聚丙烯管(pp-r管)生产工艺

聚丙烯管(pp-r管)生产工艺
聚丙烯管(pp-r管)生产工艺

聚丙烯管(PP-R管)生产工艺

摘要:三型聚丙烯管具有节能,耐腐蚀,不结垢、卫生,无毒,耐热、耐压,使用寿命长,质轻高强,流体阻力小等优点,是替代镀锌钢管的新一代产品。介绍PP -R管的特点,原料生产工艺,国内现状、施工方法、项目投资估算及市场前景分析。

1前言

80年代以前,我国的住宅及公共建筑的上水管基本上是镀锌钢管,由于受材质自身的局限,镀锌钢管存在使用寿命短、易造成水质二次污染等缺点。为了保障人们日常饮用水的质量,我国部分地区,如上海、浙江、河北、江苏等省市已先后提出淘汰镀锌钢管,用高质量的塑料管代替。目前,在我国已相继开发了PVC管、PE 管、铝塑复合管、玻璃钢管、钢塑复合管和PP-R管等一批塑料管材,并取得了一定的市场占有率。

PP-R管是欧洲90年代开发的,以新型无规聚丙烯为原料,经挤出成型制作的塑料管材。由于其优越的性能,正日益受到人们的青睐。

2PP-R管的主要性能

聚丙烯管分为均聚聚丙烯(PP-H)、嵌段共聚聚丙烯(PP-B)和无规聚丙烯(PP -R)3种。PP-H、PP-B、PP-R管材的刚度依次递减,而抗冲击强度则依次增加。

给水用聚丙烯管是用特殊的PP-R制成。PP-R管作为一种新型的管材,具有以下性能特点:

2.1节能

PP-R管的生产能耗仅为钢管的20%,并且其导热系数低[0.2W/()],也仅为钢管的1/200,应用于热水系统将大大减少热量损失。

2.2耐腐蚀、不结垢、卫生、无毒

使用PP-R管可免去使用镀锌钢管所造成的内壁结垢、生锈而引起的水质“二次污染”。由于PP-R组份单纯,基本成份为碳和氢,符合食品卫生规定,无毒,更适合于饮用水输送。

2.3耐热、耐压、使用寿命长

PP-R管的长期使用温度达95℃,短期使用温度可达120℃。在使用温度为70℃,工作压力为1.2MPa条件下,长期连续使用,寿命可达50年以上。

2.4轻质高强、流体阻力小

PP-R管密度仅为金属管的1/8,耐压力试验强度高达5MPa,且韧性好、耐冲击。由于内壁光滑、不生锈、不结垢,流体阻力小。

PP-R管的主要技术指标如下:密度.9g/cm3弹性模量(20℃)800MPa热膨胀系数1.8×10-4/K导热系数0.2W/()

纵向收缩率2%

冲击试验破损率≤10%

液压试验

短期1h,环应力16MPa无渗漏

长期95℃,1000h,环应力3.5MPa无渗漏

表1为几种材质管材性能比较。

表1 各种材质管材性能比较

3 PP-R管的生产原料及生产工艺

3.1 原料及性能

PP-R管对原料的要求较高,国外原料厂商常有多种颜色的PP-R供管材厂选

择。如北欧化工公司(Borealis)和奥地利PCD公司生产的PP-R原料有米色、淡蓝、深蓝、奶白等多种颜色。在德国和意大利,管材生产厂选用不同的颜色来作为标识,以区别管材的用途。如蓝色用于冷水管,米色、灰色用于热水管,棕红色用于地板采暖管等。

原料性能指标见表2。

表2 PP-R原料的主要性能指标

3.2 生产工艺

PP-R管的生产工艺为挤出成型工艺,首先加料斗内的PP-R原料靠自重进入挤出机,在挤出机料筒内经加热挤压混合,充分塑化后从挤出机口模挤出,进入定型台,定型后的管材经牵引机,通过定长测定,由切割机切断,管材经检验合格后入库。相应的管件采用注射成型方法生产。

管材生产工艺流程:

PP-R原料→真空吸送上料→料斗贮存→进料→挤压成型→冷却定型→牵引→切割→检验→入库

管件生产工艺流程:

PP-R原料→输送上料→料斗贮存→进料→加热熔融→挤压注塑→冷却定型→开模→检验→入库

3.3 生产工艺参数

管材挤出参数:

(1)螺杆转速70-90r/min(高速线)

(2)机筒温度分布(实际测量温度以此为准)

1~2区180~190℃

3~4区200~210℃

模具温度200℃

牵引速度2~20m/min

管件注射参数:

(1)机筒温度分布

机筒后部160~170℃

机筒中部200~220℃

机筒前部180~200℃

(2)喷嘴170~190℃

(3)模具40~80℃

PP-R管生产过程中产生的残次品,经破碎后可再次加以利用,这就提高了原料的利用率,并可降低生产成本,提高经济效益。

目前,用国产设备也能生产PP-R管,但存在以下缺点,由于PP-R管生产过程中对管壁控制要求较高,国产设备厚度控制达不到引进设备的水平,挤出机的产量也较低,产品的外管质量逊色一些。

5 PP-R管的施工及应用

传统的镀锌钢管采用受压连接,PVC管和PE管以承插粘接方式连接,铝塑复

合管和PEX管采用铜质管件以受压连接(小口径PEX管也可以采用热熔连接)。而

PP-R管系统则采用同样材质的管件,其价格低于铜质管件,管件与管材线膨胀系

数一致,安装时将热熔机加热熔化后插接,操作简单方便,质量可靠,一般连接1

个节点只需几秒钟。

由于PP-R管的优越性能,因此,可广泛应用于饮用水系统、纯净水系统、冷

热水系统,石油、化工中的液体输送,食品工业中的牛奶、饮料、果酱、酒类等输

送及相关工业领域。

在热水输送领域,PP-R管已经可以和PEX管相媲美,而其加工要比PEX管容

易,PP-R管可做得的口径更大,达110mm的管子,比PEX管和铝塑复合管要优越。

PEX管内层的交联聚乙烯含有交联剂(硅烷或过氧化物),而PP-R管则符合

食品卫生规定。目前,国内PP-R管主要用于纯净水和热水系统,如上海市的纯净

水系统就使用了相当数量的PP-R管。

单螺杆挤出机生产PPR工艺

一.工作原理

挤出机螺杆在电机的带动下,通过减速箱传动,顺时针(从机头位置看)旋转时,从料斗垂直下来的物料将顺着螺杆的螺槽向前移动,在其向前移动的过程

中,受到机筒外部加热圈的加热而使物料熔融,一般经过加料段,熔融段和均化

段后,物料得以充分塑化而形成易成型的熔融流体,再经过挤出模具后形成需要

的规格尺寸,经过定径套真空定型、喷淋冷却、进入牵引机牵引,并按工艺规定

的制品长度进行切割,再由存料台翻卸存料。

二.结构概述

PPR生产用单螺杆挤出机,主要有螺杆、机筒、加热冷却部分、冷却水套、传动系统、机头体、过滤板、机架、料斗、电气控制柜等部件组成。

(1)螺杆:是直接加工塑料,使塑料塑化的主要零件,一般为右旋螺纹,根据所要生产的塑料原料把它制成特有的结构形式,当它顺时针旋转时,使塑料向前移动、搅拌及压缩,从而达到塑料充分均化的要求。螺杆一般由优质氮化钢38CrMoALA制成,经氮化处理后达到很高的硬度和很强的耐腐蚀能力,因而螺杆具有很高的耐磨、抗蚀的特点。

(2)机筒:是容纳塑料及螺杆的零件,一般它与螺杆之间有很小的间隙,当螺杆旋转时。

塑料与螺杆、机筒接触摩擦使塑料挤压、粉碎。机筒一般由优质氮化钢38CrMoALA 制成,表面经氮化处理后达到很高的硬度和很强的耐腐蚀能力,因而与螺杆一样具有很高的耐磨、抗蚀的特点。

(3)加热冷却部分:为使塑料塑化良好,需保持一定温度,机筒加热分四段分别控制,机头加热分七段分别控制,它们分别在0~300℃范围内由PLC经模数转换后自动控制其温度,以满足工艺的要求。为了使其不致过热和塑料温度过高时能迅速冷却,在机筒上装有风机,可以分段自动控制通风进行冷却。料筒及机头的温度由装在主机上的显示屏读得,并可以根据需求随时调整工艺设定温度;

(4)冷却水套:用于在入料口冷却塑料原料的零件,位于机筒入料口端部,为了防止塑料在下料的过程中,由于加热的热传导造成塑料原料粘接而影响了塑料原料下料的速度,挤出机正常工作时,冷却水套通循环水冷却;

