电动机自耦降压启动原理及安装调试

电动机自耦降压启动原理及安装调试
电动机自耦降压启动原理及安装调试

自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子_ 绕组上的启动电压。待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。这种降压启动分为手动控制和自动控制两种。

1. 接线

自耦变压器的高压边投入电网,低压边接至电动机,有几个不同电压比的分接头供选择。

2. 特点

设自耦变压器的变比为K,原边电压为U1,副边电压U2=U1/K,副边电流I2 (即通过电动机定子绕组的线电流)也按正比减小。又因为变压器原副边的电流关系I1=I2/K,可见原

边的电流(即电源供给电动机的启动电流)比直接流过电动机定子绕组的要小,即此时电源

供给电动机的启动电流为直接启动时1/K2倍。由于电压降低为1/K倍,所以电动机的转矩

也降为1/K2倍。自耦变压器副边有2?3组抽头,如二次电压分别为原边电压的80% 60% 40%

3. 优点

可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y或△接法都可以使用。

4. 缺点:设备体积大,投资较贵。

5. 电动机自耦降压启动(自动控制电路)

1----- 1

|.1

SB]E-/

电动机自耦降压起动(自动控制)电路原理图

7 H B

上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的

情况,也不会因启动时间长造成烧毁自耦变压器事故

控制过程如下:

1)合上空气开关QF接通三相电源。

2)按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变

压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。

3)KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始

计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。

4)由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,

主触头断开,使自耦变压器线圈封星端打开;同时KM2线圈断电,其主触头断开,切断自

耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。

5)KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保

证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。

6)欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。

7)电动机的过载保护由热继电器FR完成。

电动机自耦降压起动(自动控制)电路接线示意图

6. 安装与调试

1)电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。

2 )自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。

3)对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。

4)由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。

5)空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM

1与KM2和动作吸合,KM3与KA不动作。时间继电器的整定时间到,KM1和KM2释放,KA

和KM3动作吸合切换正常,反复试验几次检查线路的可靠性。

6 )带电动机试验;经空载试验无误后,恢复与电动机的接线。再带电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。

7)再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上;如果在60秒连续两次起动后,应停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘。

7. 常见故障

1)带负荷起动时,电动机声音异常,转速低不能接近额定转速,接换到运行时有很大

的冲击电流,这是为什么?——

分析现象:电动机声音异常,转速低不能接近额定转速,说明电动机起动困难,怀疑是自耦变压器的抽头选择不合理,电动机绕组电压低,起动力矩小脱动的负载大所造成的。

处理:将自耦变压器的抽头改接在80%位置后,在试车故障排除。

2 )电动机由启动转换到运行时,仍有很大的冲击电流,甚至掉闸。——

分析现象:这是电动机起动和运行的接换时间太短所造成的,时间太短电动机的起动电流还

未下降转速为接近额定转速就切换到全压运行状态所至。

处理:调整时间继电器的整定时间,延长起动时间现象排除。

三相异步电动机常用的Y-△降压启动

三相异步电动机常用的Y-△降压启动 摘要:本文分析了三相异步电动机的由来、启动进程与启动方式,并针对星-三角降压启动进行了探讨。 关键词:三相异步发动机降压启动 1 三相异步电动机的由来 三相异步电动机的旋转是由于其定子绕组中通入三相交流电后,在定子绕组周围产生一个旋转的磁场,当转子处于该旋转磁场中时,相当于导体在磁场中作切割磁力线运动,从而产生感应电流和感应电动势,促使转子不断地旋转运动。但是三相异步电动机的转子转速不会与旋转磁场同步,更不会超过旋转磁场的速度。因为三相异步电动机转子线圈中的感应电流是由于转子导体与磁场有相 对运动而产生的,如果三相异步电动机转子的转速与旋转磁场的转速大小相等,那么,磁场与转子之间就没有相对运动,导体不能切割磁力线,转子线圈中也就不会产生感应电流和感应电动势,三相异步电动机转子导体在磁场中也就不会受到电磁力的作用而使转 子转动——三相异步电动机因此而得名。 2 电动机的启动过程和启动方式 电动机的启起动过程是指电动机从接入电网开始到正常运转的 这一过程。三相异步电动机的启动方式有两种,即在额定电压下的全压(直接)启动和降低启动电压的减压启动。电动机的直接启动是一种简单、可靠、经济的启动方法,但由于直接启动电流可达电动机额定电流的4~7倍,过大的启动电流会造成电网电压显著下

