2019-2020年中考数学专题提升:菱形存在性问题解决方法汇总(PDF版)

2019-2020年中考数学专题提升:菱形存在性问题解决方法汇总(PDF版)
2019-2020年中考数学专题提升:菱形存在性问题解决方法汇总(PDF版)

01问题与方法

作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形:(1)有一组邻边相等的平行四边形菱形;

(2)对角线互相垂直的平行四边形是菱形;

(3)四边都相等的四边形是菱形.

坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD是菱形,则其4个点坐标需满足:

考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等.

即根据菱形的图形性质,我们可以列出关于点坐标的3个等式,

故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.

因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:

题型如下:

(1)2个定点+1个半动点+1个全动点

(2)1个定点+3个半动点

思路1:先平四,再菱形

设点坐标,根据平四存在性要求列出“A+C=B+D”(AC、BD为对角线),再结合一组邻边相等,得到方程组.

思路2:先等腰,再菱形

在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.

02典型例题

如图,在坐标系中,A点坐标(1,1),B点坐标为(5,4),点C在x轴上,点D 在平面中,求D点坐标,使得以A、B、C、D为顶点的四边形是菱形

以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法.

03中考真题

2019齐齐哈尔中考删减

【两定两动:坐标轴+平面】

如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.

(1)求抛物线的解析式;

(2)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N 为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

2019辽阳中考删减

【两定两动:对称轴+平面】

如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.

(1)求抛物线解析式;

(2)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,

C为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.

2018齐齐哈尔中考删减

【两定两动:斜线+平面】

综合与探究

如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.

(1)求抛物线的解析式

(2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.

04猜存在性

存在性问题往往我们都能求出最终的点坐标,以致于可能都忘了当初问的问题是“存在吗?”

2018衡阳中考删减

【两定两动:斜线+抛物线】

如图,已知直线y=-2x+4分别交x轴、y轴于点A、B,抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.

(1)若抛物线的解析式为y=-2x2+2x+4,设其顶点为M,其对称轴交AB于点N.

①求点M、N的坐标;

②是否存在点P,使四边形MNPD为菱形?并说明理由.

为啥不存在?

为什么此题的答案会是不存在,表面上看是不满足邻边相等,究其原因,是因为M、N是定点,P、D虽为动点但仅仅是半动点,且P、D横坐标相同,故本题只需一个字母便可表示出4个点的坐标,对于菱形四个点满足:

若只有1个未知数或2个未知数,便出现方程个数>未知量个数的情况,就有可能会无解.

方程个数<未知量个数,无法确定有限组解;方程个数>未知量个数,可能会无解.

特殊图形的存在性,其动点是在线上还是在平面上,是有1个动点还是有2个动点,都是由其图形本身决定,矩形和菱形相比起平行四边形,均多一个等式,故对动点位置的要求可以有3个半动点或者1个全动点+1个半动点,若减少未知量的个数,反而可能会产生无解的情况.

不难想象,对于正方形来说,可以有4个未知量,比如在坐标系中已知两定点,若要作正方形,只能在平面中再取另外两动点,即2个全动点,当然,也有可能

是1全动+2半动,甚至是4个半动点

练习

如图,抛物线y=x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,已知抛物线的对称轴所在的直线是x=9/4,点B的坐标为(4,0).

(1)求抛物线解析式;

(2)若M为x轴上一动点,在抛物线上是否存在点N,使得点B、C、M、N构成的四边形是菱形,若存在,求出点N坐标,若不存在,请说明理由.

问题本身源于对动点位置的选取导致点坐标中未知量的个数与方程个数不一致,以致出现不存在的情况.

05 一定三动

如图,抛物线过A(-1,0)、B(3,0)、C(0,3),点C关于抛物线对称轴的对称点为D点,连接AD.点P在抛物线上,点M在直线AD上,点N在抛物线对称轴上,四边形OPMN能否为菱形,若能,求出P点坐标,若不能,说明理由.

但显然,这样的问题并不像“两定两动”问题那样普遍易解,所以不常考也是正常的,事实上,方法其实是同样的方法,因为就题目构造而言,其实“3个半动点”与“1全动+1半动”并无本质区别.

