打印铁碳相图习题参考答案

打印铁碳相图习题参考答案
打印铁碳相图习题参考答案

一、解释下列名词

1、铁素体:碳溶入α-Fe 中形成的间隙固溶体。奥氏体:碳溶入γ-Fe 中形成的间隙固溶体。渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。珠光体:铁素体和渗碳体组成的机械混合物。莱氏体:由奥氏体和渗碳体组成的机械混合物。

2、Fe3C Ⅰ :由液相中直接析出来的渗碳体称为一次渗碳体。Fe3C Ⅱ:从A 中析出的Fe3C 称为二次渗碳体。

Fe3C Ⅲ:从铁素体中析出的Fe3C 称为三次渗碳体。共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。 共晶Fe3C :经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。

3、钢:含碳量大于0.00218%,小于2.11%的铁碳合金白口铸铁:含碳量大于2.11%的铁碳合金。

二、填空题

1、常温平衡状态下,铁碳合金基本相有铁素体(F )、渗碳体(Fe 3C )等 两 个。

2、Fe -Fe 3C 相图有4个单相区,各相区的相分别是 液相(L )、δ相、铁素体(F )、奥氏体(A )。

3、Fe -Fe 3C 相图有 三 条水平线,即HJB 、ECF 和PSK 线,它们代表的反应分别是包晶反应、共晶反应和共析反应。

4、工业纯铁的含碳量为≤0.0218%,室温平衡组织为F+ Fe3C Ⅲ。

5、共晶白口铁的含碳量为4.3%,室温平衡组织P 占40.37%,Fe 3C 共晶占47.82%,Fe3C Ⅱ占11.81%。

6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为0.4707。

7、钢的组织特点是高温组织为奥氏体(A ),具有良好的 塑、韧 性,因而适于热加工成形。

8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。

三、简答题

1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化?

答:因为γ-Fe 和α- Fe 原子排列的紧密程度不同,γ-Fe 的致密度为74%,α- Fe 的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。

2、铁素体(F ),奥氏体(A ),渗碳体(Fe 3C ),珠光体(P ),莱氏体(Ld )的结构、组织形态、性能等各有何特点?

答:铁素体结构为体心立方晶格。由于碳在α-Fe 中的溶解度`很小,它的性能与纯铁相近。塑性、韧性好,强度、硬度低。它在钢中一般呈块状或片状。

奥氏体(A )结构为面心立方晶格。因其晶格间隙尺寸较大,故碳在γ-Fe 中的溶解度较大。有很好的塑性。

渗碳体(Fe 3C )具有复杂晶格的间隙化合物。渗碳体具有很高的硬度,但塑性很差,延伸率接近于零。在钢中以片状存在或网络状存在于晶界。在莱氏体中为连续的基体,有时呈鱼骨状。

珠光体(P )为铁素体和渗碳体组成的机械混合物。铁素体和渗碳体呈层片状。珠光体有较高的强度和硬度,但塑性较差。

莱氏体(Ld )为奥氏体和渗碳体组成的机械混合物。在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。由于渗碳体很脆,所以莱氏体是塑性很差的组织。

3、Fe-Fe 3C 合金相图有何作用?在生产实践中有何指导意义?又有何局限性?

答:⑴碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料。铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。

⑵为选材提供成分依据:铁碳相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;

为制定热加工工艺提供依据:对铸造,根据相图可以找出不同成分的钢或铸铁的熔点,确定铸造温度;根据相图上液相线和固相线间距离估计铸造性能的好坏。对于锻造:根据相图可以确定锻造温度。对焊接:根据相图来分析碳钢焊缝组织,并用适当热处理方法来减轻或消除组织不均匀性;对热处理:铁碳相图更为重要,如退火、正火、淬火的加热温度都要参考铁碳相图加以选择。 ⑶由于铁碳相图是以无限缓慢加热和冷却的速度得到的,而在实际加热和冷却通常都有不同程度的滞后现象。 4、画出 Fe-Fe 3C 相图,指出图中 S 、C 、E 、P 、N 、G 及 GS 、SE 、PQ 、PSK 各点、线的意义,并标出各相区的相组成物和组织组成物。 答:C :共晶点1148℃ 4.30%C ,在这一点上发生共晶转变,反应式:C Fe A Lc E 3+?,当冷到1148℃时具有C 点成分的液体中同时结晶出具有E 点成分的奥氏体和渗碳体的两相混合物——莱氏体()()C Fe A Le E 3+→

E :碳在Fe -γ中的最大溶解度点1148℃

2.11%C G :Fe Fe -?-γα同素异构转变点

(A 3)912℃ 0%C H :碳在Fe -δ中的最大溶解度为1495℃ 0.09%C J :包晶转变点1495℃ 0.17%C 在这一点上发生包晶转变,反应式:J H B A L ?+δ当冷却到1495℃时具有B 点成分的液相与具有H 点成分的固相δ反应生成具有J 点成分的固相A 。

N :Fe Fe -?-δγ同素异构转变点(A 4)1394℃ 0%C P :碳在Fe -α中的最大溶解度点 0.0218%C 727℃ S :共析点727℃ 0.77%C 在这一点上发生共析转变,反应式:c Fe F A p s 3+?,当冷却到727℃时从具有S 点成分的奥氏

体中同时析出具有P 点成分的铁素体和渗碳体的两相混合物——珠光体P (c

Fe F p 3+) F+F e 3C III 912℃图2-13 Fe-Fe3C相图

A+F e 3C II A+F P+F P+F e 3C II P P+Ld+F e 3C II A+Ld+F e 3C II

Ld Ld′Ld′+F e 3C I Ld+F e 3C I L+F e 3C I L+A A 0.0218%F K P

727℃G Q

4.3%C A

0.77% 2.11%E D 1227℃

1538℃S VI V IV III I II

ES 线:碳在奥氏体中的溶解度曲线,又称Acm 温度线,随温度的降低,碳在奥化体中的溶解度减少,多余的碳以C Fe 3形式析出,

所以具有0.77%~2.11%C 的钢冷却到Acm 线与PSK 线之间时的组织ⅡC Fe A 3+,从A 中析出的C Fe 3称为二次渗碳体。

GS 线:不同含碳量的奥氏体冷却时析出铁素体的开始线称A 3线,GP 线则是铁素体析出的终了线,所以GSP 区的显微组织是A F +。 PQ 线:碳在铁素体中的溶解度曲线,随温度的降低,碳在铁素体中的溶解度减少,多余的碳以C Fe 3形式析出,从F 中析出的C Fe 3称为三次渗碳体ⅢC Fe 3,由于铁素体含碳很少,析出的ⅢC