降,直接影响在同一电网工作的其他电动机,甚至使它们停转或无法启动,故直接启动电动机的容量受到一定的限制。 对容量较大的电动机的启动,为了不造成电网电压的大幅度降落,从而导致电动机启动困难或不能启动,也不影响电网内其他用电设备的正常供电,在生产技术上,多采用降压启动措施。所谓降压启动是将电网电压适当降低后加到电动机定子绕组上进行启动,待电动机启动后,再将绕组电压恢复到额定值。 降压启动的目的是减小电动机启动电流,从而减小电网供电的负荷。但由于启动电流的减小,必然导致电动机启动转矩下降,因此凡采用降压启动措施的电动机,只适合空载或轻载启动。在实际生产中的电机,广泛采用的降压启动措施是星-三角降压启动。 3 星-三角降压启动 3.1 星-三角降压启动的理论依据星-三角降压启动一般用y-△符号表示,这种降压启动方式只适用于正常运行时定子绕组为三角形连接的三相异步电动机。在启动时,将绕组连接成星形,使每相绕组电压降至原电压的1/√3,启动结束后再将绕组切换成三角形连接,使三相绕组在额定电压下正常运行。这种启动方式的优点是启动设备成本较低,使用方法简便易操作,但启动转矩只有额定转矩的1/3,即启动较慢。 3.2 星-三角降压启动所用电气控制器材 y-△启动器,接触器(三个,km1,km2,km3,根据电机容量选择型号),控制按钮(sb 红绿黑三联按钮),热继电器(fr,根据电机大小选择其型号),主电

电动机自耦降压启动自动控制电路图及常见故障

电动机自耦降压启动自动控制电路图及常见故障 时间:2011-09-26 来源:https://www.360docs.net/doc/e21607172.html, 作者:电气自动化技术网 点击: 1127次 电动机自耦降压启动(自动控制电路) 电动机自耦降压起动(自动控制)电路原理图 上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故 控制过程如下: 1、合上空气开关QF 接通三相电源。 2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。

3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。 4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。 5、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。 6、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。 7、电动机的过载保护由热继电器FR完成。 电动机自耦降压起动(自动控制)电路接线示意图

PLC控制三相异步电动机Y-△降压启动的多种方案

[导读] 三相异步电动机启动时将三相定子绕组接成星形,以降低定子绕组电压,达到减小启动电流的目的。 周淑英(东莞技师学院广东东莞523112) 摘要:PLC控制启动效率高、响应快、接线少、控制方便,PLC广泛应用到了工业自动 控制中。PLC指令众多,灵活应用指令进行编程是从事点电气控制设计人员必须思考的问题,现以三相异步电动机Y-△自动降压启动控制为例,说明PLC编程的多种方法。 关键词:PLC指令梯形图Y-△启动 一、PLC的概述 可编程控制器简称PC或PLC,它是在电气控制技术和计算机技术基础上开发出来的, 并逐渐发展成为以微处理器为核心,把自动化技术、计算机技术、通信技术融为一体的新型 工业控制装置。目前,PLC已广泛应用于各种生产机械和生产过程的自动化控制中,成为 一种最普及、应用场合最多的工业控制装置,被公认为现代工业自动化的三大支柱(PLC、 机器人、CAD/CAM)之一。PLC不仅充分发挥了计算机的优点,可以满足各种工业生产过 程自动控制的要求,同时又兼顾了一般电气操作人员的技术水平和习惯,采用梯形图或状态 转移图等编程方式,使PLC的使用始终保持大众化的优点。当生产流程需要改变时,可以 现场改变程序,使用方便灵活。 工业自动控制系统中,电机Y-△降压启动都采用PLC进行控制。PLC控制启动具有效 率高、响应快、接线少、控制方便等优点,但在设计PLC控制线路及程序中必须兼顾考虑PLC及接触器的动作特点,否则实际运行中将出现理论分析上不可能出现的问题,启动无 法进行而烧毁元件。下面以一台三相异步电动机Y-△自动降压启动控制为例,说明PLC控 制的灵活性。 二、设计要求 三相异步电动机启动时将三相定子绕组接成星形,以降低定子绕组电压,达到减小启 动电流的目的;启动结束后再将三相定子绕组接成三角形,电动机在额定电压下正常运行。 要求:启动时三相异步电动机接成Y型,经过一段时间自动转化为△型运行,要求Y 型断开后△型才能启动,防止Y型未断△型启动造成电源短路。三相异步电动机Y-△自动降 压启动控制电路如图所示:

技术协议(自耦降压启动柜)

技术协议 甲方:潞安环保能源股份开发有限公司王庄煤矿 乙方:上海卓能电气实业有限公司 根据2013年维简计划(七—17)及王庄矿实际需要,甲方向乙方购置7台KQK/T-1HN-JY-90型交流低压配电柜(自耦降压启动柜),用于低压系统技术改造,经双方协商达成如下技术协议: 一、工作条件 1、周围空气温度:最高40℃、最低-5℃ 2、24小时内平均温度不得高于+35℃ 3、海拔高度不超过2000米 4、装置安装时与垂直面的倾斜度不超过5度。 5、装置应安装在无激烈震动和冲击及腐蚀性的场所 6、装置周围空气相对湿度在最高温度为+40℃时不超过50%,在较低温度时允许有较大的相对湿度,如+20℃时为90%,应考虑到由于温度的变化可能会偶然产生凝露的影响。 二、设备参数 额定电压:380V额定频率:50Hz 相数:3相4线额定短路开断电流:30KA 额定短时耐受电流:30KA额定峰值耐受电流:63KA 三、执行技术标准 1.设计标准 1.1 GB156《标准电压》

1.2 GB4205《检测电气设备的操作标准运动方向》 1.3 GB2900《电工名词术语》 1.4 GB/T494 2.2《低压电器外壳防护等级》 1.5 GB6988《电气制图》 1.6 GB324《焊缝符号表示法》 1.7 GB191《包装贮运标志》 1.8 GB7276《电力系统保护控制屏、柜外形尺寸系列 2.产品标准 2.1 GB7251.1《低压成套开关设备和控制设备》 2.2 GB/T14048.1《低压开关设备和控制设备》 2.3 GB13539IEC269《低压熔断器》 2.4 GB1208 IEC185《电流互感器》 2.5GB4026 IEC445《电器接线端子和相应符号标志的接线端子的识标方法》 3.检验标准 3.1GB9466《低压成套开关设备基本试验方法》 3.2 GB11021《电气绝缘的耐热性评定和分级》 3.3 GB7261《继电器及继电保护装置基本试验方法》 3.4 GB50150《电气装置安装工程电气设备交接试验标准》 3.5 SJD9-87《电力装置的电测量仪表装置设计规程》 四、技术要求 4.1、要求乙方到现场对柜子尺寸进行测量,满足甲方安装使用要求。

最新自耦减压启动接线图及原理图说明汇编

电机自耦降压启动原理及接线图 时间:2014-04-02来源:电工之家作者:编辑部 电机自耦降压的启动原理:电机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动,从而实现电机的降压启动。 自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头一般用65%抽头,接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入全压运转状态。 电机自耦降压启动接线图,适用于任何接法的三相异步电动机,可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用,自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。但电机自耦变压器降压启动所需设备体积大,投资较贵。 电机自耦降压启动接线图如下: 如上述电机自耦降压启动接线图对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。 在电机自耦降压启动时应注意:

1、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。 2、带电动机试验;经空载试验无误后,恢复与电动机的接线。再带电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。 3、空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM1与KM2和动作吸合,KM3与KA不动作。时间继电器的整定时间到,KM1和KM2释放,KA和KM3动作吸合切换正常,反复试验几次检查线路的可靠性。 4、再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上,入在60秒连续两次起动后,应停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘

自耦变压器降压启动

学习任务**安装与调试三相电动机的自耦变压器降压启动控制电路 一、学习目标 1. 学会电动机的自耦变压器降压启动控制电路. 2. 理解一台电动机采用自耦变压器降压启动控制电路在工厂中的应用范围; 3. 学会设计一台电动机采自耦变压器降压启动控制电路; 4. 能根据设计方案绘制出电路原理图、电器布置图和电气接线图; 5. 能根据电路原理图安装其控制电路,做好电气元件的布置方案.做到安装的器件整齐、布线美观。 6. 认真填写学材上的相关资讯问答题。 二、建议课时 18课时 三、学习任务描述 根据控制要求设计电路原理图,控制要求: ①设计一台电动机采用自耦变压器降压启动线路; ②电路中设有短路、过载、失压等保护装置; ③根据设计的电路图配置相关电气元件。合理布置和安装电气元件,根据电气原理图进行布线、检查、调试。 学生接到本任务后,应根据任务要求,准备工具和仪器仪表,做好工作现场准备.严格遵守作业规范进行施工,线路安装完毕后进行调试,填写相关表格并交检测指导教师验收。按照现场管理规范淸理场地,归置物品。 四、工作流程与活动 1、工作准备 2、线路安装与调试 3、总结与评价

学习活动1 工作准备 一、学习目标 1、理解常用的降压启动电路在工厂中的应用范围 2、理解自耦变压器降压启动线路的工作原理 3、能根据控制要求设计出自耦变压器降压启动控制线路 4、能掌握相应电气元件的布置和布线方法 学习课时:4学时 二、阅读工作联系单 阅读工作任务联系单,根据实际情况,模拟工作场景,说出本次任务的工作内容、时间要求及交接工作的相关负责人等信息,并根据实际情况补充完整表1表中内容。 表1 工作任务联系单(设备科):编号: 三、相关理论知识 在工厂实际中,使用最多的降压启动是自耦变压器降压启动和Y-△降压启动两种,下面一起来分析自耦变压器降压启动控制电路的工作原理和设计方案。 想一想:自耦变压器的作用是什么?利用自耦变压器能否实现电动机降压启动?图1所示是自耦变压器降压启动原理图。启动时,先合上电源幵关QS1,再将开关QS2扳向“启动”位置,此时电动机的定子绕组与变压器的二次侧相接,电动机进行降压启动。待电动机转速上升到一定值时,迅速将开关QS2从“启动”位置扳倒“运行位置”位置,这时,电动机与自耦变压器脱离而直接与电源相接,

电机常用启动方式介绍

电机常用启动方式介绍 电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种 方式,包括直接启动,自耦减压启动,Y-Δ 降压启动,软启动器启动,变频器启动 等等方式。那么他们之间有什么不同呢? 1、全压直接启动 在电网容量和负载两方面都允许全压直接启动的情况下,可以考虑采用全压直接启动。优点是操纵控制方便,维护简单,而且比较经济。主要用于小功率电动机的启动,从节约电能的角度考虑,大于11kW 的电动机不宜用此方法。 2、自耦减压启动 利用自耦变压器的多抽头减压,既能适应不同负载启动的需要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。 它的最大优点是启动转矩较大,当其绕组抽头在80%处时,启动转矩可达直接启动时的64%。并且可以通过抽头调节启动转矩。至今仍被广泛应用。 3、Y-Δ启动 对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻它对电网的冲击。这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ启动)。采用星三角启动时,启动电流只是原来按三角形接法直接启动时的1/3。如果直接启动时的启动电流以6~7Ie 计,则在星三角启动时,启动电流才2~2.3 倍。这就是说采用星三角启动时,启动转矩也降为原来按三角形接法直接启动时的1/3。 适用于无载或者轻载启动的场合。并且同任何别的减压启动器相比较,其结构最简单,价格也最便宜。除此之外,星三角启动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。 4、软启动器 这是利用了可控硅的移相调压原理来实现电动机的调压启动,主要用于电动机的启动控制,启动效果好但成本较高。因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。 另外,电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。因此可控硅元件的故障率较高,因为涉及到电力电子技术,因此对维护技术人员的要求也较高。 5、变频器 变频器是现代电动机控制领域技术含量最高,控制功能最全、控制效果最好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。因为涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,因此主要用在需要调速并且对速度控制要求高的领域。

电动机降压启动接线方法

电动机降压启动接线方法 一.自耦减压启动 自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。 图1 自耦减压启动 工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。停转时,按下SB按钮即可。 自耦变压器次级设有多个抽头,可输出不同的电压。一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。 二.手动控制Y-△降压启动

