 1.了解阿司匹林的合成原理和操作方法。 2.掌握重结晶操作方法。 二、基本概念和实验原理 阿司匹林有退热止痛作用。纯品为白色针状或片状晶体,溶解于37℃水中,口服后在肠内开始分解为水杨酸。 阿司匹林学名为乙酰水杨酸,由水杨酸和乙酸酐在酸催化下酰基化反应制得。 在反应过程中会形成聚合物,利用阿司匹林和碳酸氢钠反应形成水溶性的钠盐,可与聚合物分离。 通过过滤将聚合物除去,加酸酸化得到阿司匹林,再重结晶纯化。 水杨酸含有酚基,能与稀三氯化铁溶液反应,产生深紫色的溶液。纯净的阿司匹林不会产生紫色。所以通过对未反应的水杨酸的点滴试验,很容易检测产物的纯度。 产品可通过熔点,红外,核磁共振和液相色谱等鉴定。 本实验以水杨酸和乙酸酐为原料,在磷酸催化下酰基化反应制得乙酰水杨酸,通过溶解,过滤,结晶,重结晶等纯化得到阿司匹林产品。 三、仪器和材料 仪器:恒温水浴槽,搅拌器,温度计,冷凝管,三口瓶,烧杯,量筒,天平,砂芯漏斗,过滤瓶。 材料:水杨酸,乙酸酐,浓磷酸,饱和碳酸氢钠溶液,18%盐酸溶液,无水乙醇。 四、实验内容 实验装置图如下: CO O H O H +CH 3C O O C O CH 3CO O H O C O CH 3+ CH 3COOH 浓硫酸或磷酸

实验步骤 1.开启水浴恒温槽的电源,使水浴温度控制在60℃。 2.在三口瓶中加入5g水杨酸,14ml(15g)乙酸酐,1.8ml浓磷酸,按图的实验装置安装好。 3.在60℃的水浴中,搅拌,反应15min,取出,冷却至室温,在瓶中加入70ml水,继续搅拌5min, 再放在冷水浴中静置5—10min,加入冰块,在冰水浴中静置10—20min,充分冷却,直至结晶完全,真空抽滤,用少量冰水洗涤二次。 4.将晶体放在250ml烧杯中,并加入70ml饱和碳酸氢钠溶液,搅拌到无二氧化碳放出为止。真空抽 滤除去聚合物固体。 5.将滤液放在250ml烧杯中,边搅拌边慢慢滴入18%盐酸溶液,直至PH值1.5.烧杯放入冰水浴中冷 却,直至结晶完全。真空抽滤,用少量冰水洗涤二次,得粗产品。 6.粗产品放入150ml烧杯中,加入20ml无水乙醇,搅拌,缓慢加热,直至晶体溶解,再加入40ml水, 在室温中静置,再放入冰水浴中冷却,直至结晶完全。真空抽滤,用少量无水乙醇-水(1:2,v/v)溶液洗涤,烘干,得产品。称量,计算产率。 五、实验数据记录与处理 对产品进行称重,为2.663g,根据方程式:

阿司匹林的合成 一、实验目的 1、通过阿司匹林的制备,了解合成实验的一般原理、操作及思维方式 2、了解酰化反应的要求及应用 3、进一步巩固重结晶的操作方法学会混合溶剂重结晶 4、了解相关数据库的查阅方法:如维普、万方等,并能根据相关资料分析实验结果。 二、实验原理 水酸是一种具有双官能团的化合物:一个是酚羟基、一个是羧基,羧基和羟基都可以 发生酯化,而且还可以形成分子氢键,阻碍酰化和酯化反应的发生。 阿司匹林是由水酸(邻羟基苯甲酸)与醋酸酐进行酯化反应而得的。水酸可由水酸甲酯即冬青油,由冬青树提取而得,水解制得。本实验就是用邻羟基苯甲酸与乙酸酐反应制备乙酰水酸。反应式为 三、合成原料 阿司匹林又称醋柳酸。化学名称:2-乙酰氧基苯甲酸,化学式C9H8O分子结构式为:CH3COOC6H4COOH、分子量180.16、白色针状或板状结晶或结晶性粉末、无臭、微带酸味。密度1.35g/cm3。在干燥空气中稳定、遇潮则缓慢水解成水酸和醋酸。微溶于水、溶于乙醇、乙醚、氯仿、也溶于碱溶液同时分解。化学性质:酸的通性、酯化反应、水解反应。 水酸化学名称:2-羟基苯甲酸分子式 C7H6O3 结构式 C6H4OHCOOH分子量138.12。水酸为白色结晶性粉末,无臭,味先微苦后转辛。熔点157-159℃,在光照下逐渐变色。相对密度1.44。沸点约211℃/2.67kPa。76℃升华。常压下急剧加热分解为苯酚和二氧化碳。1g水酸可分别溶于460ml水、15ml沸水、2.7ml 乙醇、3ml丙酮、3ml乙醚、42ml氯仿、135ml苯、52ml松节油、约60ml甘油

和80ml石油醚中。加入磷酸钠、硼砂等能增加水酸在水中的溶解度。水酸水溶液的pH值为2.4。水酸与三氯化铁水溶液生成特殊的紫色。 乙酸酐分子式:(CH3CO)2O分子量:102有刺激气味,其蒸气为催泪毒气,溶于苯、乙醇、乙醚,常用作乙酰化剂以及用于药物阿司匹林染料、醋酸纤维制造。 四、实验步骤 称取50.0g水酸,加入50mL圆底烧瓶中再加入5mL乙酸酐摇匀后加入5滴浓硫酸装一球形冷凝管见上图。待水酸全部溶解后将圆底烧瓶放入80~85℃水浴中恒温15~20分钟其间不断振摇。反应结束后稍微冷却倒入盛有30mL冷水的烧杯中并用10mL水洗涤圆底烧瓶将洗涤液也倒入烧杯中很快析出白色晶体将烧杯置于冷水 浴中并不断搅拌促其结晶完全。抽滤并用少量水洗涤晶体抽干得粗品阿司匹林。 取极少量粗品阿司匹林,溶于几滴乙醇中加入0.1%FeCl3溶液1~2滴现察颜色变化。 将粗品阿司匹林放入50mL圆底烧瓶中加入4~5mL无水乙醇装上球形冷凝管通入冷凝 水置于60~70℃水浴中加热片刻若粗品还有少量未溶可补加少量乙醇直至其全都溶 解。用滴管向溶液中滴加水至微浑再加热溶解冷却至少半小时溶液析出白色晶体抽 滤红外灯烘干计算收率。 取少量重结晶后的阿司匹林溶解于几滴乙醇中并加入0.1%FeCl3 溶液1~2滴观察颜 色变化。

乙酰水杨酸的制备 一、实验目的 1.能运用已学知识查阅相关资料及工具书,熟悉实验原理。 2.能独立设计实验方案(包括实验方法、主要仪器及试剂、主要实验步骤及实验装置图等)。 3.了解乙酰水杨酸制备的反应原理和实验方法。 4.通过乙酰水杨酸制备实验,初步熟悉有机化合物的分离、提纯等方法。 5.巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。 二、实验原理 将水杨酸与乙酐作用,通过乙酰化反应,使水杨酸分子中酚羟基上的氢原子被乙酰基取代生成乙酰水杨酸。加入少量浓硫酸作催化剂,其作用是破坏水杨酸分子中羧基与酚羟基间形成的氢键,从而使酰化反应容易完成。 水杨酸分子中含羟基(—OH)、羧基(—COOH),具有双官能团。本实验采用以强酸为硫酸为催化剂,以乙酐为乙酰化试剂,与水杨酸的酚羟基发生酰化作用形成酯。反应如下: M=138.12 M=102.09 M=180.15 M=60.05 反应原理:

副反应: O OH OH 2 OH C O O O O H +O H 2O OH OC OCH 3 O OH OH + OC OCH 3 C O O O O H 乙酰水杨酸能溶于碳酸氢钠水溶液,而副产物不能溶于碳酸氢钠水溶液,这种性质上的差别可用于阿司匹林的纯化。 可能存在于最终产物中的杂质可能是水杨酸本身,这是由于乙酰化反应不完全或由于产物在分离步骤中发上水解造成的。它可以在各步纯化过程中和产物的重结晶过程中被除去。与大多数酚类化合物一样,水杨酸可与三氯化铁形成配合物;阿司匹林因酚羟基已被酰化,不再与三氯化铁发生颜色反应,因此杂质很容易被检出。 本实验用FeCl3检查产品的纯度,此外还可采用测定熔点的方法检测纯度。杂质中有未反应完酚羟基,遇FeCl3呈紫蓝色。如果在产品中加入一定量的FeCl3,无颜色变化,则认为纯度基本达到要求。 三、实验药品与仪器 药品:水杨酸5.00g(0.036mol),乙酸酐8.64g (8mL ,0.08mol),饱

阿司匹林综述 阿司匹林,英文名:Aspirin,别名:醋柳酸、巴米尔、力爽、塞宁、东青等,分子式:C9H8O4分子量:180.16,性状:白色针状或板状结晶或粉末,是一种历史悠久的解热镇痛药,诞生于1899年3月6日。用于治感冒、发热、头痛、牙痛、关节痛、风湿病,还能抑制血小板聚集,用于预防和治疗缺血性心脏病、心绞痛、心肺梗塞、脑血栓形成,应用于血管形成术及旁路移植术也有效。 1阿司匹林的适用症状 1.1镇痛、解热 阿司匹林通过血管扩张短期内可以起到缓解头痛的效果,该药对钝痛的作用优于对锐痛的作用。故该药可缓解轻度或中度的钝疼痛,如头痛、牙痛、神经痛、肌肉痛及月经痛,也用于感冒、流感等退热。该品仅能缓解症状,不能治疗引起疼痛、发热的病因,故需同时应用其他药物参与治疗。 1.2消炎、抗风湿 阿司匹林为治疗风湿热的首选药物,用药后可解热、减轻炎症,使关节症状好转,血沉下降,但不能去除风湿的基本病理改变,也不能预防心脏损害及其他合并症。如已有明显心肌炎,一般都主张先用肾上腺皮质激素,在风湿症状控制之后、停用激素之前,加用该品治疗,以减少停用激素后引起的反跳现象。 1.3关节炎 除风湿性关节炎外,该品也用于治疗类风湿性关节炎,可改善症状,为进一步治疗创造条件。此外,该品用于骨关节炎、强直性脊椎炎、幼年型关节炎以及其他非风湿性炎症的骨骼肌肉疼痛,也能缓解症状。 1.4抗血栓 该品对血小板聚集有抑制作用,阻止血栓形成,临床可用于预防暂时性脑缺血发作(TIA)、心肌梗塞、心房颤动、人工心脏瓣膜、动静脉瘘或其他手术后的血栓形成。也可用于治疗不稳定型心绞痛。 1.5皮肤粘膜淋巴结综合症(川崎病) 患川崎病的患儿应用阿斯匹林,目的是减少炎症反应和预防血管内血栓的形成。 1.6预防消化道肿瘤 长期规律的使用阿司匹林可以大大降低胃肠道肿瘤的发生率。 2阿司匹林的其他作用 阿司匹林抗癌的研究结果显示,长期服用阿司匹林可显著降低患肠癌的风险。这是第一个基于长期随机对比试验的结果,为阿司匹林的抗癌效果提供了有力证据。英国纽卡斯尔大学等机构的研究人员在英国医学刊物《柳叶刀》网站上