数列中的存在性问题 经典

专题:数列中的存在性问题 一、单存在性变量 解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。 例1、已知数列{ n a }的前n 项和为 n S =235n n +,在数列{n b }中,1b =8,164n n b b +-=0,问是 否存在常数c 使得对任意n , log n c n a b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由. 解析:假设存在常数c 使得对任意n , log n c n a b +恒为常数M , ∵n S =235n n +, ∴当n =1时,则 1a = 1 S =8, 当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +, 当n =1适合, ∴ n a =62 n +, 又∵164n n b b +-=0, ∴1n n b b +=164, ∴数列{n b }是首项为8,公比为1 64的等比数列, ∴n b = 118( )64n -=962n -, 则 log n c n a b += 9662log 2n c n -++= 62(96)log 2a n n ++-= 6(1log 2)29log 2 a a n -++, 又∵对任意n ,log n c n a b +恒为常数M , ∴ 6(1log 2) a -=0,解得c =2, ∴M = 29log 2 a +=11, ∴存在常数c =2使得对任意n , log n c n a b +恒为常数M =11. 二、双存在型变量 解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进

中考数学压轴题专题复习——旋转的综合含详细答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF. (1)求证:四边形ABEF是菱形; (2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示). 【答案】(1)详见解析;(2)FE·sin(-90°) 【解析】 【分析】 (1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得 ∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论; (2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可. 【详解】 (1)∵四边形ABCD是平行四边形, ∴AD∥BC, ∴∠FAE=∠BEA, 由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF, ∴∠BAE=∠FEA, ∴AB∥FE, ∴四边形ABEF是平行四边形, 又BE=EF, ∴四边形ABEF是菱形; (2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.

∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B ∴∠1=∠2 又AM=NM,AB=MG ∴△ABM≌△MGN ∴∠B=∠3,NG=BM ∵MG=AB=BE ∴EG=AB=NG ∴∠4=∠ENG= (180°-)=90°- 又在菱形ABEF中,AB∥EF ∴∠FEC=∠B= ∴∠FEN=∠FEC-∠4=- (90°-)=-90° ②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN. 同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90° 综上所述,∠FEN=-90° ∴当点M在BC上运动时,点N在射线EH上运动(如图3) 当FN⊥EH时,FN最小,其最小值为FE·sin(-90°) 【点睛】 本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值. 2.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<

(全国通用)中考数学专题拔高系列:菱形存在性问题解决方法汇总

01问题与方法 作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形:(1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形. 坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形 多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD是菱形,则其4个点坐标需满足: 考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等. 即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同. 因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型: 题型如下: (1)2 个定点+1 个半动点+1 个全动点 (2)1 个定点+3 个半动点 思路1:先平四,再菱形 设点坐标,根据平四存在性要求列出“A+C=B+D”(AC、BD 为对角线),再结合一组邻边相等,得到方程组. 思路2:先等腰,再菱形 在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点. 02典型例题 如图,在坐标系中,A点坐标(1,1),B点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D点坐标,使得以A、B、C、D为顶点的四边形是菱形

以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法. 03中考真题 2019齐齐哈尔中考删减 【两定两动:坐标轴+平面】 如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC. (1)求抛物线的解析式; (2)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N 为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

中考数学专题存在性问题解题策略角的存在性处理策略

第1讲 角的存在性处理策略 知识必备 一、一线三等角 1.如图1-1-1,o 90=∠=∠=∠E D ACB 且0 45=∠CAB →CBE ACD ??≌,此为 “一线三直角”全等,又称“K 字型”全等; 图1-1-1 图1-1-2 图1-1-3 图1-1-4 2.如图1-1-2,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为“一线三直角” 相似,又称“K 字型”相似; 3.如图1-1-3,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为更一般的“一线三等角”. 二、相似三角形的性质 相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例. 三、正切的定义 如图1-1-4,在ABC Rt ?中,b a A =∠tan ,即A ∠的正切值等于A ∠的对边与A ∠的邻边之比;同理,a b B = ∠tan ,则1tan tan =∠?∠B A ,即互余两角的正切值互为倒数. 方法提炼 一、基本策略:联想构造 二、构造路线 方式(一):构造“一线三等角” 1.45o 角→构等腰直角三角形→造“一线三直角”全等,如图1-2-1; 图1-2-1 2.30o 角→构直角三角形→造“一线三直角”相似,如图1-2-2;