(5)传动系统:是螺杆转动的动力和桥梁,主要有电机、连轴器和减速箱组成,为了适应各种规格塑料制品生产的需要,螺杆应该具有不同的转速,本机采用名牌直流电

机,通过高扭矩齿轮减速箱,并借助于进口名牌数字式直流调速器,使螺杆的转速在10-120r/min之间平滑无极调速,电机的转速及扭矩由装在主机上的显示屏读得,可以在显示屏上预置转速等参数,由PLC控制转速达到设定值,并有过载保护及报警功能;

(6)机头体:用于连接模具的零件,位于机筒的前端,它同机筒用螺纹连接,装拆方便;(7)过滤板:在机筒的前端放置有过滤板,根据产品及工艺需要在过滤板前装置不锈钢金属滤网,其作用是滤去杂质及增加其挤出阻力;

(8)料斗:用于储存塑料的容积,一般由不锈钢制作,料斗下部有喂料挡板用于控制下料量。

(9)

三.电气控制:

电气控制分两部分:

(1)电机转速控制:

采用进口数字式直流调速器来控制直流电机的运行,控制部分设置有:主机启动、停止控制按钮和速度调节按钮;在显示屏上能直接读出转速预置及实际速度,并有主机扭矩报警、极限报警及超速报警自动停机等保护设备的功能。设有故障报

警灯铃,并设有红色故障急停自锁按钮,在危及人身或设备安全时,可以通过急停

按钮使设备急停以保障安全和缩小事故范围。

电控柜内有以下电气元件:总电源空气开关、直流调速器、三相交流进线电抗器、快速熔断器、交流接触器等,数字式直流调速器的设置在出厂时已经调试好,

如果需要重新调整请仔细阅读随机所付使用手册,按使用手册要求进行调整,切勿

随意调整设置,以免造成不必要的损失。

(2)机筒加热冷却和机头加热控制:

由进口PLC的A/D模块对各段热电偶信号进行采样后,将模拟电压转换为数字量,再通过PLC进行运算后通过输出模块控制每段加热冷却。在显示屏上能预设各

段温度和温度上、下偏差,并显示各段的实际温度。柜内设置有各段对应的空气开

关以及交流接触器,PLC输出模块各输出点控制各自交流接触器通断来控制机筒和

机头上的加热圈通断达到加热目的,机筒部分还设有风机冷却装置,当某段温度过

高时,由PLC输出模块使冷却风机控制用的交流接触器接通,使风机转动向机筒送

风,以达到冷却机筒的目的。

四.安装和调整:

机器到位后,先按照装箱清单检查机器及备件是否齐全,检查运输过程中可能发生的机器损坏。在安装现场按照生产安装图将各单机依次安装,然后仔细地调整主机、真空定型喷淋箱、牵引机、切割机及存料台之间的中心高低,左右位置以及各单机之间的间距,检查外接气路、水路及电气接线是否正确。

1、根据机器重量,选择合适的起吊设备,一般用铲车和行吊。

2、机器在安装、搬运时,应将钓钩或铲车置于重心平衡,以免发生倾倒、脱落、损坏设备。

吊运时要注意安全,谨防碰撞周围人、物。

3、保护油漆面,避免在油漆面示加保护状况下放置钓钩及铲运。

4、设备运转前,最好将减速箱内的润滑油放净。

5、模具不允许装在挤出机上同时吊运。

6、在机器下部安装八块防震垫铁(用户自备),调整机器水平,并垫实垫铁。

7、安装拆下包装的料斗或干燥机(选配),上料机(选配),主电机风机罩等零件。

8、连接外电源:本机供电为三相四线制~380AC,50HZ电源,用252线将外电源接入总电

源空气开关上(如附机部分电源由主机引出则进线为502)

9、连接冷却水:用Ф15PVC夹网软管与冷却水套的进出水接头连接,用Ф20PVC夹网软管

与冷却器进出水接头连接。并检查水循环情况。

10、在主机料斗或干燥机(选配)料斗内放置磁力架(用户字备)。

五、首次开机准备工作:

1.认真阅读操作手册,否则不允许进行设备操作;

2.按设备平面布置图安放,调整好设备位置;

3.按安装图接好水、电、气路,高位水箱管路最好采用PP-R管连接;

4.在机出机减速箱中加入润滑油:

A加油时须过滤

B润滑油为中级压齿轮油N150或其他粘度相似的优质齿轮油;

5.在主机料斗或干燥料斗内放置磁力架

6. 按所生产管材规格,装好口模、芯模、定经套、密封盘、密封垫等;

互换件

7.将牵引管放入设备中,注意放置牵引管时,不可强行推入,以免撞坏托辊架(尤其是大管);

8.调整好真空定型机、喷淋箱托辊上下位置,以适应所所生产的管材;

9.调整好设备中心高及直线度;

11.调整各单机参数,以满足所生产管材要求

12.将手洗干净,禁止脏手操作设备

13.将单机逐个开机试验、检查水、电、气路连接是否正确,机器运转是否正常(主

机在生产厂家均经过试机,内部存有物料,必须升温至工艺温度并达到保温时

间后方可开机)。

14.将机头加热电源插头一一对应插入位于主机机箱右侧的插座,检查是否完全

插入。

15.仔细检查机箱内各种电器元件的接线有无松动、脱落、保险丝与座之间有无松动脱落等,经检查无误后断开所有空气开关。

16、打开冷却水套的进水阀门,确保有冷却水循环。

17、打开主电源开关及机筒机头各短加热、冷却对应的空气开关。

18、在显示屏上对机筒机头各段温度预置值按工艺要求进行修改,然后在显示

屏上根据提示打开各段温控开关。

19、将干燥机和上料机电源开关合上,上料后预热15分钟。

20、机筒、机头升温至工艺温度后,保温小时后才能启动电机,在保温期内切

勿强制启动主电机投料,以免损坏设备。

21、保温时间到后,打开喂料挡板,使原料能顺利进入机筒。

22、将主机速度预置值调为“0”,按主机启动按钮,此时应检查主电机风机是

否转动,风机装向是否正确(直流电机排风口应向外排风),然后按主机升

速按钮,使主机慢慢升速,观察螺杆转向是否正确,还可以通过面板上显

示屏显示的速度和扭矩观察电机工作情况,将螺杆转速调至工艺要求转速

后,挤出机正常工作。

23、停机时,先将主机转速通过显示屏操作降至“0”,再按“主机停止”按钮

使主电机停机,然后在显示屏上将机筒机头各段加热按钮开关断开。

24、当一次挤出完毕后,应立即清除机头等处的残余塑料(某些塑料也可按工

艺而定,以免妨碍下次生产的顺利进行)。

六、正常生产操作注意事项:

1、不能在主电机运转时开、停机,尤其不能在高转速时开、停机,且停机时必须将主机转速降至零位后,再按停机按钮;

2、非指定人员及专业操作,维修人员,不得操作设备;

3、主机加热保温时间不到,一般情况下,不允许强制启动开机;

4、共挤机加热保温时间不到,不允许开启变频器,且每次操作停机时,必须将变频器降至

零位后,再按停机按钮;

5、牵引机变频调速器,主机直流调速器,由专业调试人员调好后未经许可,任何人不得对

其进行调整。

6、除指定操作人员外,未经许可,任何人不得设定、修改、记录工艺参数;

7、.更换管材生产规格时,口模、芯模应在加热时进行更换,拆下的口模、芯模应立即趁热

进行清理后,涂抹防锈油入库,拆卸的螺钉、螺帽、垫片等金属件应集中放置并远离挤出机料箱及加料口,以防金属物进入主机;

8、更换、清理模具时,拆卸的螺钉在组装前必须涂抹二硫化钼高温润滑脂;

9、更换模具口模、芯模、定径套时,应轻拿轻放,以防磕碰损伤;

10、加热圈重新安装时,应注意将螺钉压紧,使加热圈紧紧贴在模具上,且注意接线柱接触

良好;

11、正常生产时,真空定型机、喷淋箱应将旁通管路关闭,主管路通水(因旁道管路无过滤

器),清洗过滤器时,将主管路关闭,旁道管路打开,过滤器清洗完毕后,应将主管路打开,旁通管路关闭;

12、应定期检查清理水路、过滤器、喷嘴等,以防水路阻塞造成管材质量缺陷(检查清理时

间因各地水质不同而异);

13、管材调整未正常之前,请勿将牵引机上的测速轮放下,以免损坏旋转编码器;

14、管材未调整规则前,应注意牵引机的压紧气压的调整,且不允许用切割机切断。确需要

切割时,用手锯切断。待管材规则后,将牵引机压紧气压,根据管材规格调整适合,使管材在保证平稳牵引的同时,不被压变形;