Fe 3很少,一般忽略,认为从727℃冷却到室温的显微组织不变。 PSK 线:共析转变线,在这条线上发生共析转变C Fe F A P S 3+?,产物(P )珠光体,含碳量在0.02~6.69%的铁碳合金冷却到727℃时都有共析转变发生。

5、简述 Fe-Fe 3C 相图中三个基本反应:包晶反应,共晶反应及共析反应,写出反应式,标出含碳量及温度。

答:共析反应:冷却到727℃时具有S 点成分的奥氏体中同时析出具有P 点成分的铁素体和渗碳体的两相混合物。γ

0.8??→??727F 0.02+Fe 3C 6.69包晶反应:冷却到1495℃时具有B 点成分的液相与具有H 点成分的固相δ反应生成具有J 点成分的固相

A 。 L 0.5+δ0.1??→??1495γ0.16共晶反应:1148℃时具有C 点成分的液体中同时结晶出具有E 点成分的奥氏体和渗碳体的两相混合物。 L 4.3??

→??

1147γ 2.14+ Fe 3C 6.69 6、亚共析钢、共析钢和过共析钢的组织有何特点和异同点。

答:亚共析钢的组织由铁素体和珠光体所组成。其中铁素体呈块状。珠光体中铁素体与渗碳体呈片状分布。共析钢的组织由珠光体所组成。过共析钢的组织由珠光体和二次渗碳体所组成,其中二次渗碳体在晶界形成连续的网络状。

共同点:钢的组织中都含有珠光体。

不同点:亚共析钢的组织是铁素体和珠光体,共析钢的组织是珠光体,过共析钢的组织是珠光体和二次渗碳体。

7、分析含碳量分别为0.60%、0.77%、1.0% 的铁碳合金从液态缓冷至室温时的结晶过程和室温组织。

答:0.77%C:在1~点间合金按匀晶转变结晶出A ,在2点结晶结束,全部转变为奥氏体。冷到3点时(727℃),在恒温下发生共析转变,转变结束时全部为珠光体P ,珠光体中的渗碳体称为共析渗碳体,当温度继续下降时,珠光体中铁素体溶碳量减少,其成分沿固溶度线PQ 变化,析出三次渗碳体Fe3C III ,它常与共析渗碳体长在一起,分不出,数量少,可忽略。室温时组织P 。 0.60% C :合金在1~2间按匀晶转变结晶出A ,在2点结晶结束,全部转变为奥氏体。冷到3点时开始析出F ,3~4点A 成分沿GS 线变化,铁素体成分沿GP 线变化,当温度到4点时,奥氏体的成分达到S 点成分(含碳0.77%),便发生共析转变,形成珠光体,此时,原先析出的铁素体保持不变,称为先共析铁素体,其成分为0.0218%C ,所以共析转变结束后,合金的组织为先共析铁素体和珠光体,当温度继续下降时,铁素体的溶碳量沿PQ 线变化,析出三次渗碳体,同样Fe3C III 量很少,可忽略。所以含碳0.40%的亚共析钢的室温组织为:F+P

1.0% C :合金在1~2点间按匀晶转变结晶出奥氏体,2点结晶结束,合金为单相奥氏体,冷却到3点,开始从奥氏体中析出二次渗碳体Fe3C II ,Fe3C II 沿奥氏体的晶界析出,呈网状分布,3-4间Fe3C II 不断析出,奥氏体成分沿ES 线变化,当温度到达4点(727℃)时,其含碳量降为0.77%,在恒温下发生共析转变,形成珠光体,此时先析出的Fe3C II 保持不变,称为先共析渗碳体,所以共析转变结束时的组织为先共析二次渗碳体和珠光体,忽略Fe3C III 。室温组织为二次渗碳体和珠光体。

8、指出下列名词的主要区别:一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体与共析渗碳体。

答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从A 中析出的Fe3C 称为二次渗碳体。 三次渗碳体:从F 中析出的Fe3C 称为三次渗碳体Fe3Cm 。共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。

9、根据 Fe-Fe 3C 相图,计算:⑴室温下,含碳 0.6% 的钢中珠光体和铁素体各占多少;⑵室温下,含碳 1.2% 的钢中珠光体和二次渗碳体各占多少;⑶铁碳合金中,二次渗碳体和三次渗碳体的最大百分含量。

答:⑴W p =(0.6-0.0218)/(0.77-0.0218)*100%=77.28% W F =1-77.28%=22.72%⑵W p =(2.11-1.2)/(2.11-0.77)*100%=69.91% W Fe3C Ⅱ=1-69.91%=30.09%⑶W Fe3C Ⅱ=(2.11-0.77)/(6.69-0.77)*100%=22.64% W Fe3C Ⅲ=0.0218/6.69*100%=0.33%

10、某工厂仓库积压了许多碳钢(退火状态),由于钢材混杂,不知道钢的化学成分,现找出其中一根,经金相分析后,发现其组织为珠光体+铁素体,其中铁素体占 80% ,问此钢材的含碳量大约是多少?