A 图1-2-2 3.tan α=k →构直角三角形→造“一线三直角”相似,如图1-2-3; 4.“一线三等角”的应用分三重境界; 一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”; 二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题; 三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示; 方式 (二):构造“母子型相似” “角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似 ”,其核心结构如图1-2-8所示. 方式(三):整体旋转法( *) DAC DEA →DA 2=DC ?DE →DG 2+AG 2=DC ?DE 定 定 定 定 定 定 定 定 A A A 图1-2-3 图1-2-4 图1-2-5 图1-2-6 图1-2-7 图1-2-8

2017年数学中考专题《存在性问题》

2017年数学中考专题《存在性问题》 题型概述 【题型特征】存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高.存在性问题按定性可分为:肯定型和否定型.存在性问题在假设存在以后进行的推理或计算,对基础知识,基本技能要求较高,并具备较强的探索性.正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验. 【解题策略】不同的存在性问题解法不同.下面按照解法及设问方式的不同将存在性问题分为代数方面的存在性问题(如方程根是否存在、最值是否存在等)、点的存在性问题(如构成特殊图形的点是否存在)并举例分析. (1)代数方面的存在性问题的解法思路是:将问题看成求解题,进行求解,进而从有解或无解的条件,来判明数学对象是否存在,这是解决此类问题的主要方法. (2)点的存在性问题的解法思路是:假设存在→推理论证→得出结论.若能导出合理的结果,就做出“存在”的判断;若导出矛盾,就做出不存在的判断. 真题精讲 类型一 代数方面的存在性问题 典例1 (2016·广东梅州)如图,在平面直角坐标系中,已知抛物线2 y x bx c =++过,,A B C 三点,点A 的坐标是(3,0),点C 的坐标是(0,-3),动点P 在抛物线上. (1)b = ,c = ,点B 的坐标为 ;(直接填写结果) (2)是否存在点P ,使得ACP ?是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由; (3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连接EF ,当线段EF 的长度最短时,求出点P 的坐标. 【解析】二次函数的图象及其性质,三角形中位线定理,应用数学知识综合解决问题的能力. 【全解】(1)-2 -3 (-1,0) (2)存在. 第一种情况,当以C 为直角顶点时,过点C 作1CP AC ⊥,交抛物线于点1P .过点1P 作y 轴的垂线,垂足是M .如图(1), ,90OA OC AOC =∠=?Q , 45OCA OAC ∴∠=∠=?. 190ACP ∠=?Q , 11 904545MCP CPM ∴∠=?-?=?=∠. 1MC MP ∴=.

中考数学压轴题专题旋转的经典综合题含详细答案

一、旋转 真题与模拟题分类汇编(难题易错题) 1.在△ABC 中,AB=AC ,∠BAC=α(?<

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=?-?=?。 又∵∠DEC=45°,∴△DCE 为等腰直角三角形。 ∴DC=CE=BC 。 ∵∠BCE=150°,∴(180150) EBC 152 ?-?∠= =?。 而1 EBC 30152 α∠=?-=?。∴30α=?。 (1)∵AB=AC ,∠BAC=α,∴180ABC 2 α ?-∠= 。 ∵将线段BC 绕点B 逆时针旋转60°得到线段BD ,∴DBC 60∠=?。 ∴180ABD ABC DBC 603022 αα ?-∠=∠-∠= -?=?-。 (2)由SSS 证明△ABD ≌△ACD ,由AAS 证明△ABD ≌△EBC ,即可根据有一个角等于60?的等腰三角 形是等边三角形的判定得出结论。 (3)通过证明△DCE 为等腰直角三角形得出(180150) EBC 152 ?-?∠==?,由(1) 1 EBC 302α∠=?-,从 而1 30152 α?-=?,解之即可。 2.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)请问EG 与CG 存在怎样的数量关系,并证明你的结论; (2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由) 【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立 【解析】 【分析】 (1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG =EG . (2)结论仍然成立,连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点;再证

二次函数专题训练(菱形的存在性)含解答

1.如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0). (1)求点B的坐标; (2)若直线DE交梯形对角线BO于点D,交y正半轴于点E,且OE=4,OD=2BD,求直线DE的解析式; (3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由. 2.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐

标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式; (2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由. 【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】 3.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C

(0,﹣8),点D是抛物线的顶点. (1)求抛物线的解析式及顶点D的坐标; (2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标; (3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标. 4.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动

二次函数的存在性问题之菱形(含答案)