15、更换原料牌号批次时,须重新调整生产工艺。同一工艺有时不适用于不同批次的原料;

16、为生产线提供的电力应满足功率要求,电压波动≤10%;

17、为提高管材生产量和质量,生产线应配置冷冻水供给系统;

18、生产线应使用软化水,水质差的用户应配备水处理设备,否则会影响设备的正常使用;

19.请特别注意操作安全,在开机时,不得触及加热部位、牵引部位、传动部位、切割部位

等有危险及存在危险的部位,以免伤及人身安全。

七、生产操作步骤:

1、.接通电源,打开主机,共挤机(选配),设定工艺温度,开启温控,主机、共挤机进行升温,开启加料机、干燥机;

2、.按所生产管材规格,安装刀切割机夹具,调整好进刀线位等位置(调整时必须关闭切割

机电源);

3、.按所生产管材规格,装好定径套、定型、喷淋阀兰、密封垫等;

4、.装入牵引管,调整好托棍位置;

5、.调整生产线中心位置(如已调好,则不用做此项工作)

6、.接通水气路

7、真空箱、喷淋箱加水至规定位置;

8、预调整定径套水帘,使其出水均匀(沿圆周方向);

9、.模头温度到设定温度后,更换口模、芯模(如所装口模、芯模符合所生产管材,不需

做此项工作);

10、调整口模与芯模间隙,左右间隙调为一致,上下间隙按所生产管材大小,上部间隙略

大于下部(按经验数据调整);

11、锯割牵引管粘接斜口

12、主机保温时间到后,打开喂料挡板,开启主机转速为10转/分左右;

13、共挤机保温时间到后,打开喂料挡板,开启共挤机、变频器调整为20HZ左右(一般

情况下共挤机提前10分钟开启)

14、检查主机出料情况,塑化是否良好,小管可根据出料偏斜情况调整壁厚;

15、将牵引管进行预热,同时打开真空定型机水泵、真空泵,调整定径套水量流量计供水;

16、将牵引机上履带压下,同时按主机转速设定相应的牵引速度(此时牵引电机处于关闭状态);

17、将挤出管材与牵引管粘接(注意必须将空内堵严,以免漏气吸不起真空),接好后开启

牵引电机;

18、对管材做记号进行调试,注意壁厚应早调,以免其他调好后,壁厚不均造成大量废管;

19、按管材行进位置依次打开各喷淋箱水泵;

20、管子调好后,放下牵引机测长工作轮,打开喷墨打印机

八、设备维护保养:

1.主电机轴承、减速箱轴承、牵引机轴承及其他传动件应定期检查(一般不超过3个月),

并加注润滑油;

2.主挤出机减速箱上的空气滤清器应三个月清理一次;

3.主挤出机减速箱中的N150齿轮油每年更换一次;

4.共挤机减速机加黄油,每月加注一次,每年更换一次;

5.模具在使用一段时间后(3个月左右),尤其是用户经常更换原料牌号及批次的情况下,

当出现管材表面粗糙,调整工艺又无法解决时,应对模具进行清理;

6.拆下的口模、芯模、定径套应定期清理、擦拭干净,并喷上防锈油,并注意在装拆过程

中防止碰伤。

7.定型机前后移动减速电机加机械油20#,每年更换一次,调整丝杆,移动丝杆,螺母

处涂黄油,每月一次;

8.应经常检查水路(尤其是水质差的地区),确保定径水帘、喷淋管路及整个水路的正常

疏通。过滤器每次停机后清洗滤网;

9.牵引机旋转编码器为特殊易损件,应注意保护,避免其受到从击及碰撞,否则会造成编码器主轴断裂;

10.牵引机导柱每月加黄油一次,减速机保持足够的20#机械油,每年更换一次;

11.气源三联体油雾器定期一月加注一次透平油,并清除空气过滤器中的水分;

12.定期半年检查切割锯片(或刀片)并及时修磨锋利;

13.行星切割机液压系统油箱加注46#液压油每年更换一次;

14.主电机风机罩定期半月修理一次,以免粉尘造成过滤网堵塞;

15.请注意安全,在修理及维护设备时应断开电源,并保证操作安全。

九、设备吊装、转运注意事项:

1.设备在吊装、搬运时,应将钓钩或铲车铲脚置于重心平衡位置,以免发生倾倒、脱落、

损坏设备;

2.保护油漆面,避免在油漆面未加保护状况下放置钓钩及铲运;

3.调运时注意安全,谨防碰撞周围人、物;

4.模具不允许装在主机上同时吊运;

5.喷淋箱不允许在地面上拖行,以免损坏支撑;

6.设备运转前,最好将单螺杆挤出机减速箱内的润滑油放净:

7、机器一般不允许在空载下运转,以免损伤螺杆和机筒。

8、主电机轴承,减速箱轴承每月加注一次黄油。

9、减速箱内的润滑油一般加注中挤压齿轮油(N15)或相近粘度的齿轮油,并每月检查一

次油位,每年更换一次。

10、减速箱上的空气滤清器每三个月清理一次。

11、主电机风机罩过滤网每月清洗一次,并吹干。

12、每年对机器检修一次。

13、在修理及维护机器时应断开电源,并保证操作安全。

十、常见故障及处理办法:

1.表面粗糙

(1)主机机头温度过高或过低,造成外表面粗糙。芯模温度偏低、机身温度过低,易造成内表面粗糙。

(2)冷却水温过高,表面粗糙。降低冷却水温,PP-R最佳冷却水温为20-30℃

(3)检查水路,是否存在堵塞和水压不足现象;

(4)检查加热圈是否有损坏;

(5)调整定径水帘;

(6)检查原料性能,咨询原料供应商;

(7)清理模具芯部温度,若高于口模区段温度,打开芯部调温装置;

(8)检查并清理模具是否有杂质。

2.外表面出现沟痕

(1)检查并调整定径套水帘出水,压力均衡;

(2)调整喷淋喷嘴角度,使管材冷却均匀;

(3)检查定径套、切割机等物件是否存在杂物、毛刺。

3.内表面出现沟痕

(1)检查内管是否进水,如进水则将刚出主机的管子捏牢,使其内孔封闭;

(2)降低模具内部的温度:

(3)清理并抛光模具。

4.管材表面出现光圈

(1)调整定径水帘,使其出水均匀;

(2)调整两室真空,使后室真空略大于前室真空

(3)检查真空室密封垫是否过紧;适当调整。

(4)检查牵引机是否存在抖动;

(5)检查主机出料是否均匀;调整主机转速。

(6)芯模温度偏高、易造成内表面光圈。将模具内部通风冷却。

5.无真空

(1)检查真空泵进水口是否堵塞,如堵塞,用针状物疏通;

(2)检查真空泵是否正常工作;

(3)检查真空管路是否漏气;

(4)检查芯模压紧螺钉中间的小孔是否堵塞,如堵塞,用细铁丝疏通。

6.管材外圆尺寸偏大或偏小。

(1)真空太大或太小。调整真空;

(2)定径套内孔尺寸太大或太小。选择合适的定型套。

(3)牵引太快或太慢。调整牵引速度;

(4)冷却水温过高。

(5)使用不同原料或改变颜色。根据原料特性调整温度、真空等工艺。

7.管材椭圆度较大。

(1)喷淋冷却不均匀,调整喷淋管角度,使管材冷却均匀;

(2)检查水位高度,水压表压力,使喷淋量大且有力;

(3)检查水温状况,若>35℃,需配置冷冻水系统或增加喷淋冷却箱;

(4)检查水路,清洗过滤器等;

(5)调整机头出料,使出料均匀。

(6)检查并修正定径套内孔圆度。

(7)若是浸入式冷却,水箱水位要漫过管材表面,防止冷却不均匀。一般大管材不宜用浸入式冷却

8.管材壁厚不均匀

(1)调整模具螺栓松紧,使口模出料均匀。

(2)调整喷淋管角度,使管材冷却均匀;

(3)调整定径水帘,使其出水均匀;

(4)拆开模具,检查模具内部内六角螺钉是否松动,如松动须重新上紧。

9、管材.切割长度过长或过短

(1)检查切割机行程开关是否损坏

(2)检查收料台是否移位,立即调整

(3)若是计米轮计量切割的,检查计量轮是否压紧,滚轮是否不太灵活;

(4)切割机故障,导致不切或不正常切割。

(5)检查切割机气压是否稳定,调整压力。

10.色线太宽

(1)一般是由于色线料与管材用料不同造成,应使用同种规格的原料。

(2)色线挤出机温度太高,分散太快。应降低色线挤出段温度;