Y-△降压启动的特点是方法简便、经济。其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。 图2 手动控制Y-△降压启动 图2所示为QX1型手动Y-△启动器接线图。图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组

接成Y形降压启动;当电动机转速上升到一定值时,将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。 三.定子绕组串联电阻启动控制 电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。 定子绕组串联电阻启动控制线路如图3所示。当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。KM2主触点闭合短接启动电阻,使电动机在全电压下运行。停机时,按下停机按钮SB2即可。 四.手动串联电阻启动控制 当三相交流电动机标牌上标有额定电压为220/380V(△/Y)的接线方法时,不能用Y-△方法做降压启动,可用这种串联电阻或电抗器方法启动。

电动机自耦降压启动原理及安装调试

自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。这种降压启动分为手动控制和自动控制两种。 1.接线 自耦变压器的高压边投入电网,低压边接至电动机,有几个不同电压比的分接头供选择。 2.特点 设自耦变压器的变比为K,原边电压为U1,副边电压U2=U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小。又因为变压器原副边的电流关系I1=I2/K,可见原边的电流(即电源供给电动机的启动电流)比直接流过电动机定子绕组的要小,即此时电源供给电动机的启动电流为直接启动时1/K2 倍。由于电压降低为1/K 倍,所以电动机的转矩也降为1/K2 倍。自耦变压器副边有2~3 组抽头,如二次电压分别为原边电压的80%、60%、40%。 3.优点 可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用。 4. 缺点:设备体积大,投资较贵。 5.电动机自耦降压启动(自动控制电路)

电动机自耦降压起动(自动控制)电路原理图 上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故 控制过程如下: 1)合上空气开关QF接通三相电源。 2)按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。 3)KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。 4)由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。

自耦变压器降压启动电路图

自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示 自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停 下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了 竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。

电动机降压启动

电动机自耦降压启动(自动控制电路) 电动机自耦降压起动(自动控制)电路原理图 上图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。 控制过程如下: 1、合上空气开关QF接通三相电源。 2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压抽头(例如65%)将三相电压的65%接入电动。 3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。 4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主

触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。 5、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。 6、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。 7、电动机的过载保护由热继电器FR完成。 电动机自耦降压起动(自动控制)电路接线示意图 安装与调试 1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。 2、自耦变压器的功率应于电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。 3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。

三相异步电动机降压启动_毕业设计(1)1

摘要 电机的起动电流近似的与定子的电压成正比,因此要采用降低定子电压的办法来限制起动电流,即为降压起动。对于因直接起动冲击电流过大而无法承受的场合,通常采用降压起动,此时,起动转矩下降,起动电流也下降,所以只适合必须减小起动电流,又对起动转矩要求不高的场合。常见降压起动方法:定子串电阻降压起动、Y/Δ起动控制线路、延边三角起动、软启动及自耦变压器降压起动。 当负载对电动机启动力矩无严格要求但要限制电动机启动电流且电机满足 380V/Δ接线条件才能采用降压启动。该方法是:在电机启动时将电机接成星型接线,当电机启动成功后再将电机改接成三角型接线(通过双投开关迅速切换);因电机启动电流与电源电压成正比,此时电网提供的启动电流只有全电压启动电流 的1/3,但启动力矩也只有全电压启动力矩的1/3。 在实际使用过程中,发现需降压启动的电机从11KW开始就有需要的,如风机,在启动时11KW电流在7-9倍(100)A左右,按正常配置的热继电器根本启动不了(关风门也没用),热继电器配大了又起不了保护电机的作用,所以建议用降压启动。而在一些启动负荷较小的电机上,由于电机到达恒速时间短,启动时电流冲击影响较小,所以在30KW左右的电机,选用1.5倍额定电流的断路器直接启动,长期工作一点问题都没有。 关键词:三相异步电动机降压启动启动方法