答:由于组织为珠光体+铁素体,说明此钢为亚共析钢。 W α=80%=(0.77-W C )/(0.77-0.0218)*100% W C =0.17%

11、对某退火碳素钢进行金相分析,其组织的相组成物为铁素体+渗碳体(粒状),其中渗碳体占 18% ,问此碳钢的含碳量大约是多少?答: W Fe3C Ⅱ=18% =( W C -0.0218)/(6.69-0.0218)*100% W C =1.22%

12、对某退火碳素钢进行金相分析,其组织为珠光体+渗碳体(网状),其中珠光体占 93% ,问此碳钢的含碳量大约为多少?答:W p =93% =(2.11- W C )/(2.11-0.77)*100%=70% W C =0.86%

13、计算含碳量为1.4%C 的铁碳合金在700℃下各个相及其组分数量和成分。

答:含1.4%C 铁碳合金属于过共析钢,其组织为珠光体+二次渗碳体,相为铁素体和渗碳体。珠光体:

W p =(2.11-1.4)/(2.11-0.77)*100%=50% 二次渗碳体:W Fe3C Ⅱ=1-50%=50%铁素体:W α=(6.69-1.4)/(6.69-0.0218)*100%=79.33% 渗碳体:W Fe3C =1-79.33%=20.67%

14、根据 Fe-Fe 3C 相图,说明产生下列现象的原因:⑴含碳量为 1.0% 的钢比含碳量为 0.5% 的钢硬度高;⑵在室温下,含碳 0.8% 的钢其强度比含碳 1.2% 的钢高;⑶在 1100℃,含碳 0.4% 的钢能进行锻造,含碳 4.0% 的生铁不能锻造;⑷绑轧物件一般用铁丝(镀锌低碳钢丝),而起重机吊重物却用钢丝绳(用含碳量为0.60% 、 0.65% 、 0.70%、 0.75% 等钢制成)。答:⑴钢中含碳量的增加,渗碳体的含量增加,渗碳体是硬脆相,因此含碳量为 1.0% 的钢比含碳量为 0.5% 的钢硬度高。⑵因为在钢中当含碳量超过1.0%时,所析出的二次渗碳体在晶界形成连续的网络状,使钢的脆性增加,导致强度下降。因此含碳 0.8% 的钢其强度比含碳 1.2% 的钢高。⑶在 1100℃时,含碳 0.4% 的钢的组织为奥氏体,奥氏体的塑性很好,因此适合于锻造;含碳 4.0% 的生铁的组织中含有大量的渗碳体,渗碳体的硬度很高,不适合于锻造。⑷绑轧物件的性能要求有很好的韧性,因此选用低碳钢有很好的塑韧性,镀锌低碳钢丝;而起重机吊重物用钢丝绳除要求有一定的强度,还要有很高的弹性极限,而含碳量为0.60% 、

0.65% 、 0.70%、 0.75%的钢有高的强度和高的弹性极限。这样在吊重物时不会断裂。

四、选择题

1、质量一定的γ-Fe转变为α-Fe时,体积( A )。 A、胀大; B、缩小; C、不变

2、碳在γ-Fe中的最大溶解度为( B )。 A、0.0218%; B、0.77%; C、2.11%; D、4.3%

3、渗碳体是一种具有复杂晶体结构的( B )。 A、间隙相; B、间隙化合物; C、间隙固溶体

4、铁碳合金在平衡结晶过程中,( C )。 A、只有含碳0.77% 的合金才有共析转变发生;

B、只有含碳小于2.06% 的合金才有共析转变发生;

C、含碳0.0218~6.69% 的合金都有共析转变发生

5、由( A )析出的渗碳体叫做三次渗碳体。 A、铁素体; B、奥氏体; C、液态金属

6、铁碳合金中,( C )组织为共晶反应产物。 A、铁素体; B、珠光体; C、莱氏体

7、平衡结晶时,凡含碳量( A )的铁碳合金,自1148℃冷至727℃时,均从奥氏体中析出二次渗碳体。

A、0.0218~6.69%;

B、0.77~2.11%

C、0.77~6.69%

8、一次渗碳体、二次渗碳体、三次渗碳体( B )。 A、晶体结构不同,组织形态相同;

B、晶体结构相同,组织形态不同;

C、晶体结构与组织形态都不同。

9、由于三次渗碳体的数量很少,故对( C )性能的影响可忽略不计。A、工业纯铁;B、钢和铸铁C、所有Fe-C合金

10、室温平衡状态下,钢中的碳绝大部分是以( B )形式存在于组织中。 A、铁素体;B、渗碳体; C、石墨碳

11、含碳量0.45% 的铁碳合金平衡结晶后,按相组成物计算,铁素体占( A )。A、93.60%; B、42.77%;C、57.23%

12、钢的力学性能与( C )的数量、形态和分布有关。 A、铁素体; B、奥氏体; C、渗碳体

13、含碳1.2% 的铁碳合金平衡结晶时,727℃时的Fe3CⅡ量与冷至室温时的Fe3CⅡ量相比( )。

A、727℃时多;

B、室温时多;

