陕西省2020年中考25题几何探究---“阿氏圆”问题 (包含答案)

陕西省2020年中考25题几何探究---“阿氏圆”问题 (包含答案)
陕西省2020年中考25题几何探究---“阿氏圆”问题 (包含答案)

几何探究型问题(针对第25题)

“阿氏圆”问题

【问题背景】“PA+k·PB”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k取任意不为1的正数时,此类问题的处理通常以动点P的运动轨迹不同来分类,一般分为两类研究,即点P在直线上运动和点P 在圆上运动.其中点P在圆周上运动的类型称之为“阿氏圆”问题.

【模型分析】如图1,⊙O的半径为r,点A,B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA,PB,则当PA+k·PB的值最小时,点P的位置如何确定?

如图2,在线段OB上截取OC,使OC=k·r,则可证明△BPO与△PCO相似,即k·PB=PC.故求PA+k·PB的最小值可以转化为PA+PC的最小值,其中A,C为定点,P为动点,当点P,A,C共线时,PA+PC的值最小,如图3.

“阿氏圆”模型解题策略:

第一步:连接动点与圆心O (一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;

第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP

OB

=k ;

第三步:在OB 上取点C ,使得OC OP =OP

OB ;

第四步:连接AC ,与⊙O 的交点即为点P . 例题

1.如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +1

2BP 的最小

值.

解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .

CD CP =CP BC =1

2

,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =1

2,

∴PD =12BP ,∴AP +1

2BP =AP +PD ,

∴要使AP +1

2BP 最小,则AP +PD 最小,

当点A ,P ,D 在同一条直线时,AP +PD 最小, 即AP +1

2BP 的最小值为AD 的长.

在Rt △ACD 中,∵CD =1,AC =6, ∴AD =AC 2+CD 2=37,

∴AP +1

2BP 的最小值为37.

2.问题提出

(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.

解题思路

当点A 在线段BC 上时,线段AC 有最小值. 【解答】

∵当点A 在线段BC 上时,线段AC 有最小值, ∴线段AC 的最小值为5-2=3. 问题探究

(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC 的中

点,延长OC 到点F ,使CF =OC ,P 是CD ︵

上的动点,点B 是OD 上的一点,BD =1.

①求证:△OAP ∽△OPF . 【解答】

∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =1

2.

∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =1

2,

OA OP =OP

OF

,且∠AOP =∠POF , ∴△OAP ∽△OPF . ②求BP +2AP 的最小值.

【解答】

∵△OAP ∽△OPF ,∴AP PF =OP OF =1

2

∴PF =2AP .

∵BP +2AP =BP +PF ,

∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长. ∵DO =CO =6,BD =1,∴BO =5,OF =12, ∴BF =OB 2+OF 2=13. 问题解决

(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计) 解题思路

以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵

上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.

以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵

上一点,连

接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作

DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD

上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.

∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ), ∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值. ∵∠BCD =150°,∴∠DCG =30°. ∵DG ⊥BC ,

∴DG =1

2DC =23(千米),CG =3DG =6(千米),

∴MG =BC +CG -BM =9+6-1=14(千米), ∴MD =DG 2+MG 2=413(千米),

∴建桥PD 和PC 的总造价的最小值为3×413=1213万元. 作业练习

类型三 “阿氏圆”问题

7.(2018·西工大附中三模) 问题提出

(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;

问题探究

(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +1

2PD 的

最小值;

问题解决

(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +3

5

MD 的最小值.

解:(1)如答图1,线段EC 即为所求.

证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,????

?

AB =AC ,∠A =∠A ,

AD =AE ,

答图1

∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =3

2.

∵P A 2=9,AE ·AD =3

2×6=9,

∴P A 2=AE ·AD ,∴P A AD =AE

P A

.

∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴

PE DP =P A DA =12,∴PE =1

2

PD , ∴PC +1

2PD =PC +PE .

∵PC +PE ≥EC ,

∴PC +1

2

PD 的最小值即为EC 的长,

在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =9

2

∴EC =

62+(92)2=152

∴PC +12PD 的最小值为15

2

.

答图

(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225, ∴MA 2=AE ·AD ,∴MA AD =AE

MA

.

∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴

EM MD =MA DA =1525=35,∴ME =3

5

MD , ∴MC +3

5MD =MC +ME .

∵MC +ME ≥EC ,

∴MC +3

5

MD 的最小值即为EC 的长.

如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +3

5

MD 的最小值为2145.