目录 摘要...................................................................... I 目录..................................................................... II 第1章绪论.. (1) 第2章三相异步电动机的基本结构 (2) 2.1 定子的结构组成 (2) 2.2 转子的结构组成 (2) 2.3 工作原理 (2) 第3章异步电动机的分类及优缺点 (3) 3.1 三相异步电动机的优点 (3) 3.2 异步电动机存在的缺点 (3) 第4章三相异步电机启动出现的问题 (5) 4.1 异步电动机启动时的要求 (5) 4.2 三相异步电动机启动问题 (5) 4.3 工业生产机械不同的起动条件 (6) 第5章三相异步电动机起动方式 (7) 5.1 直接启动 (7) 5.2 三相异步电动机的Y—Δ起动控制 (8) 5.3 定子串电阻降压起动控制 (10) 5.4 自耦变压器降压启动 (11) 5.5 软启动 (14) 结论 (15) 致谢 (17) 参考文献 (18)

自耦变压器降压启动电路图

自耦变压器降压启动电路图【改进版】 自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示

自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM 和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM 和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,

有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。 三、改进后的接线方法 经过分析, 主要是控制电路中辅助触点使用不合理造成线路设计的不完善, 针对此线 路存在的缺点对原控制电路部分进行改进, 其接线方法见图2。 四、改进后的工作原理 接通电源后, 按下起动按钮SB2, 交流接触器1KM、2KM线圈得电吸合, 1KM和2KM 主触头闭合, 自耦变压器串入电动机降压起动; 同时, 时间继电器KT 线圈也得电吸合, KT 瞬时常开触点闭合自锁。经一定时间延时后, KT 延时常开触头闭合, KT 延时常闭触头断开, 1KM线圈断电, 1KM1 常闭闭合, 3KM 线圈通电,3KM1 常开触头闭合自锁, 3KM1 常闭触头断开联锁, 使2KM及KT 线圈断电复位, 电动。

自耦降压启动介绍

自耦降压启动介绍 自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。这种降压启动分为手动控制和自动控制两种。 1.2 特点 设自耦变压器的变比为K,原边电压为U1,副边电压U2=U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小。又因为变压器原副边的电流关系I1=I2/K,可见原边的电流(即电源供给电动机的启动电流)比直接流过电动机定子绕组的要小,即此时电源供给电动机的启动电流为直接启动时1/K2 倍。由于电压降低为1/K 倍,所以电动机的转矩也降为1/K2 倍。自耦变压器副边有2~3 组抽头,如二次电压分别为原边电压的80%、60%、40%。 1.3 优点 可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用。 1.4 缺点 设备体积大,投资较贵。 2自动控制 电动机自耦降压起动(自动控制)电路原理图 如图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。 2.1 控制过程 1、合上空气开关QF接通三相电源。 2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。 3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。 4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时KM2线圈断电,其主触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。 5、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。 6、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。 7、电动机的过载保护由热继电器FR完成。 2.2 安装与调试

三相异步电动机降压启动练习题

三相异步电动机降压启动练习题 一、填空题(每空1分,共计16分) 1、常用的降压起动控制类型有、、 和延边三角形降压启动四种。 2、自耦变压器降压启动是利用来降低加在电动机定子绕组上的 电压,达到限制的目的。 3、电压继电器是反映变化的继电器。 4、电压继电器与负载联,反映负载的值,故它的线圈匝数。 5、时间继电器的延时方式有和两种。 6、时间继电器的种类很多,常用的有、、、半导体式等。 7、速度继电器主要用于。 8、将额定工作电压直接加在电动机定子绕组上使电动机运转,称为起动。 二、选择题(每题2分,共计10分) 9、三相异步电动机采用Y—△降压起动时,定子绕组在星形连接状态下起动电压为三角形 连接起动电压的() A.1/2 B.1/3C.1/3 D.1/4 10、三相对称电源的连接方式为星形连接,已知线电压的有效值为380V,则相电压的有效值 为 A.500V B.380V C 220V () 11、当电动机在无负载或轻载的情况下,若要采用全压起动,则其容量一般不要超过电源 变压器的容量的()A.5%~10% B.10%~15% C.15%~20% D.20%~30% 12、自耦变压器降压启动主要适用于正常运行时定子绕组接成的三相鼠笼式电动机。 ()A.三角形B.星形 C.双星形D.三角形或星形 13、三相异步电动机采用Y—△降压起动时,定子绕组在星形连接状态下起动转矩为三角 形连接起动转矩的() A.1/2 B.1/3C.1/3 D.0.7