二次函数的存在性问题之菱形 1. 如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E. (1)求抛物线解析式; (2)若点P在第一象限内,当OD=4PE时,求四边形POBE 的面积; (3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.2. 如图,直线与轴、轴分别交于、两点,抛物线 经过、两点,与轴的另一个交点为,连接. (1)求抛物线的解析式及点的坐标; (2)点在抛物线上,连接,当时,求点的坐标; (3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动,、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面内是否存在点 ,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由. 第1页共30页

3. 如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0). (1)求抛物线的解析式; (2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y= (k >0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.4. 综合与探究 如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C. (1)求抛物线的解析式 (2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N 若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由. 注:二次函数y=ax2+bx +c(a≠0)的顶点坐标为(﹣,) 第2页共30页

中考专题存在性问题解题策略 角的存在性处理策略

第1讲 角的存在性处理策略 知识必备 一、一线三等角 1.如图1-1-1,o 90=∠=∠=∠E D ACB 且045=∠CAB →CBE ACD ??≌,此为“一线三直角”全等,又称“K 字型”全等; 图1-1-1 图1-1-2 图1-1-3 图1-1-4 2.如图1-1-2,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为“一线三直角”相似,又称“K 字型”相似; 3.如图1-1-3,o 90=∠=∠=∠E D ACB →CBE ACD ??∽,此为更一般的“一线三等角”. 二、相似三角形的性质 相似三角形的对应边成比例,其比值称为相似比; 相似三角形的对应线段成比例. 三、正切的定义 如图1-1-4,在ABC Rt ?中,b a A =∠tan ,即A ∠的正切值等于A ∠的 对边与A ∠的邻边之比;同理,a b B =∠tan ,则1tan tan =∠?∠B A ,即互余两角的正切值互为倒数. 方法提炼 一、基本策略:联想构造 二、构造路线 方式(一):构造“一线三等角” 1.45o 角→构等腰直角三角形→造“一线三直角”全等,如图1-2-1;

图1-2-1 2.30o 角→构直角三角形→造“一线三直角”相似,如图1-2-2; 图1-2-2 3.tanα=k →构直角三角形→造“一线三直角”相似,如 图1-2-3; 4.“一线三等角”的应用分三重境界; 一重境:当一条线上已有三个等角时,只要识别、证明,直接应用模型解题,如图1-2-4所示的“同侧型一线三等角”及图1-2-5所示的“异侧型一线三等角”; 二重境:当一条线上已有两个等角时,需要再补上一个等角,构造模型解题; 三重境:当一条线上只有一个角时,需要再补上两个等角,构造模型解题,如图1-2-6及图1-2-7所示; 方式 (二):构造“母子型相似” “角处理”,还可以在角的一边上某点处作水平或竖直辅助线,造成某水平边或竖直边对此角结构,然后在这条线上补出一个与此角相等的角,构造出“母子型相似”,其核心结构如图1-2-8所示. 方式(三):整体旋转法(*) 前两种构造属静态构造方式,再介绍一种动态构造方式,即整体旋转法,其核心思想是“图形的旋转(运动)本质是图形上点旋转(运动);反过来,点的旋转(运动)可以看成该点所在图形的旋转(运动)”. 下面以三个问题说明此法: 问题1 已知点A (3,4),将点A 绕原点O 顺时针方向旋转45o角,求其对应点A’的坐标. 简析 第一步 (“整体旋转”):如图1-2-9,作AB ⊥y 轴于点B ,则AB =3,OB =4,点A 绕原点O 顺时针方向旋转45o得到点A ’,可看成Rt △OAB 绕原点O 顺时针方向旋转45o得到Rt △OA ’B ‘,则 图1-2-3 图1-2-4 图1-2-5 图1-2-6 图1-2-7 图1-2-8

四边形之存在性问题(讲义及答案)