C、一样多

14、平衡结晶时,从奥氏体中析出的Fe3CⅡ一般呈( C )状分布。 A、薄片; B、颗粒; C、网

五、判断题

( √ ) 1、奥氏体是C在γ-Fe中的间隙固溶体。

( √ ) 2、在室温平衡状态下,珠光体和莱氏体都是由F和Fe3C两种基本相组成的。

( √ ) 3、亚共析钢室温组织中珠光体的数量随含碳量增加而增加。

( × ) 4、含碳量<0.77% 的铁碳合金平衡结晶时,奥氏体转变成铁素体的转变温度随含碳量增加而升高。

( × ) 5、铁碳合金中的机械混合物,其强度、硬度都比其组成相高。

( √ ) 6、共晶反应发生于所有含碳量大于2.11% 而小于6.69% 的铁碳合金中。

( √ ) 7、过共析钢平衡结晶时,从1148℃冷至727℃时,奥氏体的含碳量不断降低。

( √ ) 8、平衡状态下,铁碳合金的强度和硬度随含碳量增加而提高。

( √ ) 9、过共析钢的室温平衡组织由珠光体和二次渗碳体组成。

( √ ) 10、铁碳合金室温下平衡组织由铁素体和渗碳体组成。通常铁素体作为基体,而渗碳体作为第二相。

( ×) 11、亚共析钢加热到AC1 ~AC3之间时,奥氏体的含碳量大于钢的含碳量。

( × ) 12、含碳量0.45% 的铁碳合金锻造时应加热到Fe-Fe3C相图中PSK线与GS线之间的温度范围。

( × ) 13、在Fe-Fe3C相图中,PQ线为碳在铁素体中的固溶线。

( × ) 14、在铁碳合金中,只有共析成分点的合金结晶时,才能发生共析转变,形成共析组织。

( × ) 15、在缓冷至室温条件下,碳的质量分数为0.8%的钢比碳的质量分数为1.2%的钢硬度低。

( × ) 16、共析钢由液态缓冷至室温时析出的二次渗碳体,在组织形态与晶体结构方面均与一次渗碳体不同。

铁碳合金相图全面分析

铁碳平衡图 (The Iron-Carbon Diagrams) 连聪贤 本章阐述了铁碳合金的基本组织,铁碳合金状态图,碳钢的分类、编号和用途。要求牢固掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)的定义、结构、形成条件和性能特点。牢固掌握简化的铁碳合金状态图;熟练分析不同成分的铁碳合金的结晶过程;掌握铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。掌握碳钢中常存元素对碳钢性能的影响;基本掌握碳钢的分类、编号、性能和用途。 铁碳合金基本组织铁素体、奥氏体、渗碳体、珠光体和莱氏体的定义、表示符号、晶体结构、显微组织特征、形成条件及性能特点。铁碳合金状态图的构成、状态图中特性点、线的含义。典型合金的结晶过程分析及其组织,室温下不同区域的组织组成相。碳含量对铁碳合金组织和性能的影响。铁碳合金状态图的实际应用。锰、硅、硫、磷等常存杂质元素对钢性能的影响。碳铁的分类、编号、性能和用途。 铁碳合金状态图是金属热处理的基础。必须配合铁碳合金平衡组织的金相观察实验,结合课堂授课,作重点分析铁碳合金的基本组织及其室温下不同成分铁碳合金的组织特征。练习绘制铁碳合金状态 四、课程纲要 (一)铁碳合金的构成元素及基本相

1. 合金的构成元素与名词解释 (1)金属特性:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特 性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 (2)合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 (3)相:合金中成份、结构、性能相同的组成部分,物理上均质且可区分的部分。 (4)固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态 金属晶体,固溶体分间隙固溶体和置换固溶体两种。(5)固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 (6)化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 (7)机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

铁碳相图归纳

第四章 纯铁:α-Fe 在770℃(居里温度)发生由铁磁性转变为顺磁性,即铁磁性消失。 工业纯铁的力学性能特点是:强度、硬度低,塑性、韧性好 C在钢铁中存在的三种形式: 溶入Fe的晶格形成固溶体(间隙固溶体)-钢 以游离石墨存在于钢铁中-铸铁。 与铁成金属间化合物如Fe3C, Fe2C, FeC)-金属间化合物 石墨性能:耐高温,可导电,润滑性好,强度、硬度、塑性和韧性低。 实线为 Fe-Fe3C 相图虚线为 Fe-C 相图 α相 C在α-Fe中的间隙固溶体,晶体结构为bcc,仅由α相形成的组织称为铁素体,记为 F(Ferrite)。α= F γ相 C在γ-Fe中的间隙固溶体,晶体结构为fcc,仅由γ相形成的组织称为奥氏体,记为 A(Austenite)。γ= A δ相 C在δ-Fe中的间隙固溶体,晶体结构也为bcc,δ相出现的温度较高,组织形貌一般不易观察,也有称高温铁素体。

Fe3C相铁与碳生成的间隙化合物,其中碳的重量百分比为6.69%,晶体结构是复杂正交晶系,仅由Fe3C相构成的组织称为渗碳体,依然记为Fe3C,也有写为 Cm(Cementite)。 石墨在铁碳合金中的游离状态下存在的碳为石墨,组织记G(Graphite)。 L相碳在高温下熔入液体,相图中标记 L(Liquid)。 的冷却过程中组织还会发生变化。 Ld(Ledeburite) 的共析体组织,称为珠光体,记为P(Pearlite)

(1) ABCD ―液相线(2) AHJECF ―固相线 (3) HJB ―包晶反应线 (1495 C) L B+δH←→A J (4) ECF ―共晶反应线 (1148 C) L C←→ A E+Fe3C I (称为莱氏体) (5) PSK ―共析反应线 (727 C)As←→Fp+Fe3C (称为珠光体) (6) A CM线(ES线)―从奥氏体析出Fe3CⅡ的临界温度线 (7) A3线(GS线)―从奥氏体转变为铁素体线 五个单相区:液相区 L 高温固溶体δ;γ相(奥氏体,A) ;α相(铁素体,F) Fe3C相(渗碳体,Cm) 七个双相区:L+δ, L+γ, L+ Fe3C,δ+γ,γ+ Fe3C,α+γ;α+Fe3C 三个三相区:HJB线 L+δ+γ;ECK线 L +γ+ Fe3C;PSK线γ+α+Fe3C 工业纯铁 (C%<0.02%) 碳钢 ( C%= 0.02% 2.11 wt %) 依据C含量不同,又分为: 亚共析钢:C<0.77 wt% 共析钢: C=0.77 wt% 过共析钢:C>0.77 wt% 白口铸铁 (生铁)(C%= 2.11 6.69 wt %) 依据C含量不同,又分为: 亚共晶白口铸铁 C<4.3 wt% 共晶白口铸铁 C=4.3 wt% 过共晶白口铸铁 C>4.3 wt% 灰口铸铁(C%= 2.11 6.69 wt %) 亚共晶、共晶、过共晶灰口铸铁 工业纯铁(C%<0.02%):组织:F 相:α (F) 共析钢(C%≈0.77%):组织:P 相:α(F)+Fe3C 亚共析钢(C%=0.02 0.77%):组织:F+P 相:α (F)+Fe3C 组织转变: L→L+A→A→F+A→F+P 过共析钢(C%=0.77 2.11%):组织:P+Fe3C II相;α (F) +Fe3C 组织转变:L→L+A →A→A+Fe3C II→P+Fe3C II 共晶白口铁(C%≈4.3%):组织:L’d 相:α (F) +Fe3C 组织转变 L → Ld(A+Fe3C I)→A+Fe3C II+Fe3C I → (P + Fe3C I(Fe3CⅡ)) 亚共晶白口铁(C%=2.11~4.3%):组织:P+Fe3C II+L’d 相:α (F) +Fe3C 组织转变L→L+A→A+Ld→A+Fe3C II+Ld→P+Fe3C II+L’d 过共晶白口铁(C%=4.3 ~ 6.69%):组织:Fe3C I+L’d 相:α (F) +Fe3C 组织转变 L→L+Fe3C I→Fe3C I+Ld→Fe3C I+L’d