(3)色线机转速过高,色线料挤出过多。

11、色线时有时无或没有

(1)色线挤出机温度太低或色线料路堵塞,色线料挤不出。提高温度或者清理料道。

(2)下料口下料不均匀,检查下料水套通水状况及料粒度大小

(3)螺杆断裂,挤不出料。检查螺杆。

12.操作系统故障

(1)检查电路是否连通。

(2)电脑系统故障,联系维修。

13、管材表面条纹。

(1)口模四周温度太高,低分子物质析出,粘在口模上。

(2)定型套有杂物,需要清理。

(3)换料,粘在机头模具上的其他颜色的料没有清理干净

(4)连接体及机头温度低,料塑化不好。

14、管壁凹凸不平

(1)口模与芯模中心不对正。

(2)机头温度不均,出料有快慢

(3)牵引不正常,打滑(管径或大或小)

(4)料有杂质。

15、管子弯曲

(1)管壁厚度不均匀

(2)机头四周温度不均,出料有快慢

五大聚丙烯生产工艺

5大聚丙烯生产工艺(二) 本体法-气相法组合工艺主要包括巴塞尔公司的Spheripol工艺、日本三井化学公司的Hypol工艺、北欧化工公司的Borstar工艺等。 (1)Spheripol工艺。Spheripol工艺由巴塞尔(Basell)聚烯烃公司开发成功。该技术自1982年首次工业化以来,是迄今为止最成功、应用最为广泛的聚丙烯生产工艺。Spheripol工艺是一种液相预聚合同液相均聚和气相共聚相结合的聚合工艺,工艺采用高效催化剂,生成的PP粉料粒度其催化剂生产的粉料呈园球形,颗粒大而均匀,分布可以调节,既可宽又可窄。可以生产全范围、多用途的各种产品。其均聚和无规共聚产品的特点是净度高,光学性能好,无异味。Spheripol工艺采用的液相环管反应器具有以下优点: (a)有很高的反应器时-空产率(可达400kgPP/h.m3),反应器的容积较小,投资少; (b)反应器结构简单,材质要求低,可用低温碳{TodayHot}钢,设计制造简单,由于管径小(DN500或DN600),即使压力较高,管壁也较薄; (c)带夹套的反应器直腿部分可作为反应器框架的支柱,这种结构设计降低了投资; (d)由于反应器容积小,停留时间短,产品切换快,过渡料少; (e)聚合物颗粒悬浮于丙烯液体中,聚合物与丙烯之间有很好的热传递。采用冷却夹套撤出反应热单位体积的传热面积大,传热系数大,环管反应器的总体传热系数高达1600W/(m2.℃); (f)环管反应器内的浆液用轴流泵高速循环,流体流速高达7m/s,因此可以使聚合物淤浆搅拌均匀,催化剂体系分布均匀,聚合反应条件容易控制而且可以控制得很精确,产品质量均一,不容易产生热点,不容易粘壁,轴流泵的能耗也较低; (g)反应器内聚合物浆液浓度高(质量分数大于50%),反应器的单程转化率高,均聚的丙烯单程转化率为50%-60%。以上这些特点使环管反应器很适宜生产均聚物和无规共聚物。Spheripol工艺一开始使用GF-2A、FT-4S、UCD-104等高效催化剂,催化剂活性达到40kgPP/gcat,产品等规度为90%-99%,可不脱灰、不脱无规物。 目前该技术已经发展到第二代。与采用单环管反应器的第一代技术相比,第二代技术使用双环管反应器,操作压力和温度都明显提高,可生产双峰聚丙烯。催化剂体系采用第四代或第五代Z-N高效催化剂,增加了氢气分离和回收单元,改进了聚合物的高压和低压脱气设备,汽蒸、干燥和丙烯事故排放单元也有所改进,增加了操作灵活性,提高了效率,原料单体和各项公用工程消耗也显著下降。所得产品颗粒度更加均匀,产品的熔体流动指数范围更宽(从0.3-1600.0g/10min),可生产高刚性、高结晶度和低热封温度的新PP牌号。Spheripol工艺的抗冲共聚反应采用气相法生产,反应器是一个或两个串联的密相流化床反应器{HotTag}。反应器采用气相法密相流化床。采用一个气相反应器系统可以生产乙烯含量在 8%-12%(质量分数)的抗冲共聚物,如果需要生产橡胶相含量更高且可能具有一个以上分散相的特殊抗冲共聚物(如低应力发白产品),则需要设计两个气相反应能够器系统,保持两个气相反应器系统中的气相组成和操作条件独立,可以获得两种不同的共聚物添加到均聚物中。 采用汽蒸和干燥两步法处理聚合物,可以很容易将汽蒸尾气中的蒸气冷凝而分离出纯烃类单体,能够完全回收利用尾气中的烃类,降低单体的消耗。闭路氮气干燥系统也降低了装置的氮气消耗量。此外,Spheripol 工艺采用模块化设计方式,可以满足不同用户的要求,易于分步建设(如先上均聚物生产系统,在适时增加气相反应系统),装置的生产能力也容易扩大。Spheripol工艺有严格完善的安全系统设计,使装置有很高的操作稳定性和安全性。新一代Spheripol工艺采用纯的添加剂加入系统,使产品质量更加均一稳定,

聚丙烯装置简介和重点部位及设备(通用版)

聚丙烯装置简介和重点部位及 设备(通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0357

聚丙烯装置简介和重点部位及设备(通用 版) 一、装置简介 (一)装置的发展及类型 1.装置发展 聚丙烯(Polypropylene,缩写为PIP)是以丙烯为单体聚合而成的聚合物,是通用塑料中的一个重要品种,结构式为: 1953年德国Ziegler等采用R3Al—TiCl4 催化体系制得高密度聚乙烯后,曾试图用R3 Al—TiCl4 为催化剂制取PP,但是只得到了无定形PP,并无工业使用价值。意大利的Natta教授继Ziegler之后对丙烯聚合进行了深入的研究,于1954年3月用改进的齐格勒催化剂紫色TiCl3和烷基铝成功地将

丙烯聚合成为具有高度立体规整性的聚丙烯。 1957年Montecatini公司利用Natta的成果在意大利Ferrara 建成了6000t/a的生产装置,这是世界上第一套PP生产装置,使PP实现了工业化生产。同年Hercules公司在美国Parlin也建成了9000t/a的生产装置,这是北美第一套PP生产装置。到1962年德国、日本、法国等国家也纷纷建厂,相继实现了PP的工业化生产。 2.装置的主要类型 50多年来已有二十几种生产聚丙烯的工艺技术路线,各种工艺技术按生产工艺的发展和年代划分,可分为第一代工艺,生产过程包括脱灰和脱无规物,工艺过程复杂,主要是70年代以前的生产工艺,采用第一代催化剂;70年代开发的第二代催化剂使生产工艺中取消了脱灰过程,称为第二代工艺;80年代以后,随着高活性、高等规度(HY/HS)载体催化剂的开发成功和应用,生产工艺中取消了脱灰和脱无规物,称为第三代工艺;按照聚合类型可分为溶液法、浆液法(也称溶剂法)、本体法、本体和气相组合法、气相法生产工艺。

聚丙烯工艺参数

PP的注塑成型参数 PP通称聚丙烯,因其抗折断性能好,也称“百折胶”。PP是一种半透明、半晶体的热塑性塑料,具有高强度、绝缘性好、吸水率低、热就形温度高、密度小、结晶度高等特点。改性填充物通常有玻璃纤维、矿物填料、热塑性橡胶等。 不同用途的PP其流动性差异较大,一般使用的PP流动速率介于ABS与PC之间。 1、塑料的处理 纯PP是半透明的象牙白色,可以染成各种颜色。PP的染色在一般注塑机上只能用色母料。在华美达机上有加强混炼作用的独立塑化元件,也可以用色粉染色。户外使用的制品,一般使用UV稳定剂和碳黑填充。再生料的使用比例不要超过15%,否则会引起强度下降和分解变色。PP注塑加工前一般不需特别的干燥处理。 2、注塑机选用 对注塑机的选用没有特殊要求。由于PP具有高结晶性。需采用注射压力较高及可多段控制的电脑注塑机。锁模力一般按3800t/m2来确定,注射量20%-85%即可。 3、模具及浇口设计 模具温度50-90℃,对于尺寸要求较高的用高模温。型芯温度比型腔温度低5℃以上,流道直径4-7mm,针形浇口长度1-1.5mm,直径可小至0.7mm。边形浇口长度越短越好,约为0.7mm,深度为壁厚的一半,宽度为壁厚的两倍,并随模腔内的熔流长度逐肯增加。模具必须有良好的排气性,排气孔深0.025mm-0.038mm,厚1.5mm,要避免收缩痕,就要用大而圆的注口及圆形流道,加强筋的厚度要小(例如是壁厚的50-60%)。均聚PP制造的产品,厚度不能超过3mm,否则会有气泡(厚壁制品只能用共聚PP)。 4、熔胶温度 PP的熔点为160-175℃,分解温度为350℃,但在注射加工时温度设定不能超过275℃。熔融段温度最好在240℃。 5、注射速度 为减少内应力及变形,应选择高速注射,但有些等级的PP和模具不适用(人地幔现气泡、气纹)。如刻有花纹的表面出现由浇口扩散的明暗相间条纹,则要用低速注射和较高模温。 6、熔胶背压 可用5bar熔胶背压,色粉料的背压可适当调高。 7、注射及保压 采用较高注射压力(1500-1800bar)和保压压力(约为注射压力的80%)。大概在全行程的95%时转保压,用较长的保压时间。 8、制品的后处理 为防止后结晶产生的收缩变形,制品一般需经热水浸泡处理。 聚丙烯(PP) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(220℃) 区3 220~300℃(240℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃) 括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长与壁厚之比为50:1到100:1