8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -1

2

PC 的最大值;

(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,

那么PD +23PC 的最小值为,PD -2

3

PC 的最大值为

(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一

个动点,那么PD +12PC 的最小值为,PD -1

2

PC 的最大值为

解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG . ∵

PB BG =CB

PB

=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴

PG CP =BG BP =12,∴PG =1

2

PC , ∴PD +1

2PC =PD +PG .

∵PD +PG ≥DG ,

∴当D ,P ,G 三点共线时,PD +1

2PC 的值最小,最小值为DG =42+32=5.

∵PD -1

2

PC =PD -PG ≤DG ,

∴如答图2,当点P 在DG 的延长线上时,PD -1

2

PC 的值最大,最大值为5.

答图

(2)106,106.

【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵

PB BG =64=32,CB PB =96=32,∴PB BG =CB BP

. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴

PG CP =BG BP =23

, ∴PG =23PC ,∴PD +2

3PC =DP +PG .

∵DP +PG ≥DG ,

∴当D ,P ,G 三点共线时,PD +2

3PC 的值最小,最小值为DG =52+92=106.

∵PD -2

3

PC =PD -PG ≤DG ,

∴当点P 在DG 的延长线上时,PD -1

2

PC 的值最大,最大值为106.

答图

(3)37,37.

【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .

PB BG =21=2,BC PB =42=2,∴PB BG =CB BP

. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴

PG CP =BG BP =12

∴PG =12PC ,∴PD +1

2PC =DP +PG .

∵DP +PG ≥DG ,

∴当D ,P ,G 三点共线时,PD +1

2PC 的值最小,最小值为DG 的长.

在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,

∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +1

2PC 的最小值为37.

∵PD -1

2

PC =PD -PG ≤DG ,

∴当点P 在DG 的延长线上时,PD -1

2PC 的值最大,最大值为37.

2017年北京中考数学一模28题“几何综合题”

2017年北京中考数学一模28题“几何综合题” 西城28.在△ABC 中,AB =BC ,BD ⊥AC 于点D . (1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F . ①求证:△BEF 是等腰三角形; ②求证:()BF BC BD += 2 1 ; (2)点E 在AB 边上,连接CE . 若()BF BC BD += 2 1 ,在图2.中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路 图1 图2 朝阳28.在△ABC 中,∠ACB =90°,AC <BC ,点D 在AC 的延长线上,点E 在BC 边上,且BE =AD , (1) 如图1,连接AE ,DE ,当∠AEB =110°时,求∠DAE 的度数; (2) 在图2中,点D 是AC 延长线上的一个动点,点E 在BC 边上(不与点C 重合),且BE =AD ,连接AE , DE ,将线段AE 绕点E 顺时针旋转90°得到线段EF ,连接BF ,DE . ①依题意补全图形; ②求证:BF =DE . D D 图1 图2

东城28. 在等腰△ABC中, (1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________; (2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE. ①根据题意在图2中补全图形; ②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论, 形成了几种证明的思路: 思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB; 思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB; 思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG; …… 请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可) (3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明) 图1 图2 图3

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

广东中考数学专题训练(二):几何综合题(圆题)

广东中考数学专题训练(二):几何综合题(圆题) 一、命题特点与方法分析 以考纲规定,“几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第2题(即试卷第24题),近四年来都是以圆为主体图形,考察几何证明. 近四年考点概况: 也相对复杂.难度也较高(尤其是14、15年),考查学生综合多方面知识进行几何证明的能力. 本题除了常规的证明以外,主要的命题特点有以下两种: 1.改编自常考图形,有可能成为作辅助线的依据.如16年的构图中包含弦切角定理的常用图,17年第(2)问则显然是“切线+垂直+半径相等”得出角平分线的考察,依此就不难判断出辅助线的构造,应该对常考图形有一定的识别能力. 2.利用数量关系求出特殊角.如15年第(1)问,17年第(3)问,这常常是容易被遗忘的点,在做这类题目的时候,首先要通过设问推敲,其次在观察题干中是否有给出角度的条件,如果没有,一般就是通过数量关系求出特殊角. 二、例题训练 1.如图,⊙O 为?ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和 BD ,AC 与BD 交于点E ,并作AF ⊥BC 交BD 于点 G ,点 G 为BE 中点,连接OG . (1)求证:OA ∥CD ; (2)若∠DBC =2∠DBA ,求BD 的长; (3)求证:FG = 2 DE .