机械工程材料第四章铁碳合金相图

第四章铁碳合金相图 教学目的及其要求 通过本章学习,使学生们掌握铁碳合金的基本知识,学懂铁碳相图的特征点、线及其意义,了解铁碳相图的应用。 主要内容 1.铁碳合金的相组成 2.铁碳合金相图及其应用 3.碳钢的分类、编号及应用 学时安排 讲课4学时 教学重点 1.铁碳合金相图及应用 2.典型合金的结晶过程分析 教学难点 铁碳合金相图的分析和应用。 教学过程 纯铁、铁碳合金中的相 一、铁碳合金的组元 铁:熔点1538℃,塑性好,强度硬度极低,在结晶过程中存在着同素异晶转变。不同结构的铁与碳可以形成不同的固溶体。 由于纯铁具有同素异构转变,在生产上可以通过热处理对钢和铸铁改变其组织和性能。碳:在Fe-Fe3C相图中,碳有两种存在形式:一是以化合物Fe3C形式存在;二是以间隙固溶体形式存在。 二、铁碳合金中的基本相 相:指系统中具有同一聚集状态、同一化学成分、同一结构并以界面隔开的均匀组成部分。铁碳合金系统中,铁和碳相互作用形成的相有两种:固溶体和金属化合物。固溶体是铁素体和奥氏体;金属化合物是渗碳体。这也是碳在合金中的两种存在形式。 1.铁素体 碳溶于 Fe中形成的间隙固溶体称为铁素体,用 或者F表示,为体心立方晶格结构。塑性好,强度硬度低。 2.奥氏体 碳溶于 Fe中形成的间隙固溶体称为奥氏体,用 或者A表示,为面心立方晶格结构。塑性好,强度硬度略高于铁素体,无磁性。 3.渗碳体Fe3C:晶体结构复杂,含碳量6.69%,熔点高,硬而脆,几乎没有塑性。 渗碳体对合金性能的影响: (1)渗碳体的存在能提高合金的硬度、耐磨性,使合金的塑性和韧性降低。 (2)对强度的影响与渗碳体的形态和分布有关: 以层片状或粒状均匀分布在组织中,能提高合金的强度; 以连续网状、粗大的片状或作为基体出现时,急剧降低合金的强度、塑性韧性。 二、两相机械混合物 珠光体:铁素体与渗碳体的两相混合物,强度、硬度及塑性适中。 莱氏体:奥氏体与渗碳体的混合物;室温下为珠光体与渗碳体的混合物,又硬又脆。

铁碳合金相图 习题

铁碳合金相图 一、选择题 1. 铁素体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 2.奥氏体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 3.渗碳体是一种()。 A.稳定化合物 B.不稳定化合物 C.介稳定化合物 D.易转变化合物4.在Fe-Fe3C相图中,钢与铁的分界点的含碳量为()。 A.2% B.2.06% C.2.11% D.2.2% 5.莱氏体是一种()。 A.固溶体B.金属化合物 C.机械混合物 D.单相组织金属 6.在Fe-Fe3C相图中,ES线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 7.在Fe-Fe3C相图中,GS线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 8. 在Fe-Fe3C相图中,共析线也称为()。 A.A1线 B.ECF线 C.Acm线 D.PSK线 9.珠光体是一种()。 A.固溶体 B.金属化合物 C.机械混合物 D.单相组织金属

10.在铁-碳合金中,当含碳量超过()以后,钢的硬度虽然在继续增加,但强度却在明显下降。 A.0.8% B.0.9% C.1.0% D.1.1% 11.通常铸锭可由三个不同外形的晶粒区所组成,其晶粒区从表面到中心的排列顺序为()。 A.细晶粒区-柱状晶粒区-等轴晶粒区 B.细晶粒区-等轴晶粒区-柱状晶粒区 C.等轴晶粒区-细晶粒区-柱状晶粒区 D.等轴晶粒区-柱状晶粒区-细晶粒区 12.在Fe-Fe3C相图中,PSK线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 13.Fe-Fe3C相图中,共析线的温度为()。 A.724℃ B.725℃ C.726℃ D.727℃ 14.在铁碳合金中,共析钢的含碳量为()。 A.0.67% B.0.77% C.0.8% D.0.87% 二、填空题 1. 珠光体是(铁素体)和(二次渗碳体)混合在一起形成的机械混合物。 2. 碳溶解在(α-F e)中所形成的(固溶体)称为铁素体。 3. 在Fe-Fe3C相图中,共晶点的含碳量为( 4.3% ),共析点的含碳量为(0.77% )。 4. 低温莱氏体是(珠光体)和(二次渗碳体,一次渗碳体)组成的机械混合物。 5. 高温莱氏体是(奥氏体)和(共晶渗碳体)组成的机械混合物。 6. 铸锭可由三个不同外形的晶粒区所组成,即(细晶粒区),(柱状晶粒区)和心部等轴晶粒区。 7. 在Fe-Fe3C相图中,共晶转变温度是(1148 ),共析转变温度是( 727 )。 三、改正题(红色字体为改正后答案)

详解铁碳相图

详解铁碳相图 (注:在解读上面铁碳相图之前,我们要明白纯铁在不同的温度下会发生同素异晶转变,这个对于我们解读上面相图很有用。) 1:ACD线: ACD线上面完全是液相,没有固相产生。在温度1538℃时候,此时的液态铁的晶格类型为δ-Fe,如果此时的碳溶解在δ-Fe的晶格间隙中,那么就会产生一种新的相,即为铁素体相,为了区别碳溶解在α-Fe中的铁素体相,分别给它们前面加上一个δ或者α,即如果是碳溶解到晶格类型为δ-Fe的间隙中形成间隙固溶体相的就命名为δ-铁素体或直接写δ,如果是溶解到晶格类型为α-Fe的间隙中形成间隙固溶体相的就命名为α-铁素体或α或F。 伴随着温度的下降,组元----温度----成分三者是这个铁碳相图的核心理念。要看懂这个相图,弄明白组元----温度----成分关系,就能读懂这个相图。 从图中你可以看见,即便同一个温度,不同的碳含量,它的成分是不一样的,这就是为什么要提到组元----温度----成分这三者关系的原因。而铁碳相图会一直要用到这三者的关系来加以理解。 重点:铁素体就是碳溶解到δ-Fe和α-Fe的晶格间隙而形成的一种间隙固溶体相。 2:AEC区域和CDF区域 AEC和CDF区域有液相也有固相,但是,它们的成分是不一样的,AEC区域为什么是奥氏体+液相呢?为什么CDF区域是渗碳体+液相呢?首先,AEC区域之所以是奥氏体+液相,那是因为在1500℃---1148℃时候δ-Fe会转变成γ-Fe(转变温度为1394℃),也就是说,当温度从1394℃再次冷却到1148℃的时候,这时候δ-Fe已经转变成了γ-Fe,此时的碳就会溶解到γ-Fe晶格中形成一种新的间隙固溶体相,即为奥氏体,由于受到温度原因,液相并没