四边形之存在性问题(讲义) 课前预习 一般悄况下我们如何处理存在性问题? (1) 研究背景图形 坐标系背景下研究 ____________ 、 ______ 究 ___________ 、 ____________ 、 ______ (2) 根据不变特征,确定分类标准 研究定点,动点,定线段,确定分类标准 不变特征举例: ① 等腰三角形(两定一动) 以定线段作为 ________ 或者— _______________ 确定点的位 ② 置.等腰直角三角形(两定 一动) 以 知识点睛 存在性问题处理框架: ① 研究背景图形. ② 根据不变特征,确定分类标准. ③ 分析特殊状态的形成因素,画出符合题意的图形并求解. ④ 结果验证. 平行四边形存在性问题特征举例: 分析定点、动点. ① 三定一动,连接定点出现三条定线段.定线段分别作 为平行四边形的 _________ ,利用 _____________ 确定 点坐标. ② 两定两动,连接定线段,若定线段作为平行四边形的 ________ ,则通过 ___________ 确定点的坐标;若定线 段作为平行四边形的 ___________ ,则定线段绕 __________ 旋转,利用 _______________ 确定点的坐标. 结合图形进行验证. ;儿何图形研 或者 来分类,利用 来分类,然后借助 确定点的位置. (3) 分析特殊状态的形成因素,画出符合题意的图形并求解 (4) 结果验证 2. (1) (2)

3.特殊平行四边形存在性问题不变特征举例: ①菱形存在性问题(两定两动) 转化为等腰三角形存在性问题; 以定线段作为底边或者腰确定分类标准,利用两圆一线确定一动点的位置,然后通过平移确定另一动点坐标. ②正方形存在性问题(两定两动) 转化为等腰直角三角形存在性问题; 根据直角顶点确定分类标准,利用两腰相等或者45。角确定一动点的位置,然后通过平移确定另一动点坐标. 2如图,在平面直角坐标系中,直线y = -?x + 3与X轴、>' 4 轴分别交于点A, 点C的坐标为(0, -2 ).若点D在直线 AB上运动,点E在直线AC±运动,当以0, 4, D, E为顶点的四边形是平行四边形时,求点D的坐标.

平行四边形的存在性问题

平行四边形的存在性问题 专题攻略 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点. 如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况. 灵活运用向量和中心对称的性质,可以使得解题简便. 针对训练 1.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标. 解析、由y=-x2-2x+3=-(x+3)(x-1)=-(x+1)2+4, 得A(-3,0),B(1,0),C(0,3),P(-1,4). 如图,过△P AC的三个顶点,分别作对边的平行线,三条直线两两相交的三个交点就是要求的点M. ①因为AM1//PC,AM1=PC,那么沿PC方向平移点A可以得到点M1. 因为点P(-1,4)先向下平移1个单位,再向右平移1个单位可以与点C(0,3)重合,所以点A(-3,0)先向下平移1个单位,再向右平移1个单位就得到点M1(-2,-1). ②因为AM2//CP,AM2=CP,那么沿CP方向平移点A可以得到点M2. 因为点C(0,3)先向左平移1个单位,再向上平移1个单位可以与点P(-1,4)重合,所以点A(-3,0)先向左平移1个单位,再向上平移1个单位就得到点M2(-4,1). ③因为PM3//AC,PM3=AC,那么沿AC方向平移点P可以得到点M3. 因为点A(-3,0)先向右平移3个单位,再向上平移3个单位可以与点C(0,3)重合,所以点P(-1,4)先向右平移3个单位,再向上平移3个单位就得到点M3(2,7). 2.如图,在平面直角坐标系xOy中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标. 解析.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0). ①如图1,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB 的中点(1,0)对称,所以点M的横坐标为2. 当x=2时,y =-x2+2x+3=3.此时点M的坐标为(2,3).

2013年及以前 探究菱形的存在性问题汇编

35、(2013?咸宁压轴题)如图,已知直线y=x+1与x 轴交于点A ,与y 轴交于点B ,将△AOB 绕点O 顺时针旋转90°后得到△COD . (1)点C 的坐标是 (0,3) 线段AD 的长等于 4 ; (2)点M 在CD 上,且CM=OM ,抛物线y=x 2 +bx+c 经过点G ,M ,求抛物线的解析式; (3)如果点E 在y 轴上,且位于点C 的下方,点F 在直线AC 上,那么在(2)中的抛物线上是否存在点P ,使得以C ,E ,F ,P 为顶点的四边形是菱形?若存在,请求出该菱形的周长l ;若不存在,请说明理由. 考点: 二次函数综合题. 分析: (1)首先求出图象与x 轴交于点A ,与y 轴交于点B 的坐标,进而得出C 点坐标以 及线段AD 的长; (2)首先得出点M 是CD 的中点,即可得出M 点坐标,进而利用待定系数法求二次函数解析式; (3)分别根据当点F 在点C 的左边时以及当点F 在点C 的右边时,分析四边形CFPE 为菱形得出即可. 解答: (1)点C 的坐标是(0,3),线段AD 的长等于4; ······················································ 3分 (说明:前一个空为1分,后一个空为2分) (2)∵OM CM =, ∴COM OCM ∠=∠. ∵?=∠+∠=∠+∠90MOD COM ODM OCM , ∴MOD ODM ∠=∠, ∴CM MD OM ==, ∴点M 是CD 的中点, ·············································································· 4分∴点M 的坐标为)2 3 ,21(. ············································································ 5分 (说明:由CM =OM 得到点M 在OC 在垂直平分线上,所以点M 的纵坐标为 2 3 ,再求出直线CD 的解析式,进而求出点M 的坐标也可.) ∵抛物线c bx x y ++=2经过点C ,M ,