聚丙烯主要的气相法生产工艺简介

聚丙烯主要的气相法生产工艺简介 第四代聚丙烯生产工艺主要包括上图所示的二个大类,在这里着重介绍一下气相法工艺。 气相法聚丙烯工艺的研究和开发始于20世纪60年代,1967年BASF公司在Ludwigshafen建成一套采用立式搅拌床反应器的气相聚丙烯工艺中试装置。1969年BASF和Shell的合资ROW公司在德国Wesseling采用立式搅拌床反应器建成世界上第一套万吨/年气相聚丙烯工业装置,命名为Novolen工艺。20世纪70年代,美国Amoco公司开发出采用接近活塞流的卧式搅拌床气相反应器的气相法PP生产工艺。80年代初期,UCC公司将其成熟的气相流化床Unipol聚乙烯工艺用于聚丙烯生产中,推出了Unipol气相聚丙烯工艺。日本的Sumitomo公司也于同期开发出

采用气相流化床的气相法工艺。目前,世界上气相法PP生产工艺主要有BP公司的Innovene工艺、Chisso工艺、联碳公司的Unipol工艺、BASF公司的Novolen工艺以及住友化学公司的Sumitomo工艺等。 Innovene工艺 Innovene工艺又名BP-Amoco工艺。工艺的主要特点是采用独特的接近活塞流的卧式搅拌床反应器。用这种独特的反应器,因颗粒停留时间分布范围很窄,可以生产刚性和抗冲击性非常好的共聚物产品。这种接近平推流的反应器可以避免催化剂短路。当有乙烯存在时,可以生成大颗粒共聚物,而不是在均聚物颗粒内生成细粉,这些细粉将降低共聚物的低温冲击强度,并形成不必要的胶状体。因此该工艺很窄的反应停留时间分布可以实现用多个全混反应釜均聚反应器才能生产的高抗冲共聚物的要求。另外,由于这种独特的反应器设计,该工艺的产品过渡时间很短,理论上产品的过度时间要比连续搅拌反应器或流化床反应器短 2/3,因而产品切换容易,过渡产品很少。 Innovene工艺采用丙烯闪蒸的方式撤热。液体丙烯以一种能保持反应器床层干燥的方式从各个进料点喷入反应器内,液体丙烯汽化后,其单体的分压小于它的露点压力,并足以撤走反应热。操作中必须严格控制液体丙烯的进料速度和其在反应器中的汽化,以保证床层干燥程度、流化程度与反应温度范围之间的平衡。

PP生产工艺

PP生产工艺 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo 气相工艺、Basell公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 2 气相法工艺 气相法聚丙烯工艺的研究和开发始于20世纪60年代,1967年BASF 公司在Ludwigshafen建成一套采用立式搅拌床反应器的气相聚丙烯工艺中试装置。1969年BASF和Shell的合资ROW公司在德国Wesseling采用立式搅拌床反应器建成世界上第一套2.5万吨/年气相聚丙烯工业装置,命名为Novolen工艺。

世界5大类聚丙烯生产工艺概述

世界5大类聚丙烯生产工艺概述 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso公司的气相法工艺、Dow公司的Unipol工艺、Novolene气相工艺、Sumitomo 气相工艺、Basell公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 1 淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减

少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 2 溶液法工艺 溶液法生产工艺是早期用于生产结晶聚丙烯的工艺路线,由Eastman公司所独有。该工艺采用一种特殊改进的催化剂体系-锂化合物(如氢化锂铝)来适应高的溶液聚合温度。催化剂组分、单体和溶剂连续加入聚合反应器,未反应的单体通过对溶剂减压而分离循环。额外补充溶剂来降低溶液的粘度,并过滤除去残留催化剂。溶剂通过多个蒸发器而浓缩,再通过一台能够除去挥发物的挤压机而形成固体聚合物。固体聚合物用庚烷或类似的烃萃取进一步提纯,同时也除去了无定形聚丙烯,取消了使用乙醇和多步蒸馏的过程,主要用于生产一些与浆液法产品相比模量更低、韧性更高的特殊牌号产品。该方法工艺流程复杂,且成本较高,聚合温度高,加上由于采用特殊的高温催化剂使产品应用范围有限,目前已经不再用于生产结晶聚丙烯。 3 本体法工艺 本体法工艺的研究开发始于20世纪60年代,1964年美国Dart公司采用釜式反应器建成了世界上第一套工业化本体法聚丙烯生产装置。1970年以后,日本住友、Phillips、美国

聚丙烯生产装置工艺简介

1 装置简介 1.1 概述 本装置采用意大利HIMONT公司的SPHERIPOL工艺,该工艺采用的聚合反应器为液相环管反应器,用于聚丙烯均聚物的生产。 工艺名称:SPHERIPOL液相本体法 承包商:北京石化工程公司(BPEC) 装置占地面积:3.3公顷 设备总台数:354台 管道总长约:40km 装置年生产能力:7×104t/a PP均聚物本色颗粒 装置年操作时间:7200h 装置h生产能力:9.7吨 装置产品牌号:25种牌号 装置生产线:1条 装置包装线:2条 1.2 装置组成 本装置由下列工艺操作单元组成 100单元:主催化剂、三乙基铝、给电子体和防结垢剂的配制和计量 200单元:催化剂预接触、丙烯预聚合和丙烯聚合 300单元:聚合物的闪蒸脱气和丙烯单体回收 500单元:聚合物的汽蒸和干燥 600单元:排放系统、废油处理和工艺辅助设施 700单元:丙烯精制 800单元:聚合物添加剂的加入和挤出造粒 900单元:聚合物颗粒的掺混、储存、包装和码垛 另外装置还包括丙烯的预精制和消防系统 1.3 工艺简述 从界区来经过预精制的丙烯经丙烯精制单元脱除杂质后进入丙烯储罐,再经丙烯进料泵分别进入预聚合和聚合反应器,氢气由氢压机送入丙烯总管与丙烯混合。配制后的主催化剂、活化剂和给电子体经计量连续加入预聚反应器,少量聚合的聚丙烯包裹着催化剂颗粒随大部分丙烯连续地从预聚反应器进入聚合反应器,反应器内的物料在轴流泵的作用下强制高速循环,进行较均匀的液相本体聚合,聚合热由反应器夹套冷却水带走。流出反应器的淤浆经一蒸汽套管加热后依次进入高低压闪蒸罐,未反应的气态丙烯与聚合物分离后经压缩、冷凝后循环使用。闪蒸后的聚丙烯经过汽蒸脱活和氮气干燥后,加入一定量添加剂,经挤压造粒,产品颗粒掺混后送去包装、码垛和贮存。

聚丙烯(pp)的注塑加工工艺介绍

来源于:注塑财富网聚丙烯(PP )的注塑加工工艺介绍 PP通称聚丙烯,因其抗折断性能好,也称“百折胶”。PP是一种半透明、半晶体的热塑性塑料,具有高强度、绝缘性好、吸水率低、热就形温度高、密度小、结晶度高等特点。改性填充物通常有玻璃纤维、矿物填料、热塑性橡胶等。 不同用途的PP其流动性差异较大,一般使用的PP流动速率介于ABS与PC之间。 1、塑料的处理。 纯PP是半透明的象牙白色,可以染成各种颜色。PP的染色在一般注塑机上只能用色母料。在华美达机上有加强混炼作用的独立塑化元件,也可以用色粉染色。户外使用的制品,一般使用UV稳定剂和碳黑填充。再生料的使用比例不要超过15%,否则会引起强度下降和分解变色。PP注塑加工前一般不需特别的干燥处理。 2、注塑机选用 对注塑机的选用没有特殊要求。由于PP具有高结晶性。需采用注射压力较高及可多段控制的电脑注塑机。锁模力一般按3800t/m2来确定,注射量 20%-85%即可。 3、模具及浇口设计 模具温度50-90℃,对于尺寸要求较高的用高模温。型芯温度比型腔温度低5℃以上,流道直径4-7mm,针形浇口长度,直径可小至。边形浇口长度越短越好,约为,深度为壁厚的一半,宽度为壁厚的两倍,并随模腔内的熔流长度逐肯增加。模具必须有良好的排气性,排气孔深,厚,要避免收缩痕,就要用大而圆的注口及圆形流道,加强筋的厚度要小(例如是壁厚的50-60%)。均聚 PP 制造的产品,厚度不能超过3mm,否则会有气泡(厚壁制品只能用共聚PP)。 4、熔胶温度 PP的熔点为160-175℃,分解温度为350℃,但在注射加工时温度设定不能超过275℃。熔融段温度最好在240℃。 5、注射速度 为减少内应力及变形,应选择高速注射,但有些等级的PP和模具不适用(人地幔现气泡、气纹)。如刻有花纹的表面出现由浇口扩散的明暗相间条纹,则要用低速注射和较高模温。