最全的铁碳相图

最全的铁碳相图 首先,想要了解铁碳合金、铁碳相图,则需要一些准备知识,比如合金、相、组元成分的概念等,基本如下: 合金:一种金属元素与另外一种或几种元素,通过熔化或其他方法结合而成的具有金属特性的物质。 相:合金中同一化学成分、同一聚集状态,并以界面相互分开的各个均匀组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 金属化合物:合金的组元间以一定比例发生相互作用儿生成的一种新相,通常能以化学式表示其组成。 铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。铁存在着同素异晶转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。由于α-Fe和γ-Fe 晶格中的孔隙特点不同,因而两者的溶碳能力也不同。 在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。

1.铁素体 铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。 δ=30%~50%,A KU=128~160J,σb=180~280MPa,50~80HBS. 铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。 2.奥氏体 奥氏体是碳在γ-Fe中的间隙固溶体,用符号“A”(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%。 在一般情况下,奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高,通常在对钢铁材料进行热变形加工,如锻造,热轧等时,都应将其加热成奥氏体状态,所谓“趁热打铁”正是这个意思。σb=400MPa, 170~220HBS,δ=40%~50%. 另外,奥氏体还有一个重要的性能,就是它具有顺磁性,可用于要求不受磁场的零件或部件。

铁碳合金习题答案

铁碳合金 一、填空题 1.在铁碳合金基本组织中,奥氏体、铁素体和渗碳体属 于单相组织。 珠光体和莱氏体属于两相组织。 2.根据溶质原子在溶剂晶格中的分布情况,固溶体有二种基本类型, 它们是置换固溶体和间隙固溶体。 3.根据溶质在溶剂中的溶解情况,置换固溶体可分为无限固溶体 和有限固溶体两种。 4.铁素体与渗碳体的机械混合物称为珠光体,渗碳体与铁素体 片状相间的组织又称为片状珠光体,在铁素体基体上分布着0

颗粒状渗碳体的组织又称为粒状珠光体。 5.不同晶体结构的相,机械地混合在一起的组织,叫做固态机械 混合物,铁碳合金中,这样的组织有珠光体和莱氏体。 6.在铁碳合金基本组织中,铁素体和奥氏体属于固溶体; 渗碳体属于化合物;珠光体和莱氏体属于机械混合物。 7.分别填写下列铁碳合金组织的符号: 奥氏体A;铁素体F;渗碳体C;珠光体P。 8.铁和碳形成的金属化合物(Fe3C)称为渗碳体、含碳量 为%。 9.铁素体在室温时,对碳的溶解度是%,在727℃时溶解度 是%。 1

10.奥氏体对碳的溶解度,在727℃时溶解度是%,在1148℃ 时溶解度是%。 11.含碳量小于%的铁碳合金称为钢,钢根据室温显微组织不 同,可分为以下三类: 亚共析钢钢,显微组织为铁素体+珠光体,含碳量范围~%; 共析钢钢,显微组织为珠光体,含碳量范围%; 过共析钢钢,显微组织为珠光体+渗碳体,含碳量范围~%。 12.碳在奥氏体中的溶解度随温度而变化,在1148°时溶碳量可 达%,在727°时溶碳量可达%。 2

13.人们常说的碳钢和铸铁即为铁、碳元素形成的合金。 14.20钢在650℃时的组织为铁素体+珠光体;在1000℃时的 组织为奥氏体。 15.下图所示Fe—Fe3C状态图各区的组织,分别是:○1奥氏体, ○2奥氏体+渗碳体(二次渗碳体),○3铁素体+奥氏体,○4铁素体,○5铁素体+珠光体,○6珠光体,○7珠光体+渗碳体(二次渗碳体)。 3

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe -石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体

铁碳平衡相图实用性分析

定义 铁碳平衡相图,又称铁碳相图或铁碳状态图。它以温度为纵坐标,铁碳含量为横坐标,表示在接近平衡条件和亚稳条件下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。 实用性分析 铁碳平衡相图是铁碳合金在平衡状态时的组织组成图,而不是获得非平衡的马氏体、贝氏体等组织的转变图。铁碳相图的临界温度参数仅仅局限在碳钢和铸铁,非合金钢和合金铸铁。合金钢和合金铸铁的平衡状态图由于添加了其它合金元素,与铁碳平衡状态图相差还是很大的。即使对于碳钢,直接在铁碳平衡图上读取成分----温度之间的对应关系参数值,也是不够精确的。实际上是借助于钢的加热温度临界参数手册而不是从相图上直接获得,那样得到的数值要精确和直观,对应关系明确。 铁碳平衡相图是加热和冷却过程中的速度是及其缓慢的结果,而且又局限于铁碳合金钢种,这个理论状态,是不可能在实际生产中大量运用,实际淬火等热处理加热冷却过程中组织转变都是在一定加热速度和冷却速度下进行的,不是完全达到平衡状态。 所以说铁碳平衡相图仅仅是研究热处理、学习热处理的必备基础知识和出发点,而不是直接在热处理工艺过程中运用的相图。 铁碳相图的用途究竟是什么?(转自汪庆华文章) 在很多资料中说明铁碳平衡相图在热处理中是十分重要的知识,是制定钢铁材料加热工艺的依据,而且指出:尤其是热处理工必须熟练掌握铁碳平衡相图。但是在实际生产运用中,例如:淬火、回火过程中,铁碳相图的直接应用是十分有限的,直接实用的是各种钢材的CCT、TTT、以及各种钢材的淬透性参数(曲线)、临界加热参数、临界冷却速度参数曲线,回火硬度曲线等。 铁碳相图是铁碳合金在平衡状态时的组织组成图,而不是获得非平衡的马氏体、贝氏体等组织的转变图。铁碳相图的临界温度参数仅仅局限在碳钢和铸铁,非合金钢和合金铸铁。合金钢和合金铸铁的平衡状态图由于添加了其它合金元素,与铁碳平衡状态图相差还是很大的。即使对于碳钢,直接在铁碳平衡图上读取成分----温度之间的对应关系参数值,也是不够精确的。实际上是借助于钢的加热温度临界参数手册而不是从相图上直接获得,那样得到的数值要精确和直观,对应关系明确。 另外,铁碳平衡相图是加热和冷却过程中的速度是及其缓慢的结果,而且又局限于铁碳合金钢种,这个理论状态,是不可能在实际生产中大量运用,实际淬火等热处理加热冷却过程中组织转变都是在一定加热速度和冷却速度下进行的,不是完全达到平衡状态。所以,铁碳平衡相图仅仅是研究热处理、学习热处理的必备基础知识和出发点,而不是直接在热处理工艺过程中运用的相图。