2.如图,⊙O为 ABC外接圆,AB为⊙O直径,AB=4.⊙O切线CD交BA延长线于点D,∠ACB平分线交⊙O于点E,并以DC 为边向下作∠DCF=∠CAB交⊙O于点F,连接AF. (1)求证:∠DCF=∠D+∠B; (2)若AF=3 2 ,AD= 5 2 ,求线段AC的长; (3)若CE AB⊥CF.

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

中考数学专题突破几何综合

2016年北京中考专题突破几何综合 在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律. 求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算. 1.[2015·北京] 在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH. (1)若点P在线段CD上,如图Z9-1(a). ①依题意补全图(a); ②判断AH与PH的数量关系与位置关系,并加以证明. (2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果 .........) 图Z9-1 2.[2014·北京] 在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F. (1)依题意补全图Z9-2①; (2)若∠PAB=20°,求∠ADF的度数; (3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.

图Z9-2 3.[2013·北京] 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D. (1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示); (2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明; (3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值. 图Z9-3 4.[2012·北京] 在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ. (1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数; (2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明; (3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围. 图Z9-4

石家庄市第二十二中数学圆 几何综合中考真题汇编[解析版]

石家庄市第二十二中数学圆几何综合中考真题汇编[解析版] 一、初三数学圆易错题压轴题(难) 1.如图,抛物线的对称轴为轴,且经过(0,0), ()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2), (1)求的值; (2)求证:点P在运动过程中,⊙P始终与轴相交; (3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标. 【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣ 2. 【解析】 试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可; (2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可; (3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可. 试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过 (0,0)和(,)两点, ∴抛物线的一般式为:y=ax2, ∴=a()2, 解得:a=±, ∵图象开口向上,∴a=,

∴抛物线解析式为:y=x2, 故a=,b=c=0; (2)设P(x,y),⊙P的半径r=, 又∵y=x2,则r=, 化简得:r=>x2, ∴点P在运动过程中,⊙P始终与x轴相交; (3)设P(a,a2),∵PA=, 作PH⊥MN于H,则PM=PN=, 又∵PH=a2, 则MH=NH==2, 故MN=4, ∴M(a﹣2,0),N(a+2,0), 又∵A(0,2),∴AM=,AN=,当AM=AN时,=, 解得:a=0, 当AM=MN时,=4, 解得:a=2±2(负数舍去),则a2=4+2; 当AN=MN时,=4, 解得:a=﹣2±2(负数舍去),则a2=4﹣2; 综上所述,P的纵坐标为0或4+2或4﹣2.

重庆市一中数学圆 几何综合专题练习(解析版)

重庆市一中数学圆几何综合专题练习(解析版) 一、初三数学圆易错题压轴题(难) 1.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G. (1)求证:∠ECG=∠BDC. (2)当AB=6时,在点F的整个运动过程中. ①若BF=22时,求CE的长. ②当△CEG为等腰三角形时,求所有满足条件的BE的长. (3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出1 2 S S的值. 【答案】(1)详见解析;(2)① 182 5 ;②当BE为10, 39 5 或 44 5 时,△CEG为等腰三角形;(3) 7 24 . 【解析】 【分析】 (1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论; (2)根据勾股定理求得BD=10, ①连接EF,根据圆周角定理得出∠CEF=∠BCD=90°,∠EFC=∠CBD.即可得出sin∠EFC =sin∠CBD,得出 3 5 CE CD CF BD ==,根据勾股定理得到CF=62CE 18 2 5 ; ②分三种情况讨论求得: 当EG=CG时,根据等腰三角形的性质和圆周角定理即可得到∠GEC=∠GCE=∠ABD= ∠BDC,从而证得E、D重合,即可得到BE=BD=10; 当GE=CE时,过点C作CH⊥BD于点H,即可得到∠EGC=∠ECG=∠ABD=∠GDC,得到CG=CD=6.根据三角形面积公式求得CH= 24 5 ,即可根据勾股定理求得GH,进而求得HE,即可求得BE=BH+HE= 39 5 ;

初中数学中考几何综合题

中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是 BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去). 则 BF 的长为2.

年重庆中考数学几何证明题--(专题练习+答案详解)

2015年重庆中考数学24题专题练习 1、如图,等腰梯形ABCD中,AD∥BC,AB=DC,E为AD中点,连接BE,CE (1)求证:BE=CE; (2)若∠BEC=90°,过点B作BF⊥CD,垂足为点F,交CE于点G,连接DG,求证:BG=DG+CD. 2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点. (1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长.