聚丙烯生产工艺

聚丙烯生产工艺 聚丙烯:英文名称:Polypropylene 分子式:C3H6nCAS 简称:PP,由丙烯聚合而制得的一种热塑性树脂,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法、气相法、本体法-气相法组合工艺五大类。 一、溶液法工艺 溶液法生产工艺是早期用于生产结晶聚丙烯的工艺路线,由Eastman公司所独有。该工艺采用一种特殊改进的催化剂体系:锂化合物(如氢化锂铝)来适应高的溶液聚合温度。催化剂组分、单体和溶剂连续加入聚合反应器,未反应的单体通过对溶剂减压而分离循环。额外补充溶剂来降低溶液的粘度,并过滤除去残留催化剂。溶剂通过多个蒸发器而浓缩,再通过一台能够除去挥发物的挤压机而形成固体聚合物。固体聚合物用庚烷或类似的烃萃取进一步提纯,同时也除去了无定形聚丙烯,取消了使用乙醇和多步蒸馏的过程,主要用于生产一些与浆液法产品相比模量更低、韧性更高的特殊牌号产品。溶液法工艺流程复杂,且成本较高,聚合温度高,加上由于采用特殊的高温催化剂使产品应用范围有限,目前已经不再用于生产结晶聚丙烯。 二、淤浆法工艺 淤浆法又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco 工艺、日本三井油化工艺以及索维尔工艺等。 这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。 近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 三、本体法工艺 本体法工艺按聚合工艺流程,可以分为间歇式聚合工艺和连续式聚合工艺两种。 1、间歇本体法工艺:间歇本体法聚丙烯聚合技术是我国自行研制开发成功的生产技术。 间歇本体法工艺优点:生产工艺技术可靠,对原料丙烯质量要求不是很高,所需催化剂国内有保证,流程简单,投资省、收效快,操作简单,产品牌号转换灵活、三废少,适合中国国情等。 间歇本体法工艺缺点:生产规模小,难以产生规模效益;装置手工操作较多,间歇生产,自动化控制水平低,产品质量不稳定;原料的消耗定额较高;产品的品种牌号少,档次不高,用途较窄。

世界常用聚丙烯生产技术工艺介绍

世界常用聚丙烯生产技术工艺 介绍 世界常用聚丙烯生产技术工艺介绍 发布于2007年10 月10 日| 24 次阅读近年来,世界上气相法和本体法工艺的聚丙烯生产装置的比例逐年增加,世界各地在建和新建的聚丙烯装置将基本上采用气相法工艺和本体法工艺。尤其是气相法工艺的快速增加正挑战居第一位的Spheripol工艺。根据NTJ 公司称,1997 年以来,世界范围许可聚丙烯新增能力的55% 都是采用Novolen气相工艺,今后气相法工艺还将有逐步增加的趋势。除以上主要的聚丙烯生产工艺外,原Montell 公司于20 世纪90 年代又成功开发了反应器聚丙烯合金Catalloy 和Hivalloy 技术。这两项技术的开发成功为聚丙烯树脂高性能化、功能化以及进入高附加值应用领域创造了条件,现均已工业化。 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、

淤浆法、本体法和气相法和本体法-气相法组合工艺5 大类。具体工艺主要有BP 公司的气相Innovene 工艺、Chisso 公司的气相法工艺、Dow 公司的Unipol 工艺、Novolene 气相工艺、Sumitomo 气相工艺、Basell公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis 公司的Borstar 工艺等。 1、淤浆法工艺淤浆法工艺( Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957 年第一套工业化装置一直到20世纪80 年代中后期,淤浆法工艺在长达30 年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules 工艺、日本三井东压化学工艺、美国Amoco 工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP 薄膜、高相对分子质量吹塑膜以及高强度管材等。近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP 的生产能力

年产3万吨聚丙烯车间工艺设计

第一章文献综述 1.聚丙烯概述 1.1概述 聚丙烯是一种结构规整的结晶性聚合物,为白色粒料、无味、无毒、质轻的热塑性树脂。密度0.90~0.91g/cm3,表观密度≥0.38 g/cm3。机械性能优良,抗拉伸屈服强度打(≥22MPa),表面硬度大,弹性好,耐磨性能好。耐热性能良好,具有160℃以上的熔点和120℃以上的软化点。化学稳定性好,聚丙烯基本不吸水,与大多数化学药品不发生作用,耐酸碱和有机溶剂。聚丙烯具有良好的绝缘性。聚丙烯缺点是易脆化,低温冲击强度差,但可以用添加剂、共混或共聚等方法来改进。聚丙烯(Polypropylene,PP)是热塑性塑料中发展最快的一种,目前产量规模已经超过聚乙烯和聚氯乙烯。 (一)发展过程 我国的聚丙烯工业化生产始于1971年,当时化学工业公司从英国维克斯吉玛公司引进5kt/a浆液法聚丙烯装置投产,而后燕山石化公司从日本三井油化公司引进80kt/a浆液法聚丙烯装置和石油化纤公司从美国阿莫科(Amoco)公司引进35kt/a浆液法聚丙烯装置;80年代引进了日本三井油化公司的Hypol工艺(液相-气相本体法)在扬子石化公司建设140kt/a聚丙烯装置,又引进了意大利海蒙特(Himont)公司的Spheripol工艺(液相-气相本体法)在齐鲁石化公司和石化股份公司分别建设70kt/a聚丙烯装置,使国的聚丙烯生产技术达到比较

先进的水平。 与此同时,80年代采用国自行开发的技术和催化剂,利用炼厂催化裂化装置的丙烯建设了一批规模较小的间歇式液相本体法聚丙烯装置;进入90年代国聚丙烯的发展更快,利用蒸汽裂解装置和炼厂的丙烯建设了20多套聚丙烯装置,其中最大的为燕山石化200kt/a采用阿莫科公司气相本体法工艺,一般的生产能力为70kt/a,使聚丙烯成为我国发展最快的一种合成树脂。到1998年底,全国共有聚丙烯生产企业50多家,总生产能力已达到2620kt/a,成为我国合成树脂中生产能力最大的一个品种。在这些生产能力中采用Spheripol工艺的约占45%,采用Hypol工艺的约占21%,采用国自行开发的间歇式液相本体法工艺的约占25%,采用其他工艺的约占9%。目前我国已能自行设计液相-气相本体法(釜式或环管式)聚丙烯装置,开发了能用于上述工艺的催化剂,并向外国转让了聚丙烯催化剂的专利技术。 (二)我国聚丙烯生产的主要问题 (1)装置规模偏小 目前我国聚丙烯装置规模最大的为燕山石化公司聚丙烯装置,生产能力200kt/a,一般生产能力在40~70kt/a,相当一部分聚丙烯装置,生产能力只有3~10kt/a。因此除了一些规模较大的聚丙烯装置生产成本稍低外,其余中型的聚丙烯装置由于单位生产能力投资较大,生产成本较高。采用国的间歇式本体法聚丙烯装置由于投资低,原料丙烯来自炼厂副产,价格低,因此目前尚有一定的竞争能力,但由于产品品种单一,只生产均聚物,质量差,消耗高,且生产的都是