中考数学专题复习——存在性问题

中考数学专题复习——存在性问题 一、二次函数中相似三角形的存在性问题 1.如图,把抛物线2 =向左平移1个单位,再向下平移4个单位,得到抛物线2 y x =-+. y x h k () 所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D. (1)写出h k 、的值;(2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由. 2.如图,抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P, 使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

二、二次函数中面积的存在性问题 3.如图,抛物线()20y ax bx a >=+与双曲线k y x = 相交于点A ,B .已知点B 的坐标为(-2,-2), 点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式;(2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,写出点D 的坐标; 若不存在,说明理由. 4.如图,抛物线y =ax 2 +c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, A (-2,0), B (-1, -3). (1)求抛物线的解析式;(3分) (2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分) (3)在第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分) (4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,说明理由。

最新中考数学压轴题旋转问题带答案

旋转问题 考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。 旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。 一、直线的旋转 1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,4 = MN,1 = MA,1 > MB.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N x AB=.(1)求x的取值范围; (2)若△ABC为直角三角形,求x的值; (3)探究:△ABC的最大面积? 2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α. (1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________; ②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由. C (第1题)

解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°, 根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1; ②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°, 根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5. (2)当∠α=90°时,四边形EDBC是菱形. ∵∠α=∠ACB=90°, ∴BC‖ED, ∵CE‖AB, ∴四边形EDBC是平行四边形. 在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2, ∴∠A=30度, ∴AB=4,AC=2 , ∴AO= = . 在Rt△AOD中,∠A=30°, ∴AD=2, ∴BD=2, ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形. 3、(2009年北京市) 在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1) (1)在图1中画图探究: ①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直

云南中考数学《专项三压轴题》精讲教学案类型⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

类型⑦平行四边形及矩形、菱形、正方形存在性问题探究 ,备考攻略) 在平行四边形有关存在性问题中,常会遇到这样两类探究性的问题: 1.已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”). 2.已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”). 平行四边形的这四个点有可能是定序的,也有可能没有定序.

1.确定动点位置时出现遗漏. 2.在具体计算动点坐标时出现方法不当或错解. 1.分清题型(属于三定一动还是两定两动,因为这两种题型的分类标准有所不同).2.分类讨论且作图(利用分类讨论不重不漏的寻找动点具体位置). 3.利用几何特征计算(不同的几何存在性要用不同的解题技巧). 可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”.

1.如果为“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点;这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点. 2.如果为“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论. 1.若平行四边形的四个顶点都能用坐标来表示,则直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解.2.若平行四边形的四个顶点中某些点不能用坐标表示,则利用列方程组解图形交点的方法解决. 3.灵活运用平行四边形的中心对称的性质,也可使问题变得简单. 4.平移坐标法.先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标). 再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标.最后根据

几何专题(七)——存在性问题(含答案)

学生做题前请先回答以下问题 问题1:直角三角形存在性问题的处理思路是什么? 问题2:相似三角形的存在性问题的处理思路是什么? 问题3:常见的夹角固定,两点动的等腰三角形的存在性都有哪些?问题的处理思路是什么? 几何专题(七)——存在性问题 一、单选题(共8道,每道12分) 1.如图,在等腰梯形ABCD中,AD∥BC,AD=6cm,BC=14cm,∠B=60°.P为下底BC上一点(不与点B,C重合),连接AP,过点P作射线PE交线段DC于点E,使得∠APE=∠B.若DE:EC=5:3,则BP=( ) A.4或6 B.3或8 C. D.2或12 答案:D 解题思路:

试题难度:三颗星知识点:三等角模型 2.如图,在矩形ABCD中,AB=3,BC=4,E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处.当为直角三角形时,BE的长为( ) A. B.