三、判断题(每题2分,共30分) 14、星形—三角形降压启动适用于任何负载启动。() 15、自耦变压器起动适用于较大容量的电动机起动,也可用于频繁起动的场合。() 16、中间继电器实质是一种电压继电器。() 17、从得到输入信号开始,经过一定延时后才输出信号的继电器,称为速度继电器。 () 18、星-三角形降压启动投资少、线路简单,但是启动转矩小。() 19、星-三角形降压启动只能用于正常运转时定子绕组为三角形接法的异步电动机。() 20、定子绕组串电阻降压启动控制电器简单、操作方便、但消耗电能,不经济。() 21、采用自耦变压器启动,启动电流和启动转矩由变压器的变比决定。() 22、自耦变压器降压启动方法适用于较小容量的电动机启动。() 23、自耦变压器降压启动不允许频繁启动。() 24、自耦变压器降压启动只适用于正常运转时定子绕组为三角形接法的异步电动机。() 25、直接启动仅适用于小容量异步电动机的启动。() 26、速度继电器的轴与被控电动机的轴相连接,而定子空套在转子上。() 27、速度继电器的复位转速是120转/分。() 28、继电器根据工作原理不同可分为控制继电器和保护继电器。() 四、简答题(每题6分,共24分) 29、什么是降压启动?降压启动有和优缺点? 30、什么是自耦变压器降压启动?什么情况下采用自耦变压器降压启动?

自耦降压启动控制柜功能原理

自耦降压启动控制柜功能原理 一、自耦降压启动控制柜产品概述: 自耦降压启动控制柜是利用自耦变压器降压起动,以减少电动机起动电流对输电网络的影响,并可加速电动机至额定转速和人为停止电动机。适用于交流50Hz(或60Hz)、电压为660V及以下、容量为15KW及以下的三相鼠笼型感应电动机,做不频繁自耦降压起动。 自耦降压启动控制柜是专为水泵产品配套的电气控制柜,为了使用户使用的各种水泵安全、可靠、高效地工作,它能够有效地保护水泵电机的漏电、超温、缺相、短路、过载、漏水、降压、自动启动、切换、停止,对自耦变压器装有起动时间的过负荷保护。 二、自耦降压启动控制柜产品特点: 自耦降压启动控制柜为箱式防护结构,由自耦变压器、自动开关、交流接触器、热继电器、时间继电器、过流继电器、电流表等元件组成,具有过载、断相保护功能。 1、一般水泵电机采用自耦变压的办法,来降低它的起动电流,减少电网和设备的冲击。 2、该设备起动电流小,但起动力矩较大。 3、当设备二次启动后(二次总启动时间不能大于120秒),冷却4小时后才能进行第二次启动。 4、该设备投资小,维护安装简便,备件备品易得。 5、控制功率齐全:液位,压力、温度、时间等多种方式电机保护功能齐全: 6、具有短路缺相、过载、漏水、超温等多种检测,设计合理、结构紧凑、经济实用。 7、控制方式:1、液位控制:以液位的变化为控制目标;2、压力控制:以压力变化为控制目标; 8、切换方式:1、手动切换; 2、自动交替切换; 3、定时自动切换。 9、启动方式:自藕降压启动:启动时靠自藕变压器降压减少电压和电流,运行时还原至全压。 三、自耦降压启动控制柜功能原理: 1、控制模式 (1)一控一:控制一台水泵的启停。 (2)一控二:控制1号、2号二台水泵。1号、2号二台泵同时运行,在起动时,1号泵起动工作后,通过时间继电器自动起2号泵。 (3)一控三:控制台1号、2号、3号三台水泵。工作模式同上。 (4)一控三:控制台1号、2号、3号三台水泵。工作模式同上。(5)一用一备:控制1#、2#两台

电动机自耦降压启动自动控制电路组图(精)