聚丙烯工艺介绍

工艺 2.1工艺设计基础 2.1.1 生产能力、产品方案和操作弹性 (1)设计能力和操作时间 a) 聚合 生产能力: 20万吨/年(按均聚物考虑) 反应器台数: 3台(1台预聚合反应器, 2台串联的环管反应器) 年操作时间: 8000小时 b) 挤压造粒:一条生产线 设计能力:28吨/小时,按均聚/抗冲产品按MFR<1.0g/10min考虑 33吨/小时,按均聚/抗冲产品按MFR≥1.0g/10min考虑 35吨/小时,按均聚/抗冲产品按MFR≥70g/10min考虑 c) 包装码垛:三条全自动生产线,包装生产线采用轨道可移动式。 每条生产线包装能力: 1200袋/小时,每袋25kg。 码垛能力: 1400袋/小时,每袋25kg。 d) 产品装运:两种装车方式。 使用槽车装运散状聚丙烯粒料。 使用叉车、托盘方式装运袋式包装聚丙烯粒料。 一周生产7天,每天两班,每班8小时。 (2)产品方案 本装置可以生产均聚物(包括高刚性牌号)、无规共聚物和抗冲共聚物(作为预留),产品牌号共103个。 a)均聚物 56个牌号 其中:挤出热成型:10 注塑: 12 纤维: 17 BOPP膜:13 流延膜:4

b)无规共聚物 21个牌号(预留) 其中:流延和管式膜:6 BOPP膜的热封层:3 挤出和吹塑:4 注塑:5 流延膜(Clyrell牌号):3 b)高抗冲共聚物 26个牌号(预留) 其中: 适用于全部应用领域: 23 专用TPO牌号:3 (3)催化剂 主催化剂: ZN-GF2A(生产均聚物) ZN-M1(生产均聚物和无规共聚物) ZN-127L、ZN-101、ZN-104、ZN-126 (生产高刚性、高抗冲 等专用牌号) 助催化剂:三乙基铝(TEAL) 给电子体(Donor C) 给电子体(Donor D) (4)装置操作弹性 从单体净化单元到干燥单元的操作弹性围:70-120% 反应器操作压力围:3.4-4.5MPag 后续关键设备挤压造粒机组的操作弹性围:60-140% 2.1.2 装置组成 (1)装置工段组成见下表: 表2-1-1装置工段组成表

聚丙烯管生产工艺(pp-r管)

聚丙烯管(PP-R管)生产工艺 摘要:三型聚丙烯管具有节能,耐腐蚀,不结垢、卫生,无毒,耐热、耐压,使用寿命长,质轻高强,流体阻力小等优点,是替代镀锌钢管的新一代产品。介绍PP -R管的特点,原料生产工艺,国内现状、施工方法、项目投资估算及市场前景分析。 1前言 80年代以前,我国的住宅及公共建筑的上水管基本上是镀锌钢管,由于受材质自身的局限,镀锌钢管存在使用寿命短、易造成水质二次污染等缺点。为了保障人们日常饮用水的质量,我国部分地区,如上海、浙江、河北、江苏等省市已先后提出淘汰镀锌钢管,用高质量的塑料管代替。目前,在我国已相继开发了PVC管、PE 管、铝塑复合管、玻璃钢管、钢塑复合管和PP-R管等一批塑料管材,并取得了一定的市场占有率。 PP-R管是欧洲90年代开发的,以新型无规聚丙烯为原料,经挤出成型制作的塑料管材。由于其优越的性能,正日益受到人们的青睐。 2PP-R管的主要性能 聚丙烯管分为均聚聚丙烯(PP-H)、嵌段共聚聚丙烯(PP-B)和无规聚丙烯(PP -R)3种。PP-H、PP-B、PP-R管材的刚度依次递减,而抗冲击强度则依次增加。给水用聚丙烯管是用特殊的PP-R制成。PP-R管作为一种新型的管材,具有以下性能特点: 2.1节能 PP-R管的生产能耗仅为钢管的20%,并且其导热系数低[0.2W/(m.K)],也仅为钢管的1/200,应用于热水系统将大大减少热量损失。 2.2耐腐蚀、不结垢、卫生、无毒 使用PP-R管可免去使用镀锌钢管所造成的内壁结垢、生锈而引起的水质“二次污染”。由于PP-R组份单纯,基本成份为碳和氢,符合食品卫生规定,无毒,更适合于饮用水输送。 2.3耐热、耐压、使用寿命长 PP-R管的长期使用温度达95℃,短期使用温度可达120℃。在使用温度为70℃,工作压力为1.2MPa条件下,长期连续使用,寿命可达50年以上。 2.4轻质高强、流体阻力小 PP-R管密度仅为金属管的1/8,耐压力试验强度高达5MPa,且韧性好、耐冲击。由于内壁光滑、不生锈、不结垢,流体阻力小。

聚丙烯工艺介绍

工艺 2、1工艺设计基础 2、1、1 生产能力、产品方案与操作弹性 (1)设计能力与操作时间 a) 聚合 生产能力: 20万吨/年(按均聚物考虑) 反应器台数: 3台(1台预聚合反应器, 2台串联的环管反应器) 年操作时间: 8000小时 b) 挤压造粒: 一条生产线 设计能力:28吨/小时,按均聚/抗冲产品按MFR<1、0g/10min考虑33吨/小时,按均聚/抗冲产品按MFR≥1、0g/10min考虑 35吨/小时,按均聚/抗冲产品按MFR≥70g/10min考虑 c) 包装码垛: 三条全自动生产线,包装生产线采用轨道可移动式。 每条生产线包装能力: 1200袋/小时,每袋25kg。 码垛能力: 1400袋/小时,每袋25kg。 d) 产品装运: 两种装车方式。 使用槽车装运散状聚丙烯粒料。 使用叉车、托盘方式装运袋式包装聚丙烯粒料。 一周生产7天,每天两班,每班8小时。 (2)产品方案 本装置可以生产均聚物(包括高刚性牌号)、无规共聚物与抗冲共聚物(作为预留),产品牌号共103个。 a)均聚物56个牌号 其中:挤出热成型:10 注塑: 12 纤维: 17 BOPP膜:13 流延膜:4

b)无规共聚物21个牌号(预留) 其中:流延与管式膜:6 BOPP膜的热封层:3 挤出与吹塑:4 注塑:5 流延膜(Clyrell牌号):3 b)高抗冲共聚物26个牌号(预留) 其中: 适用于全部应用领域: 23 专用TPO牌号:3 (3)催化剂 主催化剂: ZN-GF2A(生产均聚物) ZN-M1(生产均聚物与无规共聚物) ZN-127L、ZN-101、ZN-104、ZN-126 (生产高刚性、高抗 冲等专用牌号) 助催化剂: 三乙基铝(TEAL) 给电子体(Donor C) 给电子体(Donor D) (4)装置操作弹性 从单体净化单元到干燥单元的操作弹性范围:70-120% 反应器操作压力范围:3、4-4、5MPag 后续关键设备挤压造粒机组的操作弹性范围:60-140% 2、1、2 装置组成 (1)装置工段组成见下表: 表2-1-1装置工段组成表

聚丙烯生产工艺现状及发展

聚丙烯生产工艺现状及发展 聚丙烯生产工艺现状及发展 摘要:介绍了目前聚丙烯(PP)主要生产工艺,最广泛和最有发展前途的聚丙烯生产工艺是本体法和气相法,目前主要聚丙烯生产工艺均为国外聚丙烯工艺商掌握。 关键词:聚丙烯生产工艺现状发展 聚丙烯(PP)是一种热塑性的合成树脂,其物理性质是半透明、无色无味无毒的固体,密度较小,具有较好的加工性能。同时,PP 的耐冲击性能较高,具有较强的机械性质,能够抵抗多种酸碱和有机溶剂的腐蚀。PP基于以上的优势,被广阔的应用与日常生活生产的方方面面。 一、世界聚丙烯生产工艺现状 到目前为止,世界范围内生产聚丙烯的工艺中,本体法工艺仍占占据十分重要的地位,随着技术的发展和市场需求的增加,气相法生产工艺也逐渐得到发展,此外催化剂技术的运用也使得聚丙烯的生产水平进一步提高。目前世界上主要采用气相工艺和本体-气相组合工艺,这类生产工艺均是利用本体工艺和气相法工艺,以及两种工艺的组合工艺生产出均聚物和无规共聚物,再利用气相反应装置产生抗冲共聚物。下面介绍目前世界上几种主要聚丙烯生产工艺: 1.Spheripol工艺 Spheripol工艺由Basell公司开发成功。该技术自1982年首次工业化以来,是迄今为止最成功、应用最为广泛的聚丙烯生产工艺。Spheripol工艺是一种液相预聚合同液相均聚和气相共聚相结合的聚合工艺,环管反应器内的浆液用轴流泵高速循环,流体流速高达 7m/s,因此可以使聚合物淤浆搅拌均匀,催化剂体系分布均匀,聚合反应条件容易控制而且可以控制得很精确,不容易产生热点,不容易粘壁,轴流泵的能耗也较低,工艺采用高效催化剂,生成的PP粉料粒度其催化剂生产的粉料呈园球形,颗粒大而均匀,分布可以调节,既可宽又可窄。可以生产全范围、多用途的各种产品。