C. D. 答案:C 解题思路: 试题难度:三颗星知识点:翻折变换(折叠问题)

3.将三角形纸片ABC按如图所示的方式折叠,使点B落在AC边上的点处,折痕交AB于点E,交BC于点F.已知AB=AC=6,BC=8,若以点,F,C为顶点的三角形与△ABC相似,则BF的长为( ) A. B.4 C. D. 答案:D 解题思路:

试题难度:三颗星知识点:翻折变换(折叠问题) 4.如图,在△ABC中,∠ACB=90°,把△ABC绕点C顺时针旋转到的位置,交直线CA于点D.若AC=6,BC=8,当为等腰三角形时,线段CD的长为( )

A.6或4 B. C. D. 答案:D 解题思路:

初三数学专题讲义-存在性问题

初三数学讲义 存在性问题 教学过程: 一、教学衔接(课前环节) 1、回收上次课的教案,了解家长的反馈意见; 2、检查学生的作业,及时指点 3、捕捉学生的思想动态和了解学生的本周学校的学习内容 二、知识点解析 存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。 这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。 由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。 一、函数中的存在性问题(相似) 1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值; (2)判断△ACD 的形状,并说明理由; (3)在线段AC 上是否存在点M ,使△AOM∽△ABC?若存在,求出点M 的坐标;若不存在,说明理由.

二、函数中的存在性问题(面积) 2. 如图,抛物线()20y ax bx a >=+与双曲线k y x = 相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan∠AOX=4.过点A 作直线AC∥x 轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.

二次函数专题训练(菱形的存在性)含答案

1如图,在平面直角坐标系中,直角梯形OABC的边0C、OA分别与x轴、y轴重合,AB II OC,/ AOC= 90° / BCO=45 , BC=12迈,点C的坐标为(—18, 0). (1)求点B的坐标; (2)若直线DE交梯形对角线BO于点D,交y正半轴于点E,且OE=4 , OD=2BD,求直线DE的解析式; (3)若点卩是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四 边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由. 2 2.如图,抛物线y=ax+bx - 2的对称轴是直线x=1,与x轴交于A , B两点,与y轴交于点C,点A的坐标为

(-2, 0),点P为抛物线上的一个动点,过点P作PD丄x轴于点D,交直线BC于点E. (1)求抛物线解析式; (2)若点P在第一象限内,当0D=4PE时,求四边形POBE的面积; (3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和 点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明 理由. 3.如图,抛物线y=ax2-2x+c ( a和)与x轴、y轴分别交于点A , B, C三点,已知点A (- 2, 0),点C ( 0,- 8),点D是抛物线的顶点. (1)求抛物线的解析式及顶点D的坐标; (2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点卩,将厶EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标; (3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点, 当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标. 【温馨提示:考生可以根据题

菱形存在性问题

菱形存在性问题 1.如图,在平面直角坐标系中,直角梯形OABC 的边OC 、OA 分别与x 轴、y 轴重合,AB ∥OC ,∠AOC=90°,∠BCO=45°,BC=122,点C 的坐标为(-18,0). (1)求点B 的坐标; (2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且OE=4,OD=2BD ,求直线DE 的解析式; (3)若点P 是(2)中直线DE 上的一个动点,在坐标平面内是否存在点Q ,使以O 、E 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由. 2.已知抛物线y= 4 1x 2 + 1 (如图所示). (1)填空:抛物线的顶点坐标是(__ __,_ _),对称轴是__ __; (2)已知y 轴上一点A(0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标; (3)在(2)的条件下,点M 在直线..AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有..满足条件的点N 的坐标;若不存在,请说明理由.

3.如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(-2,m)且与y轴交于点C,与抛物线的对称轴交于点F. (1)求m的值及该抛物线对应的解析式; (2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由. 4.如图,二次函数y=x2﹣x+c的图象与x轴分别交于A、B两点,顶点M关于x轴的对称 点是M′. (1)若A(﹣4,0),求二次函数的关系式; (2)在(1)的条件下,求四边形AMBM′的面积; (3)是否存在抛物线y=x2﹣x+c,使得四边形AMBM′为正方形?若存在,请求出此抛 物线的函数关系式;若不存在,请说明理由.

相关文档
最新文档