河南省大地水泥有限公司电气部培训资料电动机自耦降压启动自动控制电路组图 电动机自耦降压启动(自动控制电路 电动机自耦降压起动(自动控制电路原理图 上图是交流电动机自耦降压启动自动切换控制电路, 自动切换靠时间继电器完成, 用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故 控制过程如下: 1、合上空气开关 QF 接通三相电源。 2、按启动按钮 SB2交流接触器 KM1线圈通电吸合并自锁, 其主触头闭合, 将自耦变压器线圈接成星形,与此同时由于 KM1辅助常开触点闭合,使得接触器 KM2线圈通电吸合, KM2的主触头闭合由自耦变压器的低压低压抽头 (例如 65% 将三相

电压的 65%接入电动。 3、 KM1辅助常开触点闭合,使时间继电器 KT 线圈通电,并按已整定好的时间开始计铸百年伟业创美好生活 时,当时间到达后, KT 的延时常开触点闭合,使中间继电器 KA 线圈通电吸合并自锁。 4、由于 KA 线圈通电,其常闭触点断开使 KM1线圈断电, KM1常开触点全部释放, 主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源。 KA 的常闭触点闭合,通过 KM1已经复位的常闭触点,使 KM3线圈得电吸合, KM3主触头接通电动机在全压下运行。 5、 KM1的常开触点断开也使时间继电器 KT 线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器 KT 可处于断电状态。 6、欲停车时,可按 SB1则控制回路全部断电,电动机切除电源而停转。 7、电动机的过载保护由热继电器 FR 完成。 电动机自耦降压起动(自动控制电路接线示意图 安装与调试 1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。 2、自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。 3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。 4、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。 5、空载试验; 拆下热继电器 FR 与电动机端子的联接线, 接通电源, 按下 SB2起动 KM1与 KM2和动作吸合, KM3与 KA 不动作。时间继电器的整定时间到,

三相异步电动机常用的Y-△降压启动

三相异步电动机常用的Y-△降压启动 本文分析了三相异步电动机的由来、启动进程与启动方式,并针对星-三角降压启动进行了探讨。 标签:三相异步发动机降压启动 1 三相异步电动机的由来 三相异步电动机的旋转是由于其定子绕组中通入三相交流电后,在定子绕组周围产生一个旋转的磁场,当转子处于该旋转磁场中时,相当于导体在磁场中作切割磁力线运动,从而产生感应电流和感应电动势,促使转子不断地旋转运动。但是三相异步电动机的转子转速不会与旋转磁场同步,更不会超过旋转磁场的速度。因为三相异步电动机转子线圈中的感应电流是由于转子导体与磁场有相对运动而产生的,如果三相异步电动机转子的转速与旋转磁场的转速大小相等,那么,磁场与转子之间就没有相对运动,导体不能切割磁力线,转子线圈中也就不会产生感应电流和感应电动势,三相异步电动机转子导体在磁场中也就不会受到电磁力的作用而使转子转动——三相异步电动机因此而得名。 2 电动机的启动过程和启动方式 电动机的启起动过程是指电动机从接入电网开始到正常运转的这一过程。三相异步电动机的启动方式有两种,即在额定电压下的全压(直接)启动和降低启动电压的减压启动。电动机的直接启动是一种简单、可靠、经济的启动方法,但由于直接启动电流可达电动机额定电流的4~7倍,过大的启动电流会造成电网电压显著下降,直接影响在同一电网工作的其他电动机,甚至使它们停转或无法启动,故直接启动电动机的容量受到一定的限制。 对容量较大的电动机的启动,为了不造成电网电压的大幅度降落,从而导致电动机启动困难或不能启动,也不影响电网内其他用电设备的正常供电,在生产技术上,多采用降压启动措施。所谓降压启动是将电网电压适当降低后加到电动机定子绕组上进行启动,待电动机启动后,再将绕组电压恢复到额定值。 降压启动的目的是减小电动机启动电流,从而减小电网供电的负荷。但由于启动电流的减小,必然导致电动机启动转矩下降,因此凡采用降压启动措施的电动机,只适合空载或轻载启动。在实际生产中的电机,广泛采用的降压启动措施是星-三角降压启动。 3 星-三角降压启动 3.1 星-三角降压启动的理论依据星-三角降压启动一般用Y-△符号表示,这种降压启动方式只适用于正常运行时定子绕组为三角形连接的三相异步电动机。在启动时,将绕组连接成星形,使每相绕组电压降至原电压的1/√3,启动结

相关文档
最新文档