国内外PP聚丙烯生产工艺介绍 气相法详解

国内外聚丙烯生产工艺介绍 一、PP生产工艺简介 聚丙烯的生产工艺按聚合类型分类主要有3种,即本体法工艺、气相法工艺和本体-气相法组合工艺。早期还有溶液法工艺和溶剂浆液法工艺(简称浆液法、也称淤浆法)。 丙烯聚合催化剂性能的提高促进了PP生产工艺的不断进步,PP生产工艺已经从初期的低活性、中等规度的第一代工艺(溶液法、浆液法),以及高活性、可省脱灰工序的第二代工艺(浆液法及本体法),发展到超高活性、无需脱灰及无需脱无规物的第三代工艺(气相法、本体-气相组合工艺)。近年来,传统的浆液法工艺在PP生产中的比例明显下降,新建的PP装臵已不再采用传统的浆液法工艺。 当前,世界上先进的PP生产工艺主要是属于第三代PP 生产工艺的本体-气相组合工艺和气相法工艺。本体-气相法组合工艺典型的专利技术有:Basell公司的Spheripol本体-气相法组合工艺技术、Prime Polymer公司的Hypol本体-气相法组合工艺技术、Borealis公司的Borstar本体-气相法组合工艺技术和中国石化的ST本体-气相法组合工艺技术。气相法工艺典型的专利技术有:Dow化学公司Unipol气相流化床工艺技术、Lummus公司的Novolen气相法工艺技术、Ineos公司的Innovene气相法工艺技术、Basell公司的Spherizone气相法工艺技术、日本聚丙烯公司(JPP)的气

相法工艺技术以及住友公司(Sumitomo)的气相法工艺技术。世界上采用气相法工艺和本体-气相法组合工艺的聚丙烯生产装臵的比例逐年增加,目前各国在建和新建的聚丙烯装臵基本上多采用气相法工艺和本体-气相法组合工艺。 由于催化剂体系的发展和其活性的大幅度提高,上世纪90年代以后新建大型聚丙烯装臵已基本上不使用浆液法。在过去的20年中各种气相法工艺都发展很快,2006年底,气相法工艺的生产能力占到了全球聚丙烯生产能力的34%。2010年底,包括在建装臵的产能在内,气相法工艺约占50%。气相法被认为是最有希望的工艺之一,因此,建议我公司采用气相法聚合工艺。 二、气相法技术的优点 气相法技术的优点最早是建立在不脱灰、不脱无规物基础上的,采用高效催化剂的气相硫化聚合工艺,具有一般高效本体法工艺的特点,不需要脱除催化剂残渣,也不需要脱除无规物。由于是气相聚合,生产过程中也不需闪蒸分离或离心干燥。在气相法发展初期,由于催化剂处于第二代Z-N 催化剂时代,活性与等规度不高,产品不经后处理,使灰分与无规物含量都偏高,因此不适用于生产对质量有较高要求的均聚物和无规共聚物,使应用受到限制。采用高效催化剂后,由于催化剂的高活性和高等规指数,气相法工艺可以生产所有用途的聚丙烯产品,很多气相法工艺的产品还具有其

世界常用聚丙烯生产技术工艺介绍

世界常用聚丙烯生产技术工艺介绍

世界常用聚丙烯生产技术工艺介绍 发布于2007年10月10日| 24 次阅读 近年来,世界上气相法和本体法工艺的聚丙烯生产装置的比例逐年增加,世界各地在建和新建的聚丙烯装置将基本上采用气相法工艺和本体法工艺。尤其是气相法工艺的快速增加正挑战居第一位的Spheripol工艺。根据NTJ公司称,1997年以来,世界范围许可聚丙烯新增能力的55%都是采用Novolen气相工艺,今后气相法工艺还将有逐步增加的趋势。除以上主要的聚丙烯生产工艺外,原Montell 公司于20世纪90年代又成功开发了反应器聚丙烯合金Catalloy和Hivalloy技术。这两项技术的开发成功为聚丙烯树脂高性能化、功能化以及进入高附加值应用领域创造了条件,现均已工业化。 目前,聚丙烯的生产工艺按聚合类型可分为溶液法、淤浆法、本体法和气相法和本体法-气相法组合工艺5大类。具体工艺主要有BP公司的气相Innovene工艺、Chisso 公司的气相法工艺、Dow公司的Unipol工艺、Novolene 气相工艺、Sumitomo气相工艺、Basell公司的本体法工艺、三井公司开发的Hypol 工艺以及Borealis公司的Borstar工艺等。 1、淤浆法工艺 淤浆法工艺(Slurry Process)又称浆液法或溶剂法工艺,是世界上最早用于生产聚丙烯的工艺技术。从1957

年第一套工业化装置一直到20世纪80年代中后期,淤浆法工艺在长达30年的时间里一直是最主要的聚丙烯生产工艺。典型工艺主要包括意大利的Montedison 工艺、美国Hercules工艺、日本三井东压化学工艺、美国Amoco 工艺、日本三井油化工艺以及索维尔工艺等。这些工艺的开发都基于当时的第一代催化剂,采用立式搅拌釜反应器,需要脱灰和脱无规物,因采用的溶剂不同,工艺流程和操作条件有所不同。近年来,传统的淤浆法工艺在生产中的比例明显减少,保留的淤浆产品主要用于一些高价值领域,如特种BOPP薄膜、高相对分子质量吹塑膜以及高强度管材等。近年来,人们对该方法进行了改进,改进后的淤浆法生产工艺使用高活性的第二代催化剂,可删除催化剂脱灰步骤,能减少无规聚合物的产生,可用于生产均聚物、无规共聚物和抗冲共聚物产品等。目前世界淤浆法PP的生产能力约占全球PP总生产能力的13%。 2、溶液法工艺 溶液法生产工艺是早期用于生产结晶聚丙烯的工艺路线,由Eastman公司所独有。该工艺采用一种特殊改进的催化剂体系-锂化合物(如氢化锂铝)来适应高的溶液聚合温度。催化剂组分、单体和溶剂连续加入聚合反应器,未反应的单体通过对溶剂减压而分离循环。额外补充溶剂来降低溶液的粘度,并过滤除去残留催化剂。溶剂通过多个蒸发器而浓缩,再通过一台能够除去挥发物的挤压机而

聚丙烯生产工艺比选

聚丙烯生产工艺比选 聚丙烯作为一种通用的合成树脂自问世以后得到迅速发展,其发展速度超过了其它通用合成树脂,近十年来平均增长率在10~20%之间,到2010年我国聚丙烯总生产能力将达到1000万吨,实际生产量达到800万吨以上,仅次于聚乙烯和聚氯乙烯,居第三位。 聚丙烯的生产工艺主要有三种工艺,即溶剂法、液相本体法和气相法,虽然世界上聚丙烯生产约20%的生产能力仍然采用溶剂法工艺,但从80年代起,溶剂法已处于停滞状态,除已建成的老装置在运行外,新建装置基本上都采用液相本体法和气相法工艺,尤其是液相本体法工艺发展迅猛,装置规模和生产能力都在逐渐增大,液相本体法在世界聚丙烯生产中已占有越来越重要的作用,代表着20世纪90年代国际上聚丙烯生产的新技术、新水平。 液相本体法工艺是在液态丙烯中发生聚合反应生产聚丙烯的。液相本体法聚丙烯工艺最早由Phillips石油公司发明,并于1964年由美国Dart公司首先采用第一代T i Cl3催化剂及釜式反应器实现工业化。70年代以后,许多大的化工公司,如日本三井油化,美国Elpaso公司等都实现了液相本体聚丙烯工业化。早期的液相法工艺,由于催化剂活性低,需脱灰及脱无规物工序,与传统溶剂法工艺类似。1975年,三井油化与Himont公司(Basell公司的前身)联合开发成功HY-HS催化剂,实现了不脱灰工艺,并使聚合物规整度足够高。80年代初期,第二代HY-HS-Ⅱ催化剂问世,使不脱灰、不脱无规物并进,从而使不造粒工艺成为可能,成为聚丙烯工业的一个里程碑。按反应器形式划分有液相釜式反应器如Exxon、Mitsui、Shell、住友、Rexene等专利技术;液相环管反应器如Basell、Hoechst、Solvay、Phillips等专利技术 气相法工艺丙烯直接气相聚合生成固相的聚合物产品,气相法被称为第三代工艺,采用流化技术,丙烯在气相中聚合,由巴斯夫公司在1969年首先工业化,自70年代后期发展很快,被认为是最有希望的工艺。按反应器形式划分有如下专利技术:气相流化床反应器:Unipol、住友工艺;气相立式搅拌床反应器:

相关文档
最新文档