3、如图,梯形ABCD中,AB∥CD,AD=DC=BC,∠DAB=60°,E是对角线AC延长线上一点,F是AD延长线上的一点,且EB⊥AB,EF⊥AF. (1)当CE=1时,求△BCE的面积; (2)求证:BD=EF+CE. 4、如图.在平行四边形ABCD中,O为对角线的交点,点E为线段BC延长线上的一点,且.过点E EF∥ CA,交CD于点F,连接OF. (1)求证:OF∥BC; (2)如果梯形OBEF是等腰梯形,判断四边形ABCD的形状,并给出证明.

5、如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=,CF=6. (1)求线段CD的长; (2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°﹣∠EBC. 6、如图,直角梯形ABCD中,AD∥BC,∠B=90°,∠D=45°. (1)若AB=6cm,,求梯形ABCD的面积; (2)若E、F、G、H分别是梯形ABCD的边AB、BC、CD、DA上一点,且满足EF=GH,∠EFH=∠FHG,求证:HD=BE+BF.

九年级上册数学 圆 几何综合中考真题汇编[解析版]

九年级上册数学 圆 几何综合中考真题汇编[解析版] 一、初三数学 圆易错题压轴题(难) 1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在 射线BA 上,以BP 为半径的 P 交边BC 于点E (点E 与点C 不重合),联结PE 、 PC ,设x BP =,PC y =. (1)求证:PE //DC ; (2)求y 关于x 的函数解析式,并写出定义域; (3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取 值范围. 【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605 R << 【解析】 【分析】 ()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据 平行线的判定定理即可得到结论; ()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形, //PH AF ,求得2BF FG GC ===,根据勾股定理得到 22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到 223PH x = ,13BH x =,求得1 63 CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218 655 PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】 () 1证明:梯形ABCD ,AB CD =, B DCB ∠∠∴=, PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,

中考几何证明题及答案(供参考)

1文档来源为:从网络收集整理.word 版本可编辑. 几何证明练习题及答案 【知识要点】 1.进一步掌握直角三角形的性质,并能够熟练应用; 2.通过本节课的学习能够熟练地写出较难证明的求证; 3.证明要合乎逻辑,能够应用综合法熟练地证明几何命题。 【概念回顾】 1.全等三角形的性质:对应边( ),对应角( )对应高线( ),对应中线( ),对应角的角平分线( )。 2.在Rt△ABC 中,∠C =90°,∠A =30°,则BC :AC :AB=( )。 【例题解析】 【题1】已知在ΔABC 中,,AB =AC ,BD 平分.求证:BC =AB +CD . 【题2】如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF. 【题3】如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC. 【题4】已知:如图,点B 、F 、C 、E 在同一直线上,BF=CE ,AB ∥ED ,AC ∥FD ,证明AB=DE ,AC=DF. 【题5】已知:如图,△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数. 【题6】如图:△ABC 中,∠ACB=90°,AC=BC ,线,过C 作CF ⊥AE ,垂足是F ,过B 作BD ⊥BC 交108A ∠=ABC ∠

2文档来源为:从网络收集整理.word 版本可编辑. (1) 求证:AE=CD; (2) 若AC=12㎝,求BD 的长. 【题7】等边三角形CEF 于菱形ABCD 边长相等. 求证:(1)∠AEF=∠AFE (2)角B 的度数 【题8】如图,在△ABC 中,∠C=2∠B ,AD 是△ABC 的角平分线, ∠1=∠B ,求证:AB=AC+CD. 【题9】如图,在三角形ABC 中,AD 是BC 边上的中线,E 是AD 的中点,BE 的延长线交AC 于点F. 求证:AF=2 1FC 【题10】如图,将边长为1的正方形ABCD 绕点C 旋转到A'B'CD'的位置,若∠B'CB=30度,求AE 的长. 【题11】AD,BE 分别是等边△ABC 中BC,AC 上的高。M,N 分别在AD,BE 的延长线上,∠CBM=∠ACN.求证AM=BN. 【题12】已知:如图,AD 、BC 相交于点O ,OA =OD ,OB =OC ,点E 、F 在AD 上,且AE =DF ,∠ABE =∠DCF . 求证:BE‖CF . 【巩固练习】 【练1】 如图,已知BE 垂直于AD ,CF 垂 直于AD ,且BE=CF. (1)请你判断AD 是三角形ABC 的中线还是角