铁碳相图

§5.6 铁碳相图和铁碳合金 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是 它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图5.6-1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图5.6-1 铁碳双重相图 【说明】图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。【说明】 图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图5.6-2。 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图5.6-2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图5.6-3,图5.6-4表示碳原子存在于面心立方晶格中正八面体的中心。 图5.6-3奥氏体的显微组织图5.6-4碳在γ-Fe晶格中的位置渗碳体 (Fe3C)渗碳体是铁和碳形成的化合物,含碳量为6.67%(有些书上为6.69%),具有复杂的晶体结构(图

铁碳合金相图习题终审稿)

铁碳合金相图习题 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

铁碳合金相图 一、选择题 1. 铁素体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 2.奥氏体是碳溶解在()中所形成的间隙固溶体。 A.α-Fe B.γ-Fe C.δ-Fe D.β-Fe 3.渗碳体是一种()。 A.稳定化合物 B.不稳定化合物 C.介稳定化合物 D.易转变化合物4.在Fe-Fe3C相图中,钢与铁的分界点的含碳量为()。 A.2% B.2.06% C.2.11% D.2.2% 5.莱氏体是一种()。 A.固溶体B.金属化合物 C.机械混合物 D.单相组织金属 6.在Fe-Fe3C相图中,ES线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 7.在Fe-Fe3C相图中,GS线也称为()。

A.共晶线 B.共析线 C.A3线 D.Acm线 8. 在Fe-Fe3C相图中,共析线也称为()。 A.A1线 B.ECF线 C.Acm线 D.PSK线 9.珠光体是一种()。 A.固溶体 B.金属化合物 C.机械混合物 D.单相组织金属 10.在铁-碳合金中,当含碳量超过()以后,钢的硬度虽然在继续增加,但强度却在明显下降。 A.0.8% B.0.9% C.1.0% D.1.1% 11.通常铸锭可由三个不同外形的晶粒区所组成,其晶粒区从表面到中心的排列顺序为()。 A.细晶粒区-柱状晶粒区-等轴晶粒区 B.细晶粒区-等轴晶粒区-柱状晶粒区 C.等轴晶粒区-细晶粒区-柱状晶粒区 D.等轴晶粒区-柱状晶粒区-细晶粒区 12.在Fe-Fe3C相图中,PSK线也称为()。 A.共晶线 B.共析线 C.A3线 D.Acm线 13.Fe-Fe3C相图中,共析线的温度为()。

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, 3 Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥

铁碳平衡相图

铁碳平衡相图 又称铁碳相图或铁碳状态图。它以温度为纵坐标,碳含量为横坐标,表示在接近平衡条件(铁-石墨)和亚稳条件(铁-碳化铁)下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。 简史早期利用热分析法和金相法发现铁的加热和冷却曲线上出现两个驻点,即临界点A3和A2,它们的在 1868 年,俄国学者切尔诺夫(Д.к.Чернов)就注意到只有把钢加热到某一温度”a”以上再快冷,才能使钢淬硬,从而有了临界点的概念。至1887~1892年奥斯蒙(F.Osmond)温度视加热或冷却 (分别以A c和A r表示)过程而异。奥斯蒙认为这表明铁有同素异构体,他称在室温至A2温度之间保持稳定的相为α铁;A2~A3间为β铁;A3以上为γ铁。1895年,他又进一步证明,如铁中含有少量碳,则在690或710℃左右出现临界点,即A r1点,标志在此温度以上碳溶解在铁中,而在低于这一温度时,碳以渗碳体形式由固溶体中分解出来,随铁中碳量提高,A r3下降而与A r2 1合为一点。1904年又发现A4至熔点相合,然后断续下降,至含碳为0.8~0.9%时与A r 间为δ铁。以上述临界点工作的成果为基础,1899年罗伯茨-奥斯汀(W.C.Roberts-Austen)制定了第一张铁碳相图;而洛兹本 (H.W.Bakhius Roozeboom)更首先在合金系统中应用吉布斯(Gibbs)相律,于1990年制定出较完整的铁碳平衡图。随着科学技术的发展,铁碳平衡图不断得到修订,日臻完善。目前采用的铁碳平衡图示于图1,图中各重要点的温度、浓度及含义如下表所列。当铁中含碳量不同时,得到的典型组织如图2所示。

铁碳相图详解

三、典型铁碳合金的平衡结晶过程 铁碳相图上的合金,按成分可分为三类: ⑴ 工业纯铁(<0.0218% C ),其显微组织为铁素体晶粒,工业上很少应用。 ⑵ 碳钢(0.0218%~2.11%C ),其特点是高温组织为单相A ,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C )、共析钢(0.77%C )和过共析钢(0.77%~2.11%C )。 ⑶ 白口铸铁(2.11%~6.69%C ),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C )、共晶白口铸铁(4.3%C )和过共晶白口铸铁(4.3—6.69%C ) 下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。 图3-26 七种典型合金在铁碳合金相图中的位置 ㈠ 工业纯铁(图3-26中合金①)的结晶过程 合金液体在1~2点之间通过匀晶反应转变为δ铁素体。继续降温时,在2~3点之间,不发生组织转变。温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。在4~5点之间,不发生组织转变。冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。在6-7点之间冷却,不发生组织转变。温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe 3C III 。7点以下,随温度下降,Fe 3C III 量不断增加,室温下Fe 3C III 的最大量为:%31.0%1000008.069.60008.00218.03=?--=ⅢC Fe Q 。图3-27为工业纯铁的冷却曲线及组织转变示意图。工业纯铁的室温组织为α+Fe 3C III ,如图3-28所示,图中个别部位的双晶界内是Fe 3C III 。