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

九年级圆 几何综合易错题(Word版 含答案)(1)

九年级圆几何综合易错题(Word版含答案)(1) 一、初三数学圆易错题压轴题(难) 1.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB 于点D,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8. (1)如图1,当点D是弧AB的中点时,求CD的长; (2)如图2,设AC=x,ACO OBD S S=y,求y关于x的函数解析式并写出定义域; (3)若四边形AOBD是梯形,求AD的长. 【答案】(1)2;(2) 2825 x x x -+ (0<x<8);(3)AD= 14 5 或6. 【解析】 【分析】 (1)根据垂径定理和勾股定理可求出OC的长. (2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式. (3)分OB∥AD和OA∥BD两种情况讨论. 【详解】 解:(1)∵OD过圆心,点D是弧AB的中点,AB=8, ∴OD⊥AB,AC= 1 2 AB=4, 在Rt△AOC中,∵∠ACO=90°,AO=5, ∴22 AO AC -, ∴OD=5, ∴CD=OD﹣OC=2; (2)如图2,过点O作OH⊥AB,垂足为点H, 则由(1)可得AH=4,OH=3, ∵AC=x, ∴CH=|x﹣4|, 在Rt△HOC中,∵∠CHO=90°,AO=5, ∴22 HO HC +22 3|x4| +-2825 x x -+

∴CD=OD ﹣OC=5 过点DG ⊥AB 于G , ∵OH ⊥AB , ∴DG ∥OH , ∴△OCH ∽△DCG , ∴ OH OC DG CD =, ∴DG=OH CD OC ? 35, ∴S △ACO = 12AC ×OH=12x ×3=32 x , S △BOD =12BC (OH +DG )=12(8﹣ x )×(3 35)=3 2 (8﹣ x ) ∴y= ACO OBD S S = ()32 3582x x - (0<x <8) (3)①当OB ∥AD 时,如图3, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF=AE , ∴S=12AB?OH=1 2 OB?AE , AE= AB OH OB ?=24 5 =OF , 在Rt △AOF 中,∠AFO=90°, AO=5, ∴75 ∵OF 过圆心,OF ⊥AD , ∴AD=2AF=14 5 . ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得DG=BM= 245 , 在Rt △GOD 中,∠DGO=90°,DO=5,

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

九年级数学上册 圆 几何综合中考真题汇编[解析版]

九年级数学上册圆几何综合中考真题汇编[解析版] 一、初三数学圆易错题压轴题(难) 1.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE. ⑴当t为何值时,线段CD的长为4; ⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围; ⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切? 【答案】(1); (2) 4-<t≤; (3)或. 【解析】 试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值; (2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切 时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当 OG<时,直线与圆相交,据此即可求得t的范围; (3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值. (1)过点C作CF⊥AD于点F, 在Rt△AOB中,OA=4,OB=4,

∴∠ABO=30°, 由题意得:BC=2t,AD=t, ∵CE⊥BO, ∴在Rt△CEB中,CE=t,EB=t, ∵CF⊥AD,AO⊥BO, ∴四边形CFOE是矩形, ∴OF=CE=t,OE=CF=4-t, 在Rt△CFD中,DF2+CF2=CD2, ∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0, 解得:t=,t=4, ∵0<t<4, ∴当t=时,线段CD的长是4; (2)过点O作OG⊥DE于点G(如图2), ∵AD∥CE,AD=CE=t ∴四边形ADEC是平行四边形, ∴DE∥AB ∴∠GEO=30°, ∴OG=OE=(4-t) 当线段DE与⊙O相切时,则OG=, ∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点; (3)当⊙C与⊙O外切时,t=; 当⊙C与⊙O内切时,t=;

郴州数学圆 几何综合专题练习(解析版)

郴州数学圆几何综合专题练习(解析版) 一、初三数学圆易错题压轴题(难) 1.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G. (1)如图1,求证:GD=GF; (2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小; (3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长. 【答案】(1)见解析;(2)∠ADF=45°;(3)1810 . 【解析】 【分析】 (1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°; (3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】 解:(1)证明:∵DE⊥AB ∴∠BED=90° ∴∠A+∠ADE=90° ∵∠ADC=90° ∴∠GDF+∠ADE=90° ∴∠A=∠GDF ∵BD BD ∴∠A=∠GFD

初中数学中考几何综合题[1]

页眉内容 中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

相关文档
最新文档