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 发布日期:[08-03-10 14:26:26] 浏览人次:[5779 ] https://www.360docs.net/doc/e216693776.html, 马棚网 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe 和C 能够形成Fe 3C, Fe 2C 和FeC 等多种稳定化合物。所以,Fe-C 相图可以划分成Fe-Fe 3C, Fe 3C-Fe 2C, Fe 2C-FeC 和FeC-C 四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe 3C 部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过 化合物Fe 3C 称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe 和C ,C 原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图(图1)。Fe-Fe 3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe 3C 相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe 3C 。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe 是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

打印铁碳相图习题参考答案

一、解释下列名词 1、铁素体:碳溶入α-Fe中形成的间隙固溶体。奥氏体:碳溶入γ-Fe中形成的间隙固溶体。渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。珠光体:铁素体和渗碳体组成的机械混合物。莱氏体:由奥氏体和渗碳体组成的机械混合物。 2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。 Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3、钢:含碳量大于%,小于%的铁碳合金白口铸铁:含碳量大于%的铁碳合金。 二、填空题 1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。 2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。 3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4、工业纯铁的含碳量为≤%,室温平衡组织为F+ Fe3CⅢ。 5、共晶白口铁的含碳量为%,室温平衡组织P占%,Fe3C共晶占%,Fe3CⅡ占%。 6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为。 7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1、为什么γ-Fe 和α- Fe 的比容不同一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化 答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。 2、铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)的结构、组织形态、性能等各有何特点 答:铁素体结构为体心立方晶格。由于碳在α-Fe中的溶解度`很小,它的性能与纯铁相近。塑性、韧性好,强度、硬度低。它在钢中一般呈块状或片状。 奥氏体(A)结构为面心立方晶格。因其晶格间隙尺寸较大,故碳在γ-Fe中的溶解度较大。有很好的塑性。 渗碳体(Fe3C)具有复杂晶格的间隙化合物。渗碳体具有很高的硬度,但塑性很差,延伸率接近于零。在钢中以片状存在或网络状存在于晶界。在莱氏体中为连续的基体,有时呈鱼骨状。 珠光体(P)为铁素体和渗碳体组成的机械混合物。铁素体和渗碳体呈层片状。珠光体有较高的强度和硬度,但塑性较差。 莱氏体(Ld)为奥氏体和渗碳体组成的机械混合物。在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。由于渗碳体很脆,所以莱氏体是塑性很差的组织。 3、Fe-Fe3C合金相图有何作用在生产实践中有何指导意义又有何局限性 答:⑴碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料。铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。 ⑵为选材提供成分依据:铁碳相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;

铁碳相图和铁碳合金

铁碳相图和铁碳合金(一) 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组 织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

铁碳合金相图说课

——《铁碳合金相图》说课稿 尊敬的各位领导、各位老师大家好,我今天说课的课题是《铁碳合金相图》,下面我将从说教材、说学生情况、说教法、说学法、说教学过程设计等方面来对本课进行说明。 一、教材分析: 1.教材的地位和作用: 《金属材料及热处理》是机械工业出版社出版的,为高等职业技术学校和高等专科学校的材料、机械及相近专业所必修的技术基础课. 在机械制造行业中有举足轻重的地位.,本书由金属的性能\金属学,热处理,金属材料等部分组成, 主要讲授材料的是成分、组织结构和性能之间的关系和改变材料性能的途径. 本书共分十五章,其中第一章金属材料的性能、第五章铁碳合金相图和第六章钢的热处理为本教材的核心内容,同时也是全书的重点和难点所在.金属材料中钢和铸铁(两者均属于铁碳合金)是工业中应用最广的,要掌握各种钢和铸铁的组织、性能、特点及热处理原理,首先必须了解铁碳合金中成分、组织与性能之间的相互关系。铁碳合金相图就是研究铁碳合金组织与性能关系的重要工具,它为铁碳合金的选材提供了理论依据,同时又是制定铸、锻、热处理等加工工艺的重要依据之一,因此,《铁碳合金相图》是本课程的重要内容。 2.教学目标及确定依据 根据本节课的主要内容、特点和培养学生能力的全面提高学生素质的教学思想,根据教学大纲的要求,结合学生现有的知识水平和理解能力,确定本课教学目标: ●知识目标:了解铁碳相图的组成,熟悉相图特性点、特性线的含义;掌握简化的Fe-Fe3C相图,要求能够默画简化的Fe-Fe3C相图,并能够正确填写相区组织,铁碳合金的分类. ●能力目标:通过演示、思考、归纳、运用知识的过程,培养学生的观察能力、思维能力和运用知识分析解决问题的能力。 ●思想目标:从思想上认识到铁碳合金相图就是研究铁碳合金组织与性能关系的重要工具. 3.重点、难点及确立依据 结合本节课教材及学生的实际情况,本节课的重点是简化的Fe-Fe3C相图。因为它是分析典型铁碳合金结晶过程的基础,是分析铁碳合金成分、组织和性能之间关系的工具,是铁碳合金选材的依据,是制定铸、锻、热处理等加工工艺的重要依据之一。要想掌握简化的Fe-Fe3C相图,必须首先理解特性点、特性线的含义,根据对特性点、特性线的分析,就可以知道各种成分的铁碳合金在不同温度时的状态或组织,从而为填写相区组织,为分析铁碳合金成分、组织、性能之间关系打好基础,因此特性点、特性线的含义是学好本节课的关键。针对学生的实际情况,画简化的Fe-Fe3C相图并填写相区组织是本课的难点,因为Fe-Fe3C 相图虽然经过了简化,但还是有10个特性点,8条特性线,需要填写17个相区组织,这对于学习基础较差、注意力不容易集中的高职学生来说是有相当难度的。二:学情分析 我授课的对象是普通高中参加高考的高职生,学生文化课基础相对较弱,还没有金属材料与热处理方面的感性认识,生产实践更是一张白纸,学起来有一定难度,要学好确非易事。但他们在前面已经学习了基本二院相图知识,对这节的铁碳相图的理解有很大的帮助。 三.教法指导

相关文档